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ABSTRACT
We introduce a deep machine learning approach to studying quasar microlensing light curves
for the first time by analysing hundreds of thousands of simulated light curves with respect
to the accretion disc size and temperature profile. Our results indicate that it is possible to
successfully classify very large numbers of diverse light-curve data and measure the accretion
disc structure. The detailed shape of the accretion disc brightness profile is found to play
a negligible role. The speed and efficiency of our deep machine learning approach is ideal
for quantifying physical properties in a ‘big-data’ problem set-up. This proposed approach
looks promising for analysing decade-long light curves for thousands of microlensed quasars,
expected to be provided by the Large Synoptic Survey Telescope.

Key words: accretion, accretion discs – gravitational lensing: micro – quasars: general.

1 IN T RO D U C T I O N

Quasar microlensing is a unique way of measuring the structure of
active galactic nucleus at the very small scales inaccessible by other
techniques. The magnification effect of the microlenses – stellar
mass compact objects lying within lensing galaxies – on small
angular diameter sources, like an accretion disc surrounding a super-
massive black hole, can be very pronounced, allowing one to study
their structure on 10−6 arcsec scales, corresponding to a few tens of
au on the source plane (see the review by Schmidt & Wambsganss
2010). Such measurements are putting classic accretion disc models,
particularly the standard thin disc model (Shakura & Sunyaev 1973),
to the test (Abolmasov & Shakura 2012): quasar accretion discs are
found to be larger than expected (Morgan et al. 2010; Blackburne
et al. 2011; Jimenez-Vicente et al. 2014; Chartas et al. 2016) while
their temperature profiles range from shallower (Bate et al. 2008;
Rojas et al. 2014; MacLeod et al. 2015; Bate et al. 2018) to steeper
(Eigenbrod et al. 2008; Floyd, Bate & Webster 2009; Blackburne
et al. 2011; Jimenez-Vicente et al. 2014).

Microlensing snapshot and monitoring observations can produce
single-epoch or time series of observations (light curves). Light-
curve analysis techniques allow one to extract physical information
from year-long observations, at the cost of higher model complexity
and much more demanding computations. The method of Kochanek
(2004) provides a powerful Bayesian analysis approach to studying
quasar structure by generating O(106) simulated light curves for
each combination of model parameters and fitting them to the
data (Poindexter, Morgan & Kochanek 2008). This computationally
demanding technique requires careful use of priors (e.g. on the

� E-mail: gvernard@astro.rug.nl

source effective velocity components), and may have to resort
to independent modelling of light-curve segments to keep the
computations feasible (Poindexter & Kochanek 2010).

Microlensing analyses are based on some knowledge of the mass–
density distribution of the lensing galaxy and its environment (the
macromodel), which depends on the quality of the imaging data,
the presence of satellite galaxies, possible existence of dark matter
substructures, etc. This model determines the values of the conver-
gence, κ , and shear, γ , at the locations of the multiple quasar images,
which in turn set the microlensing properties via the magnification
map (Kayser, Refsdal & Stabell 1986; Paczynski 1986). If these
parameters, or the further partition of the convergence into smooth
(dark) and compact (stellar) matter components (e.g. Schechter &
Wambsganss 2002), are not accurately known, the resulting mi-
crolensing effect can vary significantly (Vernardos & Fluke 2014).
Factoring in such uncertainties in current microlensing light-curve
analysis techniques quickly leads to intractable computations.

The number of known quasar lenses is set to increase from a
few hundreds to thousands by all-sky survey facilities currently
under construction. The Large Synoptic Survey Telescope (LSST
Science Collaborations 2009) will provide multiwavelength light
curves for all these lenses over a period of a decade or more.
Analysing this large volume of data will require new, more efficient
methods than the current state-of-the-art techniques, which have
been designed to perform optimally for single systems with high-
quality observations.

Machine learning algorithms have provided promising solutions
to ‘big-data’ problems in astronomy (e.g. Hála 2014; Huertas-
Company et al. 2015; Stivaktakis et al. 2018; Tuccillo et al. 2018).
Convolutional Neural Networks (CNNs; Lecun, Bengio & Hinton
2015) are a particular class of such algorithms that can model com-
plicated non-linear relationships by repeated abstract processing
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Table 1. Shapes of the accretion disc surface brightness profile, I(r). The normalization factor corresponds to the luminosity, calculated as the two-dimensional
integral of the surface brightness. Every shape has a parameter associated with the profile size, which depends on the half-light radius, r1/2, the radius containing
half the luminosity. The ‘Gaussian+hole’ profile has an inner edge, determined by Rin that is equal to the radius of the innermost stable circular orbit of a black
hole with mass M (G is the gravitational constant and c the speed of light). The ‘wavy’ profile has an additional parameter n, which is the number of nodes of
the profile within two half-light radii. The ‘exponential’ profile was not used in the training set (Section 2.2.1) but it was used to test the performance of our
classification method on data that it was not trained on (Section 3.3.1).

