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ABSTRACT
We present a new formalism for studying the topology of H II regions during the Epoch of
Reionization, based on persistent homology theory. With persistent homology, it is possible to
follow the evolution of topological features over time. We introduce the notion of a persistence
field as a statistical summary of persistence data and we show how these fields can be
used to identify different stages of reionization. We identify two new stages common to
all bubble ionization scenarios. Following an initial pre-overlap and subsequent overlap stage,
the topology is first dominated by neutral filaments (filament stage) and then by enclosed
patches of neutral hydrogen undergoing outside-in ionization (patch stage). We study how
these stages are affected by the degree of galaxy clustering. We also show how persistence
fields can be used to study other properties of the ionization topology, such as the bubble size
distribution and the fractal-like topology of the largest ionized region.
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1 IN T RO D U C T I O N

The Epoch of Reionization was a cosmic phase transition in which
the neutral hydrogen of the post-recombination era was ionized
by the first luminous objects. Reionization coincides with and
influences the formation of the first galaxies, resulting in a complex
and non-linearly evolving ionization fraction field xII = NII/(NI +
NII). The topology of this ionization field has been the subject of
sustained theoretical interest. One hope is that the topology will
tell us about the physical processes involved and in particular about
the sources responsible for reionization (Friedrich et al. 2011; Katz
et al. 2018). With currently ongoing observations of the redshifted
21-cm line (Beardsley et al. 2016; Patil et al. 2017; Kerrigan et al.
2018), we will for the first time gain access to statistics of the
21-cm field and the closely related ionization field. If techniques
improve sufficiently, we will even be able to image the ionization
field through 21-cm tomography, which is one of the goals of the
Square Kilometre Array (Mellema et al. 2015). To connect these
observations to the many simulations1 of the reionization era, it
is important to develop robust measures that capture a sufficient
level of detail of the ionization topology and are appropriate for
every stage of the ionization process. This study is an effort to

� E-mail: elbers@astro.rug.nl
1State of the art simulations include Gnedin (2014), Iliev et al. (2014), Ocvirk
et al. (2016), Pawlik et al. (2017), and Doussot, Trac & Cen (2019). Seminu-
merical approximations are also commonly used (Mesinger & Furlanetto
2007; Choudhury, Haehnelt & Regan 2009; Mesinger, Furlanetto & Cen
2011; Zahn et al. 2011; Majumdar et al. 2014; Hutter 2018).

develop such a measure by borrowing from the theory of persistent
homology. In this first paper of two, we explain our methodology
and illustrate the usefulness of persistent homology with a number
of phenomenological models. In a follow-up paper, we apply these
ideas to more realistic scenarios.

1.1 Topology of reionization

An early qualitative description of the topology of reionization
goes back to Gnedin (2000), who identified three stages of reion-
ization. During the pre-overlap stage, radiation emitted by the
first luminous objects ionizes the dense surrounding gas, forming
localized bubbles of ionized material. These bubbles then expand
into the low-density intergalactic medium. In a second overlap
stage, the ionized regions merge and the global ionization fraction
rises rapidly. Finally, in the post-overlap stage, the remaining high-
density neutral pockets are ionized from the outside. This picture of
reionization can be described in terms of inside-out and outside-in
reionization (Lee et al. 2008; Choudhury et al. 2009; Friedrich et al.
2011). These terms refer to the ionization of high-density regions:
high-density regions containing ionizing sources are ionized first
and their bubbles expand outward (inside-out), but high-density
regions without ionizing sources are ionized from the outside at the
end of reionization (outside-in). Rather than high-density pockets,
high-density filaments might also be the last regions to be ionized
(Finlator et al. 2009). Either way, the degree to which outside-in
reionization occurs depends on the minimum halo mass necessary
for ionizing sources to form, demonstrating one way in which the
topology reflects the underlying physics. Another example is the
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1524 W. Elbers and R. van de Weygaert

degree of galaxy clustering, which affects the patchiness of the
ionization field (Iliev et al. 2014).

The reionization process has been most commonly quantified
with the 21-cm power spectrum or more directly with the power
spectrum of the ionization field, which constitutes the dominant
component of the 21-cm power spectrum during the latter half of
reionization (Iliev et al. 2014). The 21-cm power spectrum is the
first observable that is likely to be measured and contains valuable
information. The overall amplitude of the 21-cm power spectrum
tracks the progress of reionization, since the differential brightness
temperature is proportional to the fraction of neutral hydrogen.2 The
amplitude of the ionization power spectrum peaks in the middle of
reionization when variance in the ionization field is highest (Hutter
2018). A general finding is that once reionization has started, the
ionization power spectrum peaks at some scale indicative of a char-
acteristic bubble size, which increases as reionization progresses
and bubbles merge (Furlanetto, Zaldarriaga & Hernquist 2004b;
Zahn et al. 2011; Hong et al. 2014; Iliev et al. 2014; Majumdar
et al. 2014; Dixon et al. 2016; Hutter 2018). The power spectrum
can also be used to identify more complex patterns in the ionization
topology. Friedrich et al. (2011) found two peaks and explained this
with two periods of ionization bubble formation interceded by a
period of suppression. The slope of the power spectrum may indicate
to what degree ionization occurred outside-in (Choudhury et al.
2009). Finally, the 21-cm power spectrum also carries information
on pre-reionization physics (Mesinger et al. 2011). Nevertheless,
the power spectrum is not enough to characterize the evidently non-
Gaussian ionization field. Kakiichi et al. (2017) nicely demonstrated
that the 21-cm signal from a radiative transfer simulation is
morphologically very different from a Gaussian random field with
the same power spectrum. Hence, complementary observables such
as the bispectrum (Shimabukuro et al. 2017) are needed (this paper
introduces another such observable).

A common alternative has been to study the morphology of
individual ionization bubbles. Many authors have looked at the
size distribution of ionization bubbles (Furlanetto, Hernquist &
Zaldarriaga 2004a; McQuinn et al. 2007; Mesinger & Furlanetto
2007; Friedrich et al. 2011; Zahn et al. 2011; Malloy & Lidz 2013;
Lin et al. 2016; Giri et al. 2017; Kakiichi et al. 2017) or at the shape
of such bubbles (Gleser et al. 2006; Iliev et al. 2006; Furlanetto &
Oh 2016; Bag et al. 2018; Kapahtia et al. 2018). They typically find
that the bubble radius is approximately lognormally distributed with
a characteristic scale that increases and a variance that decreases as
reionization progresses.

Recently, reionization has also been fruitfully studied from the
perspective of percolation theory (Furlanetto & Oh 2016; Bag
et al. 2018). A salient feature of the qualitative description above
is the sharp rise in ionization fraction during the overlap stage.
This can be understood as a phase transition associated with the
percolation of ionization bubbles. The transition is characterized by
the appearance of one large connected cluster of ionized regions
that spans the simulation box. Near the phase transition, the
ionized regions demonstrate the scaling behaviour expected from
universality.

2Indeed, we have (Pritchard & Loeb 2012):

δT21(z) = T0(z)(1 + δb)(1 − xII)

(
1 − TCMB(z)

TS

)
,

where TS is the spin temperature, T0(z) a function of cosmological parame-
ters and redshift z, and δb the baryonic overdensiy.

In terms of purely topological measures, the most basic is
probably the number k of connected components. Starting from
a discretized snapshot of the ionization field, this can be determined
by applying a friends-of-friends algorithm (Friedrich et al. 2011),
watershed algorithm (Platen, van de Weygaert & Jones 2007; Lin
et al. 2016) or technique called granulometry (Kakiichi et al. 2017)
to the points with an ionization fraction above a certain threshold.
The evolution of the number of ionized regions alone can already tell
the qualitative story of emerging and then rapidly merging bubbles
(Fig. 1). A more detailed variation is to follow the evolution of
individual ionized regions and to construct merger trees, which
allows one to study the number density of new, expanding, and
merging regions over time (Chardin, Aubert & Ocvirk 2012).