Name Analytic form of I(r) Normalization factor Size parameter Other parameters
(function of r1/2)

Gaussian exp
[ − r2

2σ 2

] 1
2πσ 2 σ = r1/2

1.18 –

Gaussian+hole {
0 for r ≤ Rin

exp
[− r2

2σ 2

]
for r > Rin

1
2πσ 2 exp

[
Rin
2σ 2

]
σ =

√
r2
1/2−R2

in

2 ln2 Rin = 6GM

c2

Hole 1
r3

(
1 −

√
Rin
r

) 3Rin
2π

Rin = r1/2
4 –

Wavy sin2(βr)
r

β

nπ2 β = nπ
2 r1/2

n

Uniform 1 1
πR2 R = √

2 r1/2 –

Exponential
(
exp[( r

σ
)3/4] − 1

)−1 0.062
σ 2 σ = 0.4106 r1/2 –

layers. CNNs have been successfully used in gravitational lensing
to find lenses (Lanusse et al. 2018; Petrillo et al. 2019) and model
them (Hezaveh, Levasseur & Marshall 2017).

In this paper, we use CNNs to model quasar microlensing light
curves and extract the size and temperature profile of the accretion
disc. Our training set, based on simulated light curves, and the
neural network architecture are presented in Section 2. Section 3
consists of the training results and a series of more advanced tests
on different types of light curves. Conclusions and implications for
future work are discussed in Section 4.

Throughout this paper a cosmological model with �m = 0.26,
�	 = 0.74, and H0 = 72 km s−1 Mpc−1 is used.

2 ME T H O D

There are two main factors affecting the performance of CNN
algorithms: the training set and the design of the network itself.
Here we present the steps in generating mock quasar microlensing
light curves, used to create the training set and a series of additional
test sets, and the main features of the adopted CNN architecture.

2.1 Generating mock light curves

Generating light curves follows the same approach used in previous
work (Vernardos et al. 2015) and elsewhere in the literature (e.g.
Kochanek 2004). The necessary components for this procedure
are: the accretion disc brightness profile, the Einstein radius of the
microlenses, the magnification map, and a velocity model for the
accretion disc moving across it. Our assumptions on the size and
shape of the accretion disc profile, which are the main focus of this
work, and the rest of the parameters involved are described below.

The size of the accretion disc as a function of wavelength is
assumed to have the following parametric form:

r = r0

(
λ

λ0

)ν

, (1)

where λ = λobs/(1 + zS), with λobs being the observing wavelength
and zS the quasar redshift, ν the power-law index, and r0 the size of
the disc observed at the rest wavelength λ0 = 102.68 nm. This is a
frequently used parametric model (e.g. Jimenez-Vicente et al. 2014;

Bate et al. 2018) that captures the accretion disc size dependence
on physical parameters like the Eddington luminosity, the accretion
efficiency, and the black hole mass, in r0. Temperature is inversely
proportional to wavelength for accretion disc emission that is a
superposition of blackbody spectra. This is the case for the thin disc
model that has ν = 4/3.

The half-light radius, r1/2, which contains half the luminosity of
the accretion disc, is set to the size obtained from equation (1).
Although there is evidence that the shape of the disc profile does
not play a significant role in microlensing observations (Mortonson
et al. 2005), this has not been examined thoroughly with respect to
light curves, and not at all as a function of κ , γ . Here, we assume
different fiducial parametric shapes aiming to cover as wide a range
of brightness variations as possible. The different brightness profiles
have the following shapes: Gaussian, Gaussian with an inner edge
(‘Gaussian+hole’), smooth with an inner edge (‘hole’), sinusoidal
dropping with radius (‘wavy’), uniform, and exponential. These are
all symmetric two-dimensional profiles so that the brightness per
unit surface, I(r), is only a function of the radius (see Table 1). Their
one-dimensional intersections are shown in Fig. 1. Apart from the
size, each profile may have a different number of free parameters,
which are listed in Table 1. All the profiles are truncated at 2 ×
r1/2 (the full profiles will only induce a small magnification offset
due to their flatness beyond 2 × r1/2) and normalized to a luminosity
of unity.

The scale length of microlensing is set by the Einstein radius of
the microlenses on the source plane:

REin =
√

4G〈M〉
c2

DS DLS

DL
, (2)

where DS, DL, and DLS are the angular diameter distances to the
source, the lens, and between the lens and the source, respectively,
〈M〉 is the average microlens mass, G the gravitational constant,
and c the speed of light. Here we use microlenses with 1 M�
and the fiducial lens and source redshifts of 0.5 and 1.2, to get
REin = 4.65 × 1016 cm. However, as it turns out only the relative
values of r1/2 with respect to REin are important and the absolute
value of REin is irrelevant for the results presented here.
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1946 G. Vernardos and G. Tsagkatakisla

Figure 1. One-dimensional intersections of the accretion disc surface
brightness profiles listed in Table 1, in units of the Einstein radius (equation
2) that is set to 4.64 × 1016 cm. All the profiles have been scaled to have the
same half-light radius, r1/2 = 0.1REin (vertical line). The inner edge of the
‘Gaussian+hole’ profile corresponds to the innermost stable circular orbit
of a 109 M� black hole (9 × 1014 cm), and the ‘wavy’ profile has n = 3.
The ‘exponential’ profile was not used in the training of our classification
algorithm, but it was used for tests (see Section 3.3.1).

The effects of microlensing are simulated by magnification maps:
pixelated representations of the source plane caustics due to the mi-
crolenses. The main parameters1 of these maps are the convergence,
κ , and shear, γ , which determine the density and clustering of the
caustic network (see Fig. 2). We use high-quality magnification
maps from the GERLUMPH2 parameter survey (Vernardos et al.
2014) that cover a large range of κ , γ parameters. These square maps
are 25 REin wide, enough to allow for many independent and long
light curves to be extracted, and have a 10 000 pixel resolution on a
side, enough to resolve the details of the different disc profile shapes
(e.g. the inner edge of the ‘Gaussian+hole’ profile, at 9 × 1014 cm,
corresponds to 8 pixels for REin = 4.65 × 1016 cm).

In order to extract microlensing observables for accretion discs
that are not point-sources (r1/2 > 1 pixel, or >0.0025 REin, which
is always the case here), the magnification map and the disc
profile need to be convolved first. This leads to a reduced available
map area, the effective map, due to the convolution edge effects.
The largest profiles used here are ∼0.8 REin wide, leaving an
effective map of 24.2 REin (9680 pixels) to extract light curves
from.

The combination of the velocity vectors of the observer, the lens,
and the source, results in an effective velocity of the source across
the magnification map (see Kochanek 2004, for a description of such
a velocity model). The length of a light curve on the magnification
map is set by the magnitude of this velocity multiplied by the
time range spanned by the observations (usually up to years).
The orientation of the map with respect to the effective velocity
depends on the direction of the external shear, which can be derived
from macromodels of the lensing galaxy. However, these model
components are more relevant to individual object studies and are

1The smooth matter fraction, s, which is the fraction of smoothly distributed
matter (as opposed to compact microlenses) over the total matter, is another
important parameter for microlensing studies (e.g. Vernardos et al. 2014).
Here we always set s = 0 for simplicity. A varying s has a similar effect to
the magnification maps as changing the κ , γ , which is out of the scope of
this work.
2http://gerlumph.swin.edu.au/

outside the scope of this work that focuses on the size of the
accretion disc with respect to REin. Therefore, the following broad
assumptions are made: the light-curve trajectories have a random
direction, all light curves have the same length, and the light-curve
data are continuous. An example of mock light curves is shown in
Fig. 2.

2.2 Analysis

The dramatic increase in the volume of astronomical observations
has led to a situation where the manual analysis of highly dy-
namic observations by human experts is creating a bottleneck in
the observation-to-knowledge pipeline. To address this challenge,
cutting-edge automated data analysis systems based on machine
learning are gaining significant traction. To that end, we consider
deep machine learning approaches based on one-dimensional CNNs
for supervised modelling of light-curve data, where annotated exam-
ples are utilized for training multilayer deep neural networks that can
then characterize new observations. We discuss the methodology
for generating the training data set first and the architecture of the
proposed CNN next.

2.2.1 Training set

Using the procedure described above, a set of mock light curves is
generated for training the deep machine learning analysis algorithm.
The Einstein radius is set to 4.65 × 1016 cm, corresponding to
a lens and a source at redshifts 0.5 and 1.2, respectively, and
1 M� microlenses. The half-light radius that sets the size of all
the different accretion disc profiles varies in the range 0.02–0.2
REin. The additional parameters for the ‘Gaussian+hole’ and ‘wavy’
profiles are fixed to Rin = 9 × 1014 cm and n = 3, respectively (see
Table 1 and Fig. 1). The different sizes are listed in Table 2. The
exponential profile is excluded from the training set and is used only
for testing (Section 3.3.1).