Another elementary topological property is the genus g, which
is the number of cuts one can make without increasing the number
of components, or the related Euler characteristic χ = 2k − 2g.
More complex still, the Minkowski functionals combine geometric
properties such as the volume, surface area, and mean curvature
of the ionized region with the Euler characteristic. Both genus and
Minkowski functionals have been applied in this context. Different
stages of reionization can be distinguished by means of genus curves
(Lee et al. 2008) and Minkowski functionals (Gleser et al. 2006).
Both can be used to constrain various source properties (Friedrich
et al. 2011). The 21-cm field too has been studied with genus
curves (Hong et al. 2014) and Minkowski functionals (Yoshiura
et al. 2017), both agreeing that they can be used to constrain
physics if accurate images of the 21-cm signal were available.
Kapahtia et al. (2018) used Minkowski tensors to characterize the
size and shape distribution of ionization bubbles and Bag et al.
(2018) used ratios of Minkowski functionals called shapefinders
(Sheth et al. 2003; Shandarin, Sheth & Sahni 2004) to express such
properties as the length, thickness, and breadth of the largest ionized
region. They found that the largest ionized region that emerges
during the phase transition has a complex and highly filamentary
topology.

To summarize, most studies thus far have focused on global
features of the topology such as the Euler characteristic or on the
morphology of individual ionization bubbles. However, the picture
of disconnected ionization bubbles is only appropriate during the
pre-overlap stage when the global ionization fraction is relatively
small. During most of reionization, most of the ionized material
is contained in one connected structure that stretches the length
of the Universe and has a complicated and fractal-like topology
(Furlanetto & Oh 2016; Bag et al. 2018). We would therefore like
to find tools that help us understand the topology during the later
stages of reionization, especially since the later stages are easiest to
observe through the 21-cm signal.

1.2 Persistent homology

In this paper, we show that persistent homology is ideally suited to
study the process of cosmic reionization through its topology. As
a subfield of mathematics, topology is concerned with properties
that are preserved under continuous deformations (like bending or
stretching). An important example of such a property is the number
of holes. Counting holes is therefore a useful way to distinguish
topologies. In Fig. 2, we see three examples of holes in different
dimensions. A zero-dimensional hole is a gap that separates a
connected component, like a distinct H II region, from the space
surrounding it. There is one gap for each component, so we often
blur the distinction. A one-dimensional hole is an opening like
the cross-section of a tunnel. Finally, a two-dimensional hole is a
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Persistent topology of reionization 1525

Figure 1. Filtration of a uniformly sized bubble network.

cavity or void surrounded by a shell. We will generally refer to gaps,
tunnels, and voids as topological features.

We are interested in topological features in the ionization field.
The connected components of this field are simply the ionization
bubbles or the distinct H II regions. The tunnels are neutral filaments
that pierce through the ionization bubble network. Voids are patches
of neutral hydrogen enclosed by ionized material. We stress that
these are voids in the ionization field, often corresponding to over-
densities and distinct from cosmological voids, which correspond to
underdensities. We refer to these features as ionized bubbles (k = 0),
neutral filaments or tunnels (k = 1), and neutral patches (k = 2).

In homology theory, we count holes by classifying the loops that
can be drawn on an object. This is possible because of a correspon-
dence between loops and holes. We are primarily interested in the
so-called Betti numbers. Formally, the kth Betti number βk is the
rank of the kth homology group, which contains the distinct classes
of k-dimensional loops. Intuitively, the kth Betti number is simply
the number of k-dimensional holes. In other words, the zeroth Betti
number β0 describes the number of connected components, the first
Betti number β1 the number of tunnels, and the second Betti number
β2 the number of voids.

Together, the Betti numbers contain strictly more information
than the Euler characteristic χ = β0 − β1 + β2. As the number
of ionized regions is initially much larger than the number of
enclosed filaments and neutral patches, the Euler characteristic has
sometimes been thought of as a measure of the number of bubbles:
χ ≈ β0. However, it is interesting to consider the Betti numbers
separately. We should for instance be able to see the filamentary
nature of reionization by looking at β1. Neutral patches undergoing
outside-in ionization can be identified by looking at β2.

We can go one step further by taking topological persistence into
account (Edelsbrunner, Letscher & Zomorodian 2000; Zomoro-
dian & Carlsson 2005). Rather than dealing with a static object, we
consider a nested sequence of objects3 called a filtration. It facilitates
a formal mathematical description of the hierarchical evolution of
structure. Intuitively, we picture a filtration as an expanding bubble
network, as depicted in Fig. 1. Each element in the sequence is
assigned a scale α. By studying the topology at every scale, we
compute a birth date αbirth and death date αdeath for all topological
features. In Fig. 1, we see the death of multiple gaps and the birth
of two tunnels. The difference αdeath − αbirth is the persistence of a
feature. In a persistence diagram, all features are plotted in the (αbirth,
αdeath) plane. Persistence diagrams contain even more information

3In which each element of the sequence contains the previous element.

Figure 2. The homology of an object refers to the distinct classes of loops
that can be drawn on it, or equivalently about its boundaries and holes. A
k-dimensional loop (point, loop, shell) can be continuously deformed until
it meets a k-dimensional hole (gap, tunnel, void). Shown are k = 0, 1, 2.

than Betti numbers, which only count the numbers of topological
features at a given scale. For example, if we consider the filtration of
a bubble network along the time axis, we can see not just the number
of neutral patches but also how long it takes for them to be ionized.

In the context of reionization, there are three interesting dimen-
sions along which to build a filtration.

(i) Time. The most straightforward interpretation is to imagine
the filtration as a bubble network evolving over time. In this case,
αbirth and αdeath are literally the birth and death dates of topological
features. The persistence is simply the lifetime of a feature. A
temporal filtration shows the hierarchical build-up of structure.

(ii) Space. Given a time slice of the ionization history, we can
also probe the connectivity structure of the bubble network. In this
case, αbirth and αdeath refer to spatial scales at which features arise.
The persistence is now a measure of the topological significance of
a feature. A spatial filtration looks into the multiscale structure that
emerges as a result of hierarchical evolution.

(iii) Ionization fraction. In this paper, we assume a binary ioniza-
tion field. However, we can also construct a filtration by lowering the
ionization threshold (the ionization fraction above which a point is
considered ionized). The persistence of a feature is now interpreted
as the differential ionization fraction of the hole. For instance, the
persistence of an opening tells us about the ionization state of the
enclosed filament. In this study, we consider only filtrations along
the first two dimensions.

With developments in computational topology over the past two
decades, persistent homology is now readily applicable in various
practical situations. It has become the preeminent tool of topological
data analysis (Zomorodian 2012; Wasserman 2018). In cosmology,
persistent homology has previously been applied to the cosmic web
(Sousbie 2011; van de Weygaert et al. 2011; Nevenzeel 2013; Pranav
et al. 2017; Xu et al. 2019), to Gaussian random fields (Feldbrugge &
van Engelen 2012; Park et al. 2013; Cole & Shiu 2018; Feldbrugge
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1526 W. Elbers and R. van de Weygaert

et al. 2018; Pranav et al. 2018), and to interstellar magnetic fields
(Makarenko et al. 2018).

We further discuss the theory of filtrations and homology in
Section 2. In Section 3, we describe our methodology and elaborate
on the interpretation of bubble network filtrations. In Section 4,
we discuss how the bubble network depends on the properties
and spatial distribution of ionizing sources. The interpretation of
persistent homology is explained in Section 5 using a number of
phenomenological models. Finally, we conclude in Section 6.

2 TH E O RY

Our formalism makes use of persistent homology theory to analyse
bubble networks. We also borrow a tool from computational topol-
ogy called α-shapes to model these bubble networks. The first part
of this section deals with α-shapes and its weighted generalization.
The latter is needed to model non-uniform bubble networks. We
discuss an alternative to α-shape filtrations in Section 2.3. The
rest of the section is concerned with homology theory, topological
persistence, and the statistics of persistence diagrams.