In order to match the sizes to observed wavelengths, equation (1)
is used with ν = 4/3, the theoretical result from the thin disc model,
and r0 = 2.59 × 1015 cm, a somewhat smaller value than what
is found from observations (e.g. r0 = 1.38+0.45

−0.37 × 1016 cm from
Jimenez-Vicente et al. 2014, after converting their rs to r1/2). As
discussed in Sections 3 and 4, however, the absolute scale of the
problem is unimportant and only the r1/2/REin ratio matters.

The training set is extracted from a single magnification map
having κ = 0.09, γ = 0.55 (s = 0), shown in the top left of Fig. 2.
The length of the light curves is arbitrarily set to 5 REin (≈2000
pixels3), which is long enough to permit several caustic crossings to
occur, yet short enough to allow for a large number of independent
light curves to be extracted from the 24.2 REin-wide effective maps.

Thousands of light curves are generated for each profile and
filtered to keep the ones having a maximum magnification of at
least 1.5. This is to avoid flat light curves without any meaningful
features, which have a high chance to occur due to the large regions
of the magnification map that are not covered by caustics (see top
left panel of Fig. 2). For each r1/2 and profile shape, 900 light curves
are selected for the training and 100 for the validation sets, leading
to a total of 45 000 and 5000, respectively.

3In fact, to produce a light curve we sample the magnification map along a
given direction 2000 times at intervals equal to the size of a pixel.
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Figure 2. Mock light curves from magnification maps with κ = 0.09, γ = 0.55 (top), and κ = 0.8, γ = 0.1 (bottom). The light-curve trajectories on the
maps (red arrows) have the same length (5 × REin) and a random orientation. Mock light curves for all the profile shapes listed in Table 1 are shown for two
different accretion disc profile sizes (r1/2 equals to =0.02 and =0.1 REin, respectively, for the top and bottom panels next to each map). The magnification, μ,
is with respect to the macromodel induced magnification, μmacro = [(1 − κ)2 − γ 2]−1, which is different for each map. Although the light curves may appear
indistinguishable on large scales (∼REin), the effect of small scale profile structure is visible during a caustic-crossing event, as indicated in the inset plot in the
third panel on the right-hand side.

2.2.2 Convolutional Neural Network architecture

Each one-dimensional light-curve example is analysed by a CNN
architecture primarily consisting of a sequence of five layers-blocks,
each one comprised of convolutional, non-linear activation, and
max pooling layers, while the final predictions are produced by
a sequence of fully connected layers. The convolutional layer is
responsible of convolving the input signals with a set of trainable
kernels, 32 in our case, of different temporal extent so that features
of different temporal scale are identified. More specifically, the
one-dimensional light-curve signal is first convolved by a set of 32
unit-length kernels, which are then introduced as input to first layers-
block. The input to each layers-block is sequentially convolved with
kernels of 10, 20, and 50 spatial extend and passed through a non-
linear Rectified Linear Unit (ReLU) activation function. The signal
produced by the last ReLU layer is added back to the original input
following a residual modelling architecture (He et al. 2016) and
down-sampled by a max-pooling layer with pooling size equal to 3

and stride of 2. The configuration and associated number of tunable
parameters are shown in Table 3.

The output of the five layers-blocks is subsequently passed
through three fully connected layers of 128, 32, and 10 units each,
where the number of units in the final layer is dictated by the
label resolution in our model (r1/2 sizes in Table 2). To make the
actual prediction, the output of the final fully connected layer is
introduced into a softmax layer which is responsible for producing
probabilistic outputs (non-negative that sum to one), so that the
class with the maximum probability corresponds to the predicted
class. Finally, in order to increase the generalization capacity of
the proposed architecture, we employ two additional layers, a batch
normalization layer at the end of each layers-block and dropout
layers (75 per cent dropout rate) between the fully connected
layers.

In total, the proposed CNN is parametrized by 673 098 parameters
that are tuned during the training stage to minimize the categorical
cross entropy between predicted () and actual labels (y). For a single
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Table 2. Different sizes for the accretion disc profiles, parametrized by
the half-light radius, r1/2 (see also Table 1). Each r1/2 value is assigned
to a class that is used to train the machine learning algorithm described
in Section 2.2.2. A value of REin = 4.64 × 1016 cm is used and the
corresponding observed wavelengths are calculated from equation (1) with
r0 = 2.59 × 1015 cm and ν = 4/3, for a source at redshift 1.2. However,
as discussed in Sections 3 and 4, the absolute values of REin, r1/2, and the
corresponding λobs do not affect the results of the analysis and are only
listed for illustrative purposes.

Class r1/2 (REin) r1/2 (×1014 cm) λobs (nm)

0 0.02 9.3 104.78
1 0.04 18.6 176.22
2 0.06 27.9 238.86
3 0.08 37.2 296.38
4 0.10 46.5 350.37
5 0.12 55.8 401.71
6 0.14 65.1 450.95
7 0.16 74.4 498.45
8 0.18 83.7 544.49
9 0.20 93.0 589.26

Table 3. Architecture of a layers-block component of our CNN.

Type Shape Parameters

Convolution (32,10) 10 272
ReLU – –
Convolution (32, 20) 20 512
ReLU – –
Convolution (32, 50) 51 232
ReLU – –
Add – 0
Pooling (3, 2) 0
Batch normalization – 0

example classified in one out of C classes, this is given by:

L(y, ŷ) = −
C∑

c=1

1yi∈Cc
log p(ŷi), (3)

where 1yi∈Cc
is the indicator function taking a value of one only for

the correct class c, and p(ŷi) is the predicted probability associated
with each class. Minimization of the loss function is achieved by
employing the Adam optimizer (Kingma & Ba 2014, with learning
rate 10−3, decay 10−5). To quantify the performance of the CNN
architecture, we report the prediction accuracy as the percentage of
correctly predicted r1/2 classes, averaged over all examples (either
training or validation, see Fig. 3). To maximize the accuracy, the
training stage involves the repetitive tuning of parameters for 1000
epochs, where each epoch corresponds to a single pass over the
entire training set (45 000 light curves).

3 R ESULTS

Here we present the results of the network training and its appli-
cation. First, we explore how modifying the neural network archi-
tecture can achieve better results with the training set. Predictions
can be only as good as the data used to train the algorithm, while
a well-trained network is not guaranteed to give good predictions
for data of a different kind. This effect of the training/application
data on the predictions is explored in a number of tests. Finally, the
ability to correctly recover a fiducial size–wavelength dependence

Figure 3. Value of the loss function (top) from equation (3) and prediction
accuracy (bottom, percentage of the correctly predicted r1/2 classes over the
total) as a function of epoch for the full training and validation sets. The
network architecture used is the one highlighted in Table 4.

Table 4. Accuracy (per centage of the correctly predicted r1/2 classes over
the total) achieved by different CNN architectures over a limited set of
training and validation examples (4500 and 500 light curves, respectively).
The numbers are for the validation set (training set in parenthesis). The
difference between the last two architectures is the inclusion of DO
regularization. The best architecture used in the following is highlighted
in bold.

Epoch 200 500 1000

2 blocks 30.8 (39.9) 44.7 (55.4) 56.9 (61.4)
3 blocks 58.3 (57.8) 65.2 (71.0) 65.2 (77.3)
4 blocks 51.3 (54.1) 65.5 (71.2) 67.4 (79.2)
5 blocks 61.7 (96.6) 70.5 (99.6) 69.3 (99.8)
5 blocks (DO) 66.2 (70.6) 70.3 (81.4) 75.3 (90.8)

of the accretion disc profiles is measured. We point out that the
network output is always one of the classes of r1/2 listed in Table 2.

3.1 Convergence

To demonstrate the need for multilayered CNN architectures,
Table 4 reports the achieved accuracy for a limited set of training and
validation examples (4500 and 500, respectively) at different epochs
and for different architectures. Specifically, we consider networks
with 2, 3, 4, and 5 layers-blocks, while for the case of 5 layers-
blocks, we also explore the impact of drop-out (DO) regularization.
For each case, we report the accuracy achieved on the validation set
(and the training set in parenthesis).

The results shown in Table 4 justify the assertion that both
deeper models and appropriate regularization have a positive
impact on performance. With respect to the depth of the archi-
tecture, more layers-block lead to higher accuracy, noting that
five blocks perform better for 200 epochs of training, compared
to two blocks for 1000. Furthermore, we observe that although
the performance on the training set reaches 90 per cent when no
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Figure 4. Confusion matrices (actual versus predicted classes of r1/2) for the validation set, the ‘exponential profile’, the set of statistically equivalent maps,
and for difference light curves (see the corresponding sections in the text for the description of each set). Each row of the matrices is normalized to 100 per cent.
The higher the percentage on the diagonal the more accurate the network predictions. The different classes are listed in Table 2.

DO regularization is introduced, the corresponding accuracy in the
validation set is only 69 per cent. This large gap between training
and validation performance is a known problem affecting CNNs
called overfitting (Srivastava et al. 2014). The consequence of
this situation is that once the CNN achieves an almost perfect
performance on the training set, its performance does not improve
any further, thus the generalization capacity of the network is
diminished. Introducing the DO regularization leads to an achieved
accuracy for both sets that keeps increasing, as required to avoid
overfitting.

3.2 Validation

The validation set consists of a part of the training set that was not
used during the actual training. For each r1/2 class and profile shape,
100 light curves are set aside as part of the validation set. The final
version of the trained network is then used to predict the class of
each of these 50 000 light curves.