2.1 α-shapes

Homology groups and the associated Betti numbers are most easily
computed for a class of relatively simple objects called simplicial
complexes. A simplicial complex is a structure built from points,
lines, triangles, and higher dimensional analogues called simplices.4

An illustration of a simplicial complex is shown in the second panel
of Fig. 3. Of particular interest is the idea of a filtration of a simplicial
complex K. This is a nested sequence of simplicial complexes
∅ ⊆ K0 ⊆ K1 ⊆ · · · ⊆ Km = K. By computing the homology at
each step, we can follow how the topology changes as points, lines,
and triangles are filled in. There are different ways to translate
the complex reionization topology into a usable filtration. The
most straightforward way to accomplish this task is with α-shapes
(Edelsbrunner, Kirkpatrick & Seidel 1983; Edelsbrunner & Mücke
1994).

α-shapes are families of geometric constructions that capture the
shape of a point set P over a range of scales. In this paper, we take
as our point set the collection of bubble centres. The α-shape is then
constructed as follows. We start with the Voronoi tesselation of P
(Icke & van de Weygaert 1987; Okabe 1992; van de Weygaert 1994).
This is a partition of R3 into cells, one for each point p ∈ P . The
Voronoi cell of p consists of those points x ∈ R3 that are at least as
close to p as to any other point q ∈ P . The Delaunay triangulation
T of P is the dual graph of the Voronoi tesselation. Two points in
P are connected by an edge in T if their Voronoi cells intersect.
The Delaunay triangulation T is a simplicial complex. Its simplices
are spanned by the sets of k + 1 points in P whose circumscribing
sphere does not contain any other point inP . See the first two panels
in Fig. 3 for an example. By taking suitable subsets of T , we get a
filtration.

For any value of α ≥ 0, we define the α-complex as a particular
subset of the Delaunay triangulation. We draw a ball of radius5 α

4Technically, a k-simplex σ is the smallest convex set that contains its k +
1 affinely independent vertices. A face of σ is any simplex spanned by a
subset of its vertices. A simplicial complex K is any set of simplices such
that if σ ∈ K is a simplex, then the faces of σ also belong to K and such that
any two simplices in K are either disjoint or intersect in a common face.
5Another commonly used convention is that the radius of the ball is

√
α.

around each point p ∈ P . Those simplices of T that are contained
within the union of balls belong to the α-complex. The α-shape is
the union of all simplices in the α-complex. As α grows larger, the
α-shape gets filled in. This is what we see in the last two panels
of Fig. 3. The α-shape only changes at discrete values of α. By
increasing α until the entire Delaunay triangulation is filled in, we
produce our desired filtration.

A crucial point is that the bubble network, which we now under-
stand as the union of all closed balls of radius α centred on a point
in P , is homotopy equivalent to the corresponding α-shape. This
condition is slightly weaker than being homeomorphic, in which
case all topological properties of the two shapes would be identical,
but it does mean that the shapes can be continuously deformed into
each other. In particular, it implies that the bubble network and the
α-shape have the same number of holes, validating our approach.
Of course, the same results are valid for any other shape in the
homotopy class, which includes more realistically shaped bubble
networks obtained by deforming the spherical network.

2.2 Weighted α-shapes

To model ionization bubbles of different sizes or born at different
times, we need to go beyond the simple α-shapes of the previous
section. In this case, weighted α-shapes provide the appropriate
filtration set (Edelsbrunner 1992; Edelsbrunner et al. 1995). This
is a generalization of the above construction, where each point p
is assigned a weight wp. We picture a weighted point (p, wp) as a
sphere centred on p with radius wp. Consider the weighted point set
P . Let B be the set of closed balls with boundary in P . The union
F = ⋃

B of these balls is what we understand as a bubble network.
Define the weighted distance from (p, wp) to (q, wq) as

π (p, q) = ||p − q||2 − w2
p − w2

q , (1)

where ||p − q|| is the Euclidean distance. The weighted Voronoi cell
of (p, wp) consists of all unweighted points x ∈ R3 whose weighted
distance to p is no more than the weighted distance to any other
q ∈ P . The weighted Delaunay triangulation is then the dual graph
of the weighted Voronoi tesselation.

Denote by Fα the bubble network that is obtained by inflating
every sphere (p, wp) to a sphere (p, r) with radius

r =
√

sign(wp)w2
p + sign(α)α2. (2)

We explicitly allow for negative values of α, so that we can both
inflate (α > 0) and deflate (α < 0) the bubbles. The interpretation
of negative weights (wp < 0) is explained later. Points with r2 <

0 are called redundant and are omitted. The reason for using the
non-linear radius function (2) is that the resulting Voronoi cells
are unchanged when α is varied. It follows that the dual Delaunay
triangulations are also independent of α, allowing us to build a
filtration analogous to the unweighted case.

The weighted α-complex is constructed as follows. Let σ ∈ T
be a simplex in the weighted Delaunay triangulation. The simplex
is part of the α-complex if it is the face of another simplex in the
complex or if it is ‘smaller than α’. This agrees with our intuition
for the unweighted case, where a simplex was added as soon as
the balls were large enough to contain it, but the formal definition
requires some thought. We define the size yσ of σ to be the smallest
value of α for which the α-inflated spheres centred on its k + 1
vertices intersect in a point x. Equivalently, yσ is the radius of the
smallest sphere x, such that π (x, p) = 0 for all vertices p of σ . It
may be useful to note that π (x, p) = 0 if and only if the spheres x
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Persistent topology of reionization 1527

Figure 3. The idea behind simplicial homology is that we can study the homology of a complex object by looking at the homology of an associated structure
of points, lines, and triangles (simplices), which are computationally easier to handle. In the final panel, notice that the bottom triangle is not filled in, correctly
capturing the opening that exists in the bubble network. Compare Fig. 1.

Figure 4. Two weighted points and the simplex σ spanned by their centres
(top). The spheres are α-inflated via equation (2) until they intersect, at
which point the edge enters the α-complex (middle). If we place a sphere
of radius α at the point of intersection, then it is orthogonal to the original
uninflated spheres (bottom). The size yσ of the edge is α.

and p are orthogonal. Now we say that the simplex is part of the
α-complex if α ≥ yσ , provided there are no conflicts with other
points in P . A conflict occurs if π (x, q) < 0 for any point q ∈ P
that is not a vertex of σ . See Fig. 4 for an example where σ is a line
segment.

We return to the point on negative weights. If we have bubbles
at locations {p1, p2, . . . } born at times {τ 1, τ 2, . . . }, we define the
weights by wi = −τ i. This ensures that for α < τ i, the point pi is
redundant, but for α ≥ τ i, we get an inflating bubble with radius√

α2 − τ 2
i . A point with negative weight wp < 0 is thus interpreted

as a bubble born at ‘time’ α = −wp > 0.

2.3 Field filtrations

Instead of using α-shapes, we may wish to build a filtration that
directly reflects the properties of some scalar field f : R3 → R, such
as the ionization fraction field. One way to do this is as follows.

We first specify a point set P at which the field is sampled, such
that each vertex p ∈ P has an associated field value f(p). As in the
α-shape method, the filtration consists of subsets of a Delaunay
triangulation of P . At any value of α ∈ R, those vertices p with
f(p) ≥ α, as well as any simplices connecting them, are part of the
simplicial complexKα . Assuming that f is smooth,Kα only changes
when α passes through a critical value of the field f. We thus obtain
our desired filtration ∅ ⊆ K0 ⊆ K1 ⊆ · · · ⊆ Km = K.

An important question concerns how to choose the point set P
in a way that preserves the topology of the field. When we have
discrete samples or measurements of the field, this can be done with
the Delaunay Tessellation Field Estimator DTFE (Schaap & van de
Weygaert 2000; van de Weygaert & Schaap 2008; Cautun & van
de Weygaert 2011). This method has previously been applied to the
cosmic density field by Pranav et al. (2017). We refer to their paper
for more details on this approach.

2.4 Homology

Betti numbers are derived from the field of algebraic topology.
Algebraic topology is about finding ways of mapping topological
spaces to algebraic objects, such as groups. One example, and
the one in which we are interested, is that of homology groups.
As mentioned before, the idea behind homology is that we can
characterize the topology of an object in terms of the cycles or
loops that we can draw on it. Equivalently, homology tells us about
the boundaries of and holes in a space. Two loops are equivalent
when they can be continuously deformed into each other. On the
sphere any loop can be contracted to a point, but on the torus there
are two classes of non-contractible loops that cannot be deformed
into each other. This corresponds to the fact that there are no one-
dimensional holes in the sphere and two distinct one-dimensional
holes in the torus: the hole through the middle and any cross-section
of the tunnel that runs along the torus.