The confusion matrix is a standard way of visualizing the
performance of algorithms dealing with classification problems.
For each light curve and regardless of the profile shape, the true
value of r1/2 (the actual class) and the output of the trained network
(the predicted class) are stored in a matrix. If all the entries lie on
the diagonal, then all the predicted classes coincide with the actual
classes and the network predictions are 100 per cent accurate. We
obtain a 96 per cent accuracy for the validation set, whose confusion
matrix is shown in the left-hand panel of Fig. 4.

3.3 Further tests

The validation set consists of light curves that are generated
from the same underlying magnification map as those used in the
training. Thus, they are expected to have very similar properties,
which explains the 96 per cent accuracy of the predictions – the
network performs well on the same kind of data that it was trained
on.

To push the limits of the predictive power of our network,
a number of ‘unfair’ tests were performed using data sets that
were designed to be different to the training. We examined light
curves from a profile with a shape unknown to the network –
the exponential profile, from different realizations of statistically
equivalent maps (having the same κ , γ as the training but different
caustic networks), maps with varying κ , γ throughout the parameter
space, and difference light curves. In all of these tests the same
neural network was used, trained only on light curves generated

from the magnification map shown in the top left of Fig. 2 and the
profile shapes of Table 1. We point out once more that the network
output is always the class of r1/2 listed in Table 2, regardless of the
profile shape.

3.3.1 Classifying an unknown profile

The first test is to classify light curves from a profile whose shape
is unknown to the network, i.e. different to the shapes used in the
training set. We used the exponential profile, shown in Table 1.
Because this profile is unbounded for r → 0, we introduce an
artificial cut-off at 10 times the brightness value at r1/2 (at r ≈ 0.2
r1/2) and assume this value for the smaller radii. Due to this sharp
peak at r → 0, this profile is not expected to smooth out light-curve
features by much compared to a point source. Also, this profile is
quite different to the ones used in the training which do not have
such a sharp peak at low values of r.

For each profile size, 1000 light curves are selected that have
a maximum magnification of at least 1.5, leading to a total of
10 000 light curves to be classified. The confusion matrix, shown
in Fig. 4, is mostly diagonal but just underestimates the profile
size by 1–3 classes. The low percentage of light curves classified
correctly, which is 30 per cent (on the diagonal), is therefore slightly
misleading.

3.3.2 Statistically equivalent maps

We apply our neural network to light curves from 14 different
realizations of magnification maps with κ = 0.09, γ = 0.55, same
as the one used to create the training set. The number of microlenses
and the magnification histogram of these maps remain the same,
while the random microlens positions are varied to produce different
caustic networks. For each map, profile shape, and size, 100 light
curves are selected that have a maximum magnification of at least
1.5, leading to a total of 70 000 mock light curves in this test set
(7000 from each class of r1/2). 82 per cent of the light curves are
classified correctly, lying on the diagonal of the confusion matrix
shown in Fig. 4. Confusion matrices per profile shape for this set of
maps are shown in Fig. A1.

3.3.3 Difference light curves

In order to obtain microlensing light curves from real observations,
one has to subtract the time series of the brightness measurements
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between pairs of multiple quasar images (after correcting for the
time delay). This removes the (unknown) intrinsic variability of
the quasar itself, which is the same in all the multiple images,
and the residual signal is attributed to microlensing. However, this
results in a fundamental issue that cannot be addressed: there is
no way to know which of the two images is undergoing some
microlensing effect and to what extent (or if both are at the same
time). Therefore, to model observational light curves one has to
consider such difference light curves.

Difference light curves result by subtracting the brightness in
magnitudes (equivalent to dividing the magnification) of two light
curves that originated from different quasar images, most likely
having quite different κ , γ parameters. This means that each
difference light curve is now associated with two magnification
maps rather than just one. To create such pairs of maps, we select five
maps from the set of statistically equivalent maps used previously
and combine them to form 10 unique pairs. It is pointed out that
the same accretion disc profile (size and shape) has to be used with
both maps before creating the difference light curves. Due to the
combinatorial explosion of the size of the data, 10 of the previously
generated light curves per profile shape, size, and map are selected,
resulting in 50 000 difference light curves in total (5000 for each
class of r1/2).

The confusion matrix for this test set is shown in Fig. 4. The
matrix is still mostly diagonal, with 42 per cent of the light curves
classified correctly. We point out that applying this combination and
division operation to the data is expected to introduce new features
that the network has not been trained to recognize, in a way, creating
a new type of data. Thus, the observed drop in the number of correct
predictions is not surprising.