We can generalize the idea of loops and holes to arbitrary
dimensions (see Fig. 2). As previously explained, we have points
and gaps (k = 0), loops and tunnels (k = 1), and shells and voids
(k = 2). In arbitrary dimensions, we talk about k-cycles surrounding
k-dimensional holes. The homology classes in dimension k can
be arranged into a group called the kth homology group Hk . The
kth Betti number βk is the rank of this group. We arrive again at
the notion that the kth Betti number describes the number of k-
dimensional holes. In Section 2.5, we give a little more insight in
how these notions are defined for simplicial complexes. Refer to
Munkres (1984) and Hatcher (2002) for a textbook introduction.
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Figure 5. A simplicial complex consisting of five points, six line segments,
and one (filled in) triangle.

2.5 Simplicial homology

The homology of a simplicial complex can be defined in terms of
chains of simplices. To demonstrate this, consider the simplicial
complex in Fig. 5. There are five 0-simplices, namely the points a,
. . . , e. There are six 1-simplices or line segments, which we write as
[a, b]. There is one 2-simplex, namely the triangle [a, b, c]. We start
with the observation that these simplices can be chained together.
For instance, we could write the path around the triangle as σ = [a,
b] + [b, c] + [c, a]. In general, we call any linear combination
of k-simplices with integer coefficients (modulo p) a k-chain. With
the operation of addition, the k-chains form a free Abelian group6

called the kth chain group Ck .
Given a k-chain σ , we can construct a (k − 1)-chain ∂σ called

its boundary. For instance, the boundary of a line segment is the
difference of its endpoints and the boundary of a triangle is the path
around it. A chain whose boundary is zero is called a cycle. The
boundary of the 2-chain [a, b, c] is the 1-chain σ = [a, b] + [b,
c] + [c, a]. The boundary of σ is 0, since its endpoints coincide.
Hence, σ is also a 1-cycle. The path τ around the square is similarly
a 1-chain and a 1-cycle, but not a boundary since it does not enclose
any triangles. The boundaries and cycles form subgroups of the
chain group, denoted as Bk and Zk respectively.

Two cycles are homologous if they differ by a boundary. Visually,
this means they surround the same holes. For example, the cycle
σ + τ that encircles the combined triangle and square figure is
homologous to the cycle τ that just goes round the square, because
the difference σ is a boundary. Being homologous is an equivalence
relation. All k-cycles can thus be partitioned into homology classes.
These homology classes form a group called the kth homology group
Hk . This can also be understood as the factor group Hk = Zk/Bk .
Recall that the kth Betti number is the rank of Hk . In the example
above, there are two independent 1-cycles namely the path σ around
the triangle and the path τ around the square. Thus the 1-cycle group
Z1 has a basis {σ , τ} and rank 2. There is only one independent 1-
boundary, namely σ , so the 1-boundary groupB1 has rank 1. Hence,
we find that β1 = rank H1 = rank Z1 − rank B1 = 1. Intuitively,
this agrees with the fact that there is one one-dimensional hole,
namely the one enclosed by the square.

2.6 Persistence diagrams

As the previous example shows, the problem of identifying the
k-dimensional holes in a simplicial complex can be solved by
finding suitable bases for the cycle and boundary groups Zk and
Bk . Computationally, it is convenient to do this by representing the
boundary operator as a matrix. As an example, consider a simplicial
complex consisting of a single triangle [a, b, c] with boundary

6Every k-chain in Ck is a formal sum of elements of a basis B, consisting of
the k-simplices in the complex. We say that the group is free over B.

σ = [a, b] + [b, c] + [c, a]. Recall that the boundary of an edge is
the difference of its endpoints: ∂[a, b] = b − a. With respect to the
basis {a, b, c}, we write the boundaries of the 1-simplices as⎡
⎢⎢⎢⎢⎣

[a, b] [b, c] [c, a]

a −1 0 1

b 1 −1 0

c 0 1 −1

⎤
⎥⎥⎥⎥⎦∼

⎡
⎢⎢⎢⎢⎣

[a, b] [b, c] σ

b − a 1 0 0

c − b 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

On the right, we have brought the matrix to Smith normal form by
means of elementary row and column operations (switching rows
or columns, multiplying them by a non-zero scalar, and adding
multiples of one row or column to another). In this form, we see
that {b − a, c − b} is a basis for the boundary group B0 and {σ} is
a basis for the cycle group Z1.

We use similar techniques to compute the persistent homology of
a filtration ∅ ⊆ K0 ⊆ K1 ⊆ · · · ⊆ Km = K. The goal is to identify
every hole that appears in the filtration. Each hole first appears as
a cycle in some complex Ki . If the hole is still present in K, we
assign it a pair (i, ∞). Other holes disappear when they are filled
up. This occurs when the corresponding cycle becomes a boundary,
say in Kj ⊇ Ki . In that case, we assign the hole a pair (i, j).

To compute these (birth, death)-pairs, we use the algorithm of
Zomorodian & Carlsson (2005). The basic idea is as follows. We
loop through every simplex σ j in the order in which they appear
in the filtration. We maintain matrices akin to the ones above, but
suitably generalized to represent the homology of an entire filtration.
The matrices are updated incrementally using elementary column
operations. For each simplex σ j, we first compute its boundary. We
then check if the boundary corresponds to a zero column in the
boundary matrix. If not, we find the simplex σ i in the boundary
that appears latest in the filtration. The set-up then guarantees the
existence of a cycle that is born when σ i enters the filtration and
becomes a boundary when σ j is added. The corresponding hole is
assigned the pair (i, j). A more extensive discussion of a very similar
computational paradigm can be found in Pranav et al. (2017).

We have implemented this algorithm for α-shape filtrations.7

Let us make a few practical remarks. The algorithm computes
the persistent homology over a finite field Fp. This is why we
mentioned above that the coefficients of the chains are integers
modulo a prime number p. We used p = 2 for the results in this
paper. The algorithm also works for larger p, but the differences are
negligible for our purposes. Secondly, the algorithm outputs a pair
(i, j) for each feature, corresponding to the indices of the complexes
in which the feature first appears and disappears, respectively. Since
each complex Ki has an associated scale αi ∈ R, this is equivalent
to computing the (αbirth, αdeath) values. Finally, we note that the
algorithm works with an efficient data structure. This means we
do not actually maintain the boundary matrices, which would be
impractical for our application.

Having successfully computed the (birth, death)-pairs, we can
plot the topological features in (αbirth, αdeath)-space, producing a
persistence diagram. See Fig. 6 for an example. The horizontal
(or vertical) distance of a point to the diagonal is its persistence.
This particular example shows the births and deaths of tunnels in
a clustered model. The persistence diagram reflects the topology
of the model. We see for instance that there are two generations of
features: a large number of low-persistence features on small scales
and a small number of high-persistence features on large scales.

7Our software is available at http://willemelbers.com/persistent-homology/.
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Figure 6. Our pipeline for creating persistence fields. Starting with n realizations of a stochastic process, we obtain a sample of n persistence diagrams {Xi}.
We compute a Fréchet average diagram Y and associated variances σ 2

y of the points y ∈ Y. These are then used to produce a persistence field.

The former correspond to mergers within clusters and the latter to
mergers of clusters. See Section 5.1.2 for a detailed discussion of
this model.

2.7 Statistics of persistence diagrams

If the preceding theory is to be applied to real world data, we must
be able to handle experimental uncertainties. Even when dealing
with simulations, a statistical approach is highly preferable. In this
paper, the set-up is as follows. For each of the phenomenological
models treated in Section 5, we generate n random bubble networks
and compute one persistence diagram Xi for each realization i = 1,
. . . , n. We are looking for appropriate summary statistics of the
sample S = {Xi}.