Finally, for this test we used pairs of maps with the same κ , γ

values, although real pairs of quasar images are expected to have
quite different ones. As it turns out, the effect of varying κ , γ is
much more prominent even without considering difference light
curves, and is examined separately below.

3.3.4 Parameter space

For this test, a set of 108 magnification maps is selected throughout
the κ , γ parameter space, shown in Fig. 5. For each map, profile
shape, and size, 200 light curves are selected that have a maximum
magnification of at least 1.5, resulting in a total of ≈106. The
confusion matrices are calculated in each case, but are hard to
visualize in the κ , γ parameter space. Instead, the percentage of the
correct predictions is computed for each map (the confusion matrix
trace), for all the profile shapes, and shown in Fig. 5.

The highest percentage of correct predictions is between 70 and
80 per cent, and it occurs near κ = 0.09, γ = 0.55, the values that
the network was trained on. The network performs well in a wide
area around these values, which is not surprising because the caustic
networks and the statistical properties of the maps are quite similar
there (see fig. 4 of Vernardos & Fluke 2013, for the magnification
histograms in the parameter space).

The network performs the worst near the critical line (black line
in Fig. 5) for high values of κ . The critical line is where two
macro-images of the quasar merge or annihilate and the macro-
magnification μmacro = [(1 − κ)2 − γ 2]−1 diverges. The number
of microlenses dramatically increases and caustic networks become
denser and superimposed, leading to quite different light curves.
The magnification map shown in the bottom panel of Fig. 2 lies
much closer to the critical line and the difference with the map

Figure 5. Percentage of correct size predictions from 108 magnification
maps throughout the κ , γ parameter space (each map location is represented
by a Voronoi cell). The closer to the κ , γ location used in the training (green
star, top map in Fig. 2), the higher the percentage of correct predictions.
Light curves become more different the closer the maps get to the critical
line (black diagonal line), where the macro-magnification μmacro = [(1 −
κ)2 − γ 2]−1 diverges. The location of the bottom map in Fig. 2 is also
indicated (black star).

used in the training is striking: there are several and constant small
variations in the light curve as the source is continuously traversing
dense caustic networks, as opposed to simple caustic crossing events
displaying the characteristic double peak as the source enters and
exits an isolated diamond caustic.

3.4 Recovering accretion disc parameters

Measuring the accretion disc size in a range of wavelengths can
constrain the free parameters in equation (1), i.e. the size r0 and slope
ν. Fixing r0 and ν to some fiducial values, in this case 2.59 × 1015

cm and 4/3, matches a wavelength to each accretion disc size (r1/2).
We can then use the sizes predicted in each wavelength by the neural
network to infer the underlying r0 and ν values.

However, we are dealing with what is effectively a pattern
recognition problem and any kind of physical scale is irrelevant;
stretching or compressing the light-curve data in the length or
magnification directions does not affect the network predictions,
as long as the r1/2/REin and pixels/REin ratios, which determine the
relevant size of the profiles and the light-curve resolution, remain
fixed. Thus, the actual values of r0 and ν used to match sizes to
wavelengths are actually irrelevant.

For each trajectory on the magnification map we extract the light-
curve data of a given accretion disc profile shape for all values of
r1/2. Predicting the size of each light curve in such collections leads
to a measurement of r1/2 as a function of wavelength. Converting
these measurements to logarithmic space and performing a simple
linear fit leads to a measurement of r0 and ν.
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Table 5. 68 per cent confidence intervals for the accretion disc profile
parameters ν and r0, corresponding to the probability histograms shown
in Fig. 6.

Dataset ν r0 (1015 cm)

Exponential profile 1.28+0.11
−0.13 2.19+0.20

−0.24

Equivalent maps 1.33+0.04
−0.04 2.57+0.06

−0.06

Difference light curves 1.22+0.15
−0.56 2.4+0.23

−0.31

Figure 6. Probability density and histograms for the accretion disc pa-
rameters r0 and ν (see equation 1). Measurements are obtained from the
exponential profile, equivalent maps, and difference light-curve datasets.
The shape of the probability density surface depends purely on the ability of
the network to correctly predict the accretion disc size, and is related to the
confusion matrices of these datasets, shown in Fig. 4. Dashed lines indicate
the true underlying values used in this case, i.e. ν = 4/3 and r0 = 2.59 × 1015

cm. Contours are drawn at the 68, 95, and 99 per cent confidence intervals.

We use the test sets for an exponential profile, statistically
equivalent maps, and difference light curves created in Section 3.3,
which provide 1000, 7000, and 5000 measurements of r1/2 versus
wavelength. The resulting values for ν and r0 are shown in Table 5.
The probability density contours and histograms are shown in Fig. 6.