To describe the homology from a statistical point of view,
we therefore consider the space D of persistence diagrams. A
persistence diagram is nothing more than a collection of (αbirth,
αdeath)-pairs, but we need an additional technical condition to ensure
that D is a well-behaved probability space. Formally then, we
define a persistence diagram as a countable set of finitely many
points x ∈ R2 together with infinitely many copies of the diagonal
� = {(x, y) ∈ R2 | x = y}. In that case, D is a complete and
separable metric space on which probability measures, expectation
values, and variances can be defined (Mileyko, Mukherjee & Harer
2011). In this paper, we use the L2-Wasserstein metric (Turner et al.
2014):

d(X, Y ) =
[

infφ:X→Y

∑
x∈X

||x − φ(x)||2
]1/2

. (3)

To compute the distance between two persistence diagrams X, Y ∈
D, we need to consider all bijections φ: X → Y. These are one-
to-one maps that match each point x ∈ X with a point y ∈ Y and
vice versa. Here, we treat the diagonal � as a point that can be
matched either with an off-diagonal point or with another copy of
the diagonal. Given such a matching φ, the distance ||x − φ(x)|| is
simply the Euclidean distance from x to its partner φ(x). We specify
that the distance x-� is the distance from x to the closest point
on the diagonal and that the distance �-� is zero. We refer to a
bijection φ that minimizes the total squared distance as an optimal
matching between X and Y. Finding such a matching is a form of
the assignment problem, which can be solved with the Hungarian
algorithm or the auction algorithm of Bertsekas (Kerber, Morozov &

Nigmetov 2017). The L2-Wasserstein distance d(X, Y) is then the
square root of the minimum total squared distance.

Given some probability measure ρ ⊂ D, we define the Fréchet
function

F : D → R, F (Y ) =
∫
D

d(X, Y )2dρ(X). (4)

In the case of a finite sample S = {Xi} ⊂ D, we have
ρ(X) = n−1δS(X) and this becomes

F (Y ) = 1

n

n∑
i=1

d(Y , Xi)
2. (5)

A Fréchet mean of the sample S is a diagram Y that minimizes
F(Y). In general, this is not unique because F can have multiple
minimizers. The Fréchet variance of S is F(Y). This is a measure
of the uncertainty in the sample. If we let φi: Y → Xi be an optimal
matching of Y with Xi, we can write this as

F (Y ) = 1

n

n∑
i=1

d(Y , Xi)
2 = 1

n

n∑
i=1

∑
y∈Y

||y − φi(y)||2. (6)

We can thus attribute a part

σ 2
y = 1

n

n∑
i=1

||y − φi(y)||2 (7)

of the uncertainty to each point y ∈ Y. Unlike the total Fréchet
variance, this attribution is again not unique, because there can be
multiple optimal matchings. However, the generic case is that the
assignment problem does have a unique optimal solution, so we
ignore this possibility here.

Given a sample of diagrams, a local minimum of F can be found
in finite time (Turner et al. 2014). The mean and variance of a
sample can be combined into a persistence field, which we discuss
further below.

2.8 Persistence fields

In our analysis, we display the statistics of a sample of persistence
diagrams {Xi}with a persistence field, based on a similar but distinct
representation proposed by Adams et al. (2017). The goal is to
create a visualization of the persistence data that satisfies a number
of objectives. The image should
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(i) resemble the underlying persistence diagrams,
(ii) reflect the uncertainty in the sample,
(iii) be stable with respect to noise in the data,
(iv) reflect the number of topological features,
(v) show both rare high-persistence features and common low-

persistence features.

The first two goals suggest that we use a Fréchet average Y of the
sample diagrams (see Section 2.7). This also gives us a measure of
the uncertainty σ 2

y of each feature y ∈ Y. The third and fourth goals
suggest some kind of kernel density estimation or smoothing of the
average diagram. This creates a difficulty, because those features
that are most significant are also extremely rare and are washed out
in any kernel density estimate. We therefore assign each feature y
∈ Y a weight wy proportional to the square root of its persistence.
We then smooth Y with a Tri-cube kernel

K(r) = (
1 − r3

)3
, 0 ≤ r ≤ 1. (8)

The persistence field f : R2 → R is then

f (x) =
∑
y∈Y

wyK
(||x − y||/(bσy)

)
, (9)

where b is the bandwidth. The Tri-cube kernel has a relatively flat
top so that clearly distinguishable features resemble a disc with
radius ∼bσ y. Our pipeline is illustrated in Fig. 6.

3 ST RU C T U R A L F I LTR AT I O N S

We study bottom-up filtrations of the ionization bubble network.
By considering filtrations along different dimensions (e.g. length-
scale or time), we can study different aspects of the ionization
topology. Common to all filtrations is the interpretation of the
topological features themselves. As explained in Section 1.2, these
are the connected ionized regions, the neutral filaments, and the
neutral patches enclosed by the bubble network. The topology is
characterized in terms of the births and deaths of features at every
scale. The precise meaning of this scale, and the interpretation of
topological persistence, depends on the dimension along which we
build our filtration.

3.1 Spatial structure

First, we consider a snapshot of the ionization field at a fixed
redshift. As input, we need the locations {x1, x2, . . . } of the
ionizing sources. We also need to specify the radius ri of the ionized
region surrounding the source at xi. These data could be the output
of a seminumerical model or obtained by applying granulometry
(Kakiichi et al. 2017) to the ionization map of a full radiative transfer
simulation, or to 21-cm tomographic images (see Section 4). The
bubble size distribution could also be constrained by observation
through other means (Friedrich et al. 2011; Lin et al. 2016; Giri
et al. 2017).

Associate a weight wi = ri with the source at xi. We then use the
weighted point set P = {(x1, w1), (x2, w2), . . . } as the basis for a
weighted α-complex. The filtration consists of the (finitely many)
distinct α-shapes obtained as we increase the scale from α = −∞
to α = ∞. With this filtration, we probe the connectivity structure
of the ionization field at a particular redshift. The persistence of a
feature has its usual interpretation as topological significance.8

8When α-shapes are used in pattern recognition, persistence is useful as a
criterion for filtering out noise (Edelsbrunner 2010).

This is the only type of filtration that involves both negative and
positive values of α. It is worthwhile to pause here and understand
why. At α = 0, the bubbles have precisely their prescribed radius√

r2
i + α2 = ri . Negative values of α correspond to deflating the

bubbles. A bubble disappears when its deflated radius becomes zero,
which happens at α = −ri. Therefore, the bubble size distribution
is encoded in the persistent homology of the spatial filtration for
negative values of α. Positive values of α correspond to inflating
the bubbles. Among other things, this allows us to determine the
topological significance of features that exist in the bubble network
at α = 0 by considering at what scale αdeath the feature disappears.
In Fig. 7, we see the same bubble network at negative, zero, and
positive values of α.

Analysing the spatial filtration is particularly useful for investi-
gating the multiscale nature of the largest ionized region that arises
as a result of the hierarchical build-up of structure. Small bubbles
that have been absorbed into larger bubbles at α = 0 must have
merged at some α < 0. Similarly, clusters that are separated at α = 0
will merge when the bubbles are sufficiently inflated, affecting the
homology at α > 0.

3.2 Bubble dynamics

A second interpretation of the above filtration is obtained by
taking cosmic time t as our filtration parameter: α = t. Again,
we require the source locations {x1, x2, . . . }. Let τ i be the
formation time of the bubble at xi and define its weight through
wi = −τ i. We then consider the weighted α-complex with point set
P = {(x1, w1), (x2, w2), . . . }. The filtration consists of the distinct
α-shapes that we find as we increase time from t = 0 to t = ∞.
The reason for taking negative weights is that it allows us to start
at t = 0, such that the source at xi is born when t = τ i. The bubbles
expand when t is increased, simulating the process of reionization.
Because weighted α-shapes are based on the distance function (1),
this technique requires all bubbles to grow at a non-linear rate
∼
√

t2 − τ 2
i and assumes that the bubbles are spherical.9 Despite

these limitations, this simple toy model already displays many of the
qualitative features of reionization. A major conceptual advantage
of the α-shape method is therefore that we can take α as a measure
of time, allowing us to display the entire topological history of the
ionization field in one figure. Moreover, the persistence of a feature
can be interpreted as its lifetime.

To circumvent the limitations of the α-shape method, we also
propose an alternative method that makes use of field filtrations
(Section 2.3). This allows us to consider two further filtrations.

3.3 Ionization gradient

Up until this point, we assumed a binary ionization field and
probed the topology along the dimensions of time and space. A
third dimension would be the ionization fraction itself. We again
start with a time slice of the ionization history, but now build a
filtration by taking superlevel sets of the ionization fraction field.
This can be done as follows. First, we need a set of vertices p ∈ P at
which the ionization field is probed. We then construct a Delaunay
triangulation T ofP and a linearly interpolated ionization field with
DTFE (Cautun & van de Weygaert 2011). Using these data as input,

9In fact, we only require that the bubble network is homotopy equivalent to
the spherical network for each value of t, such that the holes coincide. See
the discussion in Section 2.1.
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Figure 7. Slices of a non-uniform bubble network with lognormal bubble sizes (μ = −3.0, σ = 0.10), for different values of α. The median bubble radius is
0.05. This means that at α = −0.05, half of all bubbles are redundant and have yet to appear. Those that have appeared are deflated. At α = 0, all bubbles are
present and have exactly their lognormal radius. At α = 0.05, the bubbles have been inflated.

we compute the persistent Betti numbers of the field filtration of T .
The methodology is essentially the same as in Pranav et al. (2017),
except that we replace the matter density field with the ionization
fraction field. This method is useful for studying regions that are in
the process of being ionized at a particular moment. The persistence
of a feature is now interpreted as the differential ionization fraction
of the hole.

3.4 Full evolution

Given the output of a more realistic model, we can also build
a filtration simply by playing back the ionization history. To do
this, we assign every vertex p ∈ P a value corresponding to the
redshift at which that point was first considered to be part of an
ionized region. The filtration is then built by taking superlevel sets
of this field. A first goal will be to compare the topology of a full
radiative transfer simulation with that of the bubble dynamics model
considered in Section 3.2. One caveat that remains is that filtrations
are strictly nested sequences, so regions that recombine cannot be
handled easily.

4 SOURCE P ROPERTIES

In this paper, we study the spatial structure and dynamics of the
ionization bubble network using a number of phenomenological
models. In each of our models, N sources are placed in a periodic unit
box X ⊂ R3. The α-shapes are then computed from the set of source
locations using the computer package CGAL (Jamin, Pion & Teillaud
2017; The CGAL Project 2017). The topological properties of the
network are computed using the algorithm discussed in Section 2.6.
We use different methods of generating the bubble locations and
weights in order to illustrate different aspects of the reionization
process. To this end, we need to specify some of the properties of
the ionizing sources.

4.1 Source distribution

The first property that is needed is the spatial distribution of the
ionizing sources. In realistic models, the source locations will be
correlated with the matter density field. Here, we generate the
locations with three spatial point processes. In Section 5.1.2, we
use these toy models to demonstrate how the source distribution

is reflected in the topology. To isolate the role of the spatial
distribution, we assume that all bubbles are born at the same
time, in which case the resulting bubble networks are uniformly
sized. This means they can be generated with unweighted α-
shapes. See Fig. 8 for slices through uniform bubble networks
generated according to the different point processes discussed
below.

4.1.1 Poisson model

The simplest way to generate the locations is with a Poisson point
process with intensity � = N. The actual number of sources is a
Poisson random variable, but we tweak the process to ensure that
precisely N sources are generated.

4.1.2 Clustered model

The locations in the clustered model are generated with a Neyman–
Scott process (Neyman & Scott 1958). The model is described
by two parameters K and λ in addition to the number of centres
N. Initially, K cluster centres are generated with a Poisson point
process. Subsequently, N/K (rounded to the nearest integer) sources
are placed with another Poisson process in a sphere of radius λK−1/3

around each of the K initial locations. In this way, K clusters of N/K
sources are created.

4.1.3 Anticlustered model

The anticlustered model uses a repulsive point process and is
described by two parameters: the number of centres N and the
minimum centre distance λ. Sources are generated with a Poisson
point process and rejected if they fail the minimum distance
requirement until N centres have been produced.

4.2 Bubble size

When studying the spatial structure of the bubble network, the
size distribution of the ionization bubbles is an important factor.
Guided by analytical predictions, many authors have found an
approximate lognormal bubble size distribution (Furlanetto et al.
2004a; Furlanetto & Oh 2005; McQuinn et al. 2007; Mesinger &
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1532 W. Elbers and R. van de Weygaert

Figure 8. Slices of uniformly sized bubble networks generated with three different point processes. All three pictures correspond to one particular value of
α = 0.06. Because these are uniform bubble networks, all bubbles have the same radius α.

Furlanetto 2007; Friedrich et al. 2011; Zahn et al. 2011; Lin et al.
2016). The distribution is expected to peak at a characteristic scale
that increases and has a variance that decreases as reionization
progresses and bubbles merge. This motivates the following phe-
nomenological lognormal model (Coles & Jones 1991).

4.2.1 Lognormal model

In the lognormal model, the source locations xi are generated with
a Poisson process and the bubble sizes ri are sampled from a
lognormal distribution with parameters μ and σ . Fig. 9 shows slices
through the resulting bubble networks for different values of (μ, σ ).
This model is used in Section 5.2.1 to investigate how a changing
size distribution is reflected in the topology.

4.2.2 Granulometry

The α-shape method can also be applied to more realistic models
of reionization. Since we need to specify bubble centres xi and
radii ri, we need to find a way to capture the ionized regions in
terms of spherical ionization bubbles. One convenient way to do
this is with granulometry (Kakiichi et al. 2017), which is based
on a mathematically well-defined notion of sieving. Applying this
technique to tomographic 21-cm images is a promising pathway for
the application of our formalism to observation.

4.3 Bubble age

When we study bubble dynamics, we also need to specify the bubble
formation times τ i. In realistic models, formation times depend on
the matter density field and physical properties of reionization,
such as the local requirements for source formation. In this case,
the spatial distribution of the bubbles and their formation times will
be related, affecting the topology of the resulting ionization field.

4.3.1 Constant rate model

In Section 5.1.1, we study the following model in which the number
Nborn(t) of bubbles that have been born at time t increases at a
constant rate: Ṅborn = const until t = T, after which the source
production turns off. In this model, the bubble locations xi are chosen
with a Poisson process. Hence, the spatial distribution and formation

times are independent. The formation time τ i of the bubble at xi is
sampled from a uniform distribution U(0, T). As we use weighted
α-shapes to model the bubble networks, we set the radius ri(t) of
the bubble with centre xi at time t equal to

ri(t) =
{

0 if t < τi,√
t2 − τ 2

i otherwise.
(10)

This means that the average bubble radius at times t < T will be

〈r(t) | alive〉 =
∫ t

0

√
t2 − τ 2

t
dτ = πt

4
≈ 0.785t,

whereas the average bubble radius for later times t ≥ T is

〈r(t)〉 = 1

2T

[
T x + t2 arctan

(
T x−1

)] ≈ t for t � T ,

where x = √
t2 − T 2. Hence, the average bubble expands at a rate

ṙ = 0.785 initially, after which it approaches ṙ = 1 asymptotically.
Different trajectories of 〈r(t)〉 could be effected by sampling τ i from
different distributions. However, our methodology means that we
have to use the piecewise function (10).

4.3.2 Physical bubble models

The previous model exhibits the qualitative features of a network of
expanding H II bubbles, but uses an unrealistic radius function (10).
A more realistic approach would incorporate a physical model of
ionization bubbles. Let us briefly discuss two such models.

First, we neglect the effects of cosmological expansion and
recombinations. Let the ionizing photon number luminosity of a
source be Ṅγ . Then, the bubble radius at time t is given by

r(t) ∼ [
Ṅγ (t − τ )

]1/3
, (11)

where τ is again the formation time. This power-law behaviour
r ∼ t1/3 is markedly different from the approximately linear bubble
growth r ∼ t suggested by equation (10). In both models, the
bubble radius grows monotonically and indefinitely due to a lack of
recombinations. The most important difference is that the physical
model (11) allows for different types of sources with different
luminosities Ṅγ .