It is pointed out that the shapes of the probability contours in
Fig. 6 and the resulting fractional errors on the derived r0 and ν

parameters do not depend on their absolute values and only reflect
the extent to which the network fails to predict the correct sizes
in each case (reflecting the confusion matrix of each test set). The
measurements of r0 and ν from the validation set (not shown) are
therefore expected to be even closer to the true underlying values.

4 C O N C L U S I O N S

We used a machine learning approach based on a CNN to study
simulated quasar microlensing light curves for the first time. Our
algorithm was trained on and applied to hundreds of thousands
of such light curves. We demonstrated that our method is able
to recover the correct size of the underlying accretion disc at
96 per cent accuracy for the validation set, and at 82 for a test set of

statistically equivalent light curves, generated from magnification
maps with the same κ , γ values but different random microlens
positions. When light curves from a profile whose shape is unknown
to the network are used (the ‘exponential’ profile), the accuracy
drops at 15 per cent but the corresponding confusion matrix shown
in Fig. 4 remains almost diagonal (the network underpredicts the
sizes by 1–3 classes). These two tests ensure that the training data
are not overfitted.

A further test was made with difference light curves – combi-
nations of light curves from two different magnification maps. The
accuracy dropped to 42 per cent, which is an acceptable performance
given that difference light curves introduce new features to the data
that the network has not been trained on.

We find that the specific shape of the accretion disc profile
has a negligible effect on microlensing properties of light curves,
supporting and extending the results of Mortonson et al. (2005). This
is demonstrated by the almost diagonal confusion matrices shown
in Figs 4 and A1. However, on small scales (short length/time),
where isolated caustic crossing events can be observed, the detailed
structure of the accretion disc still makes a difference (see inset plot
in Fig. 2).

Classifying accretion disc sizes in many wavelengths leads
to measurements of the accretion disc temperature profile via
equation (1). Fig. 6 shows the probability of such measurements
for thousands of light curves from three different test sets. The
errors on recovering the correct underlying structure parameters
depend purely on the accuracy of the network size predictions.
In particular, for the ‘exponential’ profile shape the absolute size
predictions are well-off the truth, as expected from the confusion
matrix, but the relative scaling, and hence the power-law index ν,
is correctly recovered.

Our network was trained on a single magnification map with
κ = 0.09, γ = 0.55 and then applied to the entire κ , γ parameter
space shown in Fig. 5. Predictions near the training map location
are systematically higher than elsewhere in the parameter space,
indicating that there is a potentially measurable effect of the κ , γ

values on the light curves. This could lead to measurements of the
smooth matter fraction – constraining the partition between smooth
(dark) and compact (stellar) matter – which are crucial to lifting the
degeneracy between dark matter and the initial mass function in the
lens (e.g. Oguri, Rusu & Falco 2014).

The focus of this work is to study light curves in an abstract way,
taking into account only the size of the accretion disc with respect
to REin. Thus, light-curve data were assumed to be long (5×REin),
continuous, and containing some minimum amount of information
(all light curves were selected to have a maximum magnification
of 1.5, guaranteeing at least some variations). The most important
caveat is the length of the light curves, which determines the impact
of other factors not considered here, like the effective velocity
model. However, the applicability of this new technique to real
data will ultimately depend on how well observational effects, like
sparse data, gaps, irregular sampling, etc., can be taken into account
and mitigated.

In this work we demonstrated the feasibility of analysing hun-
dreds of thousands of microlensing light curves. This method
opens up a whole new range of possibilities of quantifying light-
curve properties systematically and consistently throughout the
microlensing parameter space. This is important for the upcoming
all-sky surveys like LSST, which will provide data on thousands of
microlensed quasars.

This new CNN approach was explored along two perpendicu-
lar directions: improving the network predictions on a restricted
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training set by modifying its architecture, and then applying it to
a wider range of data. The next step is to couple them, include
observational effects, and improve the predictions on all the new
architecture/data possibilities (difference light curves, throughout
the κ , γ parameter space, as a function of light-curve length, etc.).
The new technique presented here brings us closer to addressing the
pertinent question: ‘At which point all the available information has
been extracted from a quasar microlensing light curve?’. Eventually,
the most critical parameter will be the light-curve length, which is
necessary for designing future observations, follow-up campaigns,
etc.
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APPENDI X A : C ONFUSI ON MATRI CES PER
PROFILE SHAPE

Figure A1. Confusion matrices (actual versus predicted classes of r1/2) per profile shape for the set of statistically equivalent maps. The middle panel of Fig. 4
is the sum of these constituent confusion matrices. Each row of the matrices is normalized to 100 per cent. The higher the percentage on the diagonal the more
accurate the network predictions. The different classes are listed in Table 2.
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