To account for recombinations and cosmic expansion, we could
instead use the cosmological Strömgen sphere model of Shapiro &
Giroux (1987). By specifying a cosmological model, a clumping
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Figure 9. Slices of non-uniform bubble networks generated with lognormal (μ, σ ) bubble sizes. All three pictures are taken at α = 0, so the bubbles are
neither inflated nor deflated. Compare panel 9b with Fig. 7, where the same network is depicted for different α.

factor, and a source function Ṅγ (t), this model can be solved for
the bubble radius as a function of time. Both the simple physical
model (11) and the Shapiro–Giroux model could be implemented
using field filtrations or granulometry. However, this comes at the
cost of the conceptual simplicity of the α-shape method. We further
address these issues in the sequel to this paper.

5 R ESULTS

We now use the models of the preceding sections to demonstrate
how different aspects of the reionization process affect the homol-
ogy of bubble network filtrations. In Section 5.1.1, we show how the
different stages of reionization can be identified. We then investigate
the effect of the spatial distribution of the sources in Section 5.1.2.
Finally, we consider the effect of the bubble size distribution in
Section 5.2.1.

5.1 Temporal filtrations

We start with a number of temporal filtrations. In Section 5.1.1,
we study the constant rate model in which the bubbles are born
at a constant rate between t = 0 and t = T, after which source
production is turned off. In the models considered in Section 5.1.2,
all bubbles are born at t = 0. As the resulting bubble networks are
uniformly sized, these latter models could also be interpreted as
spatial filtrations.

5.1.1 Stages of reionization

We study the different stages of reionization with a temporal
filtration of the constant rate model with N = 500 bubbles and
T = 0.10. The results, averaged over 10 realizations, are shown
in Fig. 10. In the top panel, we see the Betti curves describing
the number of ionization bubbles (Betti-0, solid black), neutral
filaments (Betti-1, solid red), and neutral patches (Betti-2, dashed
blue). We have overlaid the global ionization fraction Q(t), which
is the fraction of total volume occupied by ionization bubbles (dot–
dashed). The number of ionized regions β0 starts at 0 and initially
just tracks the number

Nborn(t) = Nt

T

of bubbles that have been born (dotted line). After a while, the slope
of the β0-curve tapers off as bubbles start to overlap and merge.
We can therefore use β0 as a measure of the degree of overlap. At
t = 0.038, the degree of overlap 1 −β0/Nborn has reached 10 per cent.
This could be chosen as the end of the pre-overlap stage. Soon after
this point, β0 reaches a maximum despite the fact that new bubbles
are still being created. Notice that the ionization fraction Q(t) only
starts to incline appreciably in the subsequent overlap stage. This is
confirmed by the inset graph, which shows the Betti numbers as a
function of Q.

During the overlap stage, the β0-curve never reaches far above
200 because any newborn bubbles are immediately fed into larger
existing structures. Furthermore, because new bubbles are created
at a constant rate up to t = 0.10, the β0-curve is skewed very
much to the right and has a long and fat tail. At t = 0.087, a
percolation transition occurs and one large connected ionized region
now stretches from one side of the simulation box to the other. At this
point, the degree of overlap has increased to 94 per cent, signalling
the end of the overlap stage. Strikingly, it is at this point also that the
topology starts to become highly filamentary, which agrees with the
findings of Bag et al. (2018). At the transition, the volume ionization
fraction has a value of Q = 0.26. This is significantly larger than the
values found by Furlanetto & Oh (2016) and Bag et al. (2018), which
can be explained by the fact that bubble locations are uncorrelated
in this model.

Soon after percolation, the ionization rate reaches a maximum
at t = 0.097. During the post-overlap stage, the remaining neutral
islands are attacked from the outside. Interestingly, most of the
higher dimensional structure only appears past this point. First, the
number β1 of tunnels increases as bubbles begin to overlap that
were already connected, forming 1-cycles. These tunnels surround
neutral filaments that pierce through the ionization bubble network.
When the filaments are ionized and tunnels begin to be filled up, β1

decreases. Meanwhile, β2 increases as bubbles start to enclose an
increasing number of neutral patches. After t = 0.126, the patches
outnumber the tunnels. Finally, the patches get ionized as well
and the Betti numbers reach their final values: β0 = 1, β1 = 3,
β2 = 3. These values are an artefact of the non-trivial topology of
the periodic simulation box X, but are negligible compared to the
dozens of features found at earlier times.

Looking at the persistence diagrams in the bottom row of Fig. 10,
we see that the majority of features are short lived (close to the
diagonal). Nevertheless, a large number of tunnels that are born
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1534 W. Elbers and R. van de Weygaert

Figure 10. Persistent homology of the constant rate model with N = 500 bubbles. In the top panel, we see the number of ionization bubbles (β0), neutral
filaments (β1), and neutral patches (β2) alive at any time t. Also shown is the number Nborn(t) of bubbles that have been born and the global ionization fraction
Q(t). The inset shows the evolution of the Betti numbers as a function of the ionization fraction. In the bottom panels, we see the persistence fields showing the
births and deaths of all topological features.

Table 1. Different epochs in the N = 500 constant rate model.

Epoch Ends when Time

Pre-overlap 10 per cent of bubbles overlap t = 0.038
Overlap Percolation occurs t = 0.087
Filament Patches outnumber tunnels t = 0.126
Patch Reionization is complete t = 0.186

around t = 0.07 survive until t = 0.10, although none live past
t = 0.13. Furthermore, most of the patches that are born before
t = 0.13 die very young, but a large number of patches that are born
at t = 0.14 survive until t = 0.17. We thus identify two additional
topologically significant epochs past the pre-overlap stage and the
overlap stage, which may rightly be called the ‘filament stage’ and
‘patch stage’. These topological characteristics are not apparent
from the geometry or ionization history Q(t). We summarize our
criteria for the four stages in Table 1. We also have a persistence
field for β0, which shows that the longest-living ionized regions
emerge at t = 0, though even at t = 0.10 some bubbles are born that
survive for a relatively long time before being absorbed into larger
structures.

It is worth noting that our choice to end the overlap stage at
the point of the percolation transition differs from Furlanetto &
Oh (2016), who identify the percolation transition as the division
between the pre-overlap and overlap stages. The reason for our
convention is that the topology has a distinct character during
each of the stages. During the pre-overlap stage, the topology is
characterized by the birth of localized bubbles with little to no
overlap (less than 10 per cent). The overlap stage is characterized
by the growth of ever larger connected structures, ending with the
percolation transition. The network then enters a filament stage
during which the remaining highly filamentary clusters merge. In the
final stage, the topology is dominated by enclosed neutral patches.

5.1.2 Source distribution

To illustrate how the source distribution affects the topology, we
study three different models with N = 500 uniformly sized bubbles
placed at random locations: a clustered model, an anticlustered
model, and a Poisson model. A visual inspection of the resulting
bubble networks shown in Fig. 8 is quite revealing. We see that the
Poisson model is an intermediate case between two extremes. The
bubble network produced by the clustered model resembles a two-
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Figure 11. The impact of clustering on persistent homology. The features in the clustered model (top) are rare, but far more persistent and spread out
compared to the anticlustered model (bottom). The Poisson model (middle) is an intermediate case. Notice also that there are two generations of features in
the clustered model. The early low-persistence features correspond to mergers within clusters and the late high-persistence features correspond to mergers of
clusters.

phase medium consisting of large clusters of bubbles and neutral
oceans utterly devoid of bubbles. As a result, the clustered regions
are rapidly ionized, but the neutral regions resist ionization for a
long time. At the other extreme, the anticlustered model produces
bubbles appearing in an almost crystal-like pattern. For a long time,
these bubbles can freely expand in every direction and when the
bubbles finally overlap, the box is almost completely ionized.

To produce these bubble networks, we choose rather extreme
model parameters. For the clustered model, we generate K = 32
superclusters with a characteristic size λK−1/3 = 0.08 with λ = 0.25.

For the anticlustered model, we place the sources at least a distance
λ = 0.094 from any other source. The results averaged over 10
realizations are shown in Fig. 11. The differences are conspicuous.
First, consider the Betti curves in the third column. In contrast
to the constant rate model, the β0-curves all start at 500 because
all bubbles are born simultaneously. Looking at the top right-hand
panel, it appears as if the patch stage is absent in the clustered model.
At the height of the patch epoch, there are only β2 = 7.0 neutral
patches on average, compared to β2 = 48.0 patches in the Poisson
model. This is because during the patch epoch, the clustered regions
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are completely filled up and lack any tunnels or patches. The only
remaining patches are the huge empty bubble-less regions, which
are few in number but large in size. This is obvious when we consider
the persistence diagrams for patches in the second column.

In the bottom right-hand panel, we see that the anticlustered
model has a very long pre-overlap stage during which the number
β0 of ionized regions plateaus. Because the minimum bubble
separation λ was set rather high, most centres have a closest
neighbour at a distance of roughly λ. Therefore, the bubble network
goes through a swift phase transition at t = 1

2 λ = 0.047, when the
bubbles start to overlap. We also see that the anticlustered model
has a more significant patch epoch and a brief but extreme filament
epoch. The number of tunnels almost reaches 500, nicely adhering
to the crystalline expectation.

Looking at the persistence diagrams in the first two columns, we
see that although the clustered model has fewer higher dimensional
structures, they are far more persistent and appear over a much
wider time interval. For the anticlustered model, we see that there
are many more tunnels and patches, but they exist only during a very
short period of time. Again, we find that the apparent intensities of
the tunnel and patch epochs in the Betti diagrams are deceiving:
the clustered model does have a patch epoch, but there are fewer
yet more significant patches. The opposite is true for the anti-
clustered model. The Poisson model is once more an intermediate
case.

The persistence diagrams of the clustered model in the top
row show additional structure. Observe that there are two distinct
generations of features. This is a reflection of the fractal-like
multiscale topology produced by the Neyman–Scott process. The
small-scale low-persistence features correspond to structure that
emerges early on within clusters. The large-scale high-persistence
generation consists of global features that arise when clusters merge
with clusters.

For each of the models, we again find that a percolation transition
occurs around the point where the topology becomes dominated by
filaments. The corresponding ionization fraction is Q = 0.225 for the
clustered model, Q = 0.250 for the Poisson model, and Q = 0.348
for the anticlustered model. This is in line with the expectation
that correlation between the bubble locations induces a percolation
transition at lower ionization fractions (Furlanetto & Oh 2016).

5.2 Spatial filtrations

We now consider filtrations of bubble networks with a given size
distribution. These are spatial filtrations, which means that the
interpretation is somewhat different from the temporal filtration
described above. Refer to Section 3 for a discussion of these
differences. The filtration parameter is the scale α.

5.2.1 Bubble size distribution

To illustrate these ideas, we consider three models with a lognormal
size distribution with mean μ and standard deviation σ . The average
bubble radius is

〈R〉 = eμ+σ 2/2.

The results for N = 500 bubbles, again averaged over 10 realizations,
are shown in Fig. 12. The bubbles are smallest in the top row
(μ = −4.0, σ = 0.50), largest in the bottom row (μ = −2.5,
σ = 0.05), with the middle row being an inbetween case (μ = −3.0,
σ = 0.10).

The first two columns show the persistence fields for ionized
bubbles (β0) and neutral filaments (β1). We have divided the
persistence fields into quadrants. Features in quadrant II (αbirth ≤ 0,
αdeath > 0) are present in the bubble network. Features in quadrant I
exist only over positive scales. The Betti curves in the third column
indicate the total numbers of features alive at every scale. The
homology of the bubble network can be read off by looking at the
intersections of the Betti curves with the line α = 0.

We have overlaid the lognormal probability density functions on
the β0 persistence fields. By construction, the scales αbirth at which
bubbles are born follow the lognormal distribution. In the top row,
we see that the largest bubbles die at large scales. But many of the
smallest bubbles die at small scales. This is because of the elder
rule, which states that whenever two features merge, the oldest
feature survives. We have also overlaid the cumulative distribution
functions P(R ≥ −α) on the Betti curves. The β0-curve follows the
distribution function when α is small, but deviates once bubbles
start to merge.

We can identify what stage of the reionization process the bubble
network is currently undergoing by considering the distribution of
features over the quadrants:

(i) When the bubbles are smallest (top), almost all features in
the β0-field are in quadrant II and all features in the β1-field are in
quadrant I. We conclude that the topology is dominated by separated
islands of ionized material. The bubble network is in the pre-overlap
stage.

(ii) In the second row, about a third of the zero-dimensional
features are in quadrant II and two thirds are in quadrant III. Most
of the tunnels are in quadrant I, although a few are in quadrants II
and III. The bubble network is therefore in the overlap stage, and
entering the filament stage.

(iii) Finally, when the bubbles are largest (bottom), all zero-
dimensional features are in quadrant III. This means that they have
all merged into a single connected component. A preponderance
of the tunnels are in quadrant II and therefore alive in the bubble
network. We are in the filament stage.

In each case, a quick glance at the bubble network slices shown
in Fig. 9 confirms the picture sketched by the division of features
over the quadrants. Overall, the Betti curves and persistence fields
most resemble the Poisson model. This is not surprising, because
the source locations were generated with a Poisson point process.
Finally, note that the β1-fields look like translated and distorted
copies of each other. The reason that the fields are not just translated
copies is the non-linear bubble scaling ∼√

R2 + α2.

6 D ISCUSSION

The formalism presented here provides a substantial deepening of
our understanding of the topology of H II regions during the Epoch
of Reionization. Homology allows us to characterize the topology
of the ionization bubble network in terms of its components (ionized
regions), tunnels (enclosed neutral filaments), and cavities (neutral
patches), collectively called topological features. Persistence is a
measure of the significance of a feature. We have shown that
the persistence of a feature can be variously interpreted as its
lifetime, significance, or ionization state. Persistent homology
provides us with quantitative measures that are more general than
other commonly used measures such as the Euler characteristic,
Minkowski functionals, and the bubble size distribution.

We use the tool of α-shapes, borrowed from computational
topology, to model the ionization bubble network. Together with
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Persistent topology of reionization 1537

Figure 12. Persistent homology of a bubble network with lognormally distributed bubble sizes, for different values of μ and σ . Bubbles are smallest for
μ = −4.0 (top) and largest for μ = −2.5 (bottom). The lognormal probability density is overlaid on the β0-persistence fields (left). The cumulative distribution
function is overlaid on the Betti curves (right). Features in quadrant II of the persistence fields are alive at α = 0.

persistent homology, α-shapes are ideally suited to study every
stage of the reionization process. Starting at the pre-overlap and
overlap stages, we can follow the number of distinct ionized regions
as bubbles arise and subsequently merge. During the later stages,
homology allows us to understand the topology of the bubble
network as a large fractal-like structure, pierced by neutral filaments
and enclosing patches of neutral hydrogen. The topology of the
bubble network depends on the underlying physics through an
interaction of the spatial distribution of the ionizing sources with
the size distribution of the surrounding H II regions.

This work is a stepping stone for a number of further studies on
the persistent topology of reionization. In an upcoming paper, we
apply our methods to a physical model of reionization. Ultimately,
the goal is to study the topology of reionization using 21-cm

observations. As illustrated with the phenomenological models in
this paper, what is needed is a specification of the spatial and
size distribution of H II regions. A first step will be to study
the viability of sufficiently constraining these properties with
upcoming observations. Further statistical analysis will be necessary
to determine the requirements on future experiments that would
definitively allow a homological study of reionization. However,
the statistics of persistence diagrams has only recently been put
on firm footing, so more work is needed on this front. Finally,
we have proposed a more general filtration method that relaxes
the α-shape assumptions. This method would enable us to study
the evolving topology of a fully dynamic ionization fraction field,
given a set of 3D measurements of the ionization field at multiple
redshifts.
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