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ABSTRACT
For a population of electric vehicles (EVs) we design a data-
driven mean-field game and provide analysis of approximated
mean-field equilibrium points based on a receding horizon ap-
proach. The model involves stochastic disturbances on the
data that drive the game. Some numerical studies illustrate
the efficacy of the proposed strategies.

Index Terms— Mean-field games, Smart-grid

1. INTRODUCTION

In the spirit of dynamic demand management [1, 2, 3, 4], the
main contribution of this paper is the design of a mean-field
game for a population of EVs. We introduce the mean-field
equilibrium and investigate ways in which we can obtain an
approximation of such equilibrium point via simple calcula-
tions. Mean-field games were formulated in [5] and indepen-
dently also in [6, 7]. The main idea is to turn the game into
a sequence of infinite-horizon receding horizon optimization
problems that each EV solves online. The online computation
is driven by data made available at regular sampling intervals.
We provide analysis of the asymptotic stability of the micro-
scopic and macroscopic dynamics. The physical interpreta-
tion of the results corresponds to a level of charge and charg-
ing mode for each EV which converge to pre-defined refer-
ence values. We show through simulations that such conver-
gence properties are guaranteed also when the EVs dynamics
are affected by an additional stochastic disturbance which we
model using a Brownian motion. Finally, we show the impact
of measurement noise on the overall dynamics. Such noise
is added to the estimate of the grid frequency and could be
also viewed as the consequence of attacks on the part of hack-
ers aiming at compromising the data. An expository work on
stochastic analysis and stability is [8].

1.1. Notation

The symbol E indicates the expectation operator. We use ∂x
and ∂2xx to denote the first and second partial derivatives with
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Fig. 1. Population of EVs. assimilated to capacitors

respect to x, respectively. Given a vector x ∈ Rn and a matrix
a ∈ Rn×n we denote by ‖x‖2a the weighted two-norm xTax.
The symbol ai• means the ith row of a given matrix a. We de-
note by Diag(x) the diagonal matrix in Rn×n whose entries
in the main diagonal are the components of x. We denote by
dist(X,X∗) the distance between two points X and X∗ in
Rn. We denote by ΠM(X) the projection of X onto setM.
The symbol “:” denotes the Frobenius product. We denote by
]ξ, ζ[ the open interval for any pair of real numbers ξ ≤ ζ.

2. POPULATION OF ELECTRIC VEHICLES (EVS)

In a population of electric vehicles (EVs), each EV is modeled
by a continuous state, which represents the level of charge
x(t), and by a binary state πon(t) ∈ {0, 1}, which indicates
whether the EV is charging (on state) or discharging (off
state) at time t ∈ [0, T ]. Here [0, T ] is the time horizon win-
dow. By setting to on state, the level of charge increases expo-
nentially up to a fixed maximum level of charge xon whereas
in the off position the level of charge decreases exponen-
tially up to a minimum level of charge xoff . Then, the level
of charge of each EV in [0, T ) is given by:

ẋ(t) =

{
−α(x(t)− xon) if πon(t) = 1
−β(x(t)− xoff ) if πon(t) = 0

, (1)

where x(0) = x represents the boundary condition at initial
time, and where the α, β are the rates of charging and dis-
charging respectively. Both are given positive scalars.

In the spirit of stochastic models as provided in [9, 10], we
assume that each EV can be in states on or off in accordance
to probabilities πon ∈ [0, 1] and πoff ∈ [0, 1]. The control
input corresponds to the transition rate uon from state off
to state on and the transition rate uoff from state on to state
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off . Under the assumption that π̇on(t) + π̇off (t) = 0, one
can consider only one the dynamics for πon. Then, let us
denote y(t) = πon(t). For any x, y in the

“set of feasible states” S :=]xoff , xon[×]0, 1[,

we obtain the following dynamical system

ẋ(t) =
(
y(t)

[
− α(x(t)− xon)

]
+(1− y(t))

[
− β(x(t)− xoff)

]
=: f(x(t), y(t)), t ∈ [0, T ), x(0) = x,

ẏ(t) =
(
uon(t)− uoff(t)

)
=: g(u(t)), t ∈ [0, T ), y(0) = y.

(2)

A macroscopic description of the model can be ob-
tained by introducing the probability density function m :
[xon, xoff ]×[0, 1]×[t, T ]→ [0,+∞[, (x, y, t) 7→ m(x, y, t),
for which it holds

∫ xoff

xon

∫
[0,1]

m(x, y, t)dxdy = 1 for every t
in [0, T ). Furthermore, let

mon(t) :=

∫ xoff

xon

∫
[0,1]

ym(x, y, t)dxdy.

Analogously, let moff (t) := 1 − mon(t). At every time t
the grid frequency depends linearly on the discrepancy be-
tween the percentage of EVs in state on and a nominal value.
We refer to such deviation to as error and denote as e(t) =
mon(t) − mon. Here mon is the nominal value. Note that
the more EVs are in state on if compared with the nominal
value, the more the the grid frequency presents negative de-
viation from the nominal value). In other words the grid fre-
quency depends on the mismatch between the power supplied
and consumed. For sake of simplicity, henceforth we assume
that the power supply is constant and equal to the nominal
power consumption all the time.

2.1. Forecasting based on Holt’s model

The information on the error e(t) is relevant to let the EVs
adjust their best response charging policies. This information
is available at discrete times tk, and after receiving a new data
the players first forecast the next value of the error and based
on that they compute their best-response strategies over an
infinite planning horizon, namely T →∞.

Once the forecasted error is obtained, the players assume
that this value remains fixed throughout the planning horizon.
Note that this assumption is mitigated if the interval between
consecutive samples is sufficiently small. Once the sequence
of optimal controls is obtained, the players implement their
first controls until a new sample becomes available. In other
words, the players implement a receding horizon technique
which consists in a multi-step ahead action horizon. In the
following we denote the length of the interval between con-
secutive samples as δ = tk+1 − tk. In the following we can
take δ = 1 without loss of generality.

â(tk−1)

â(tk)

ê(tk+1)
e(tk)

tk−1 tk tk+1

b̂(tk−1) b̂(tk)

B

A

D

C

â(tk)− â(tk−1)

Fig. 2. One iteration of the forecasting method based on the
Holt’s model

Forecasting is based on the Holt’s model, which assumes
that the underlying model for the error is linear with respect
to time, and has permanent component

µ(tk) = a(tk) + b(tk)tk.

For the error we then have

e(tk) = µ(tk) + ε(tk) = a(tk) + b(tk)tk + ε(tk)

When the new observation e(tk) becomes availabe, the esti-
mate of the constant is updated as follows by

â(tk) = α̂e(tk) + (1− α̂)
(
â(tk−1) + b̂(tk−1)

)
Similarly, the estimate for the slope is obtained as

b̂(tk) = β̂(â(tk)− â(tk−1)) + (1− β̂)b̂(tk−1)

Finally, the forecast of the error at time tk+1 obtained at time
tk is given by

ê(tk+1) = â(tk) + b̂(tk)

The forecasting iteration at time tk−1 using the Holt’s
model is illustrated in Fig. 2. The new level â(tk) is in the
convex hull between the last obtained sample e(tk) (indicated
by circle A) and the forecasted value from previous iteration
â(tk−1) + b̂(tk−1) (indicated by circle B). Likewise, the new
slope b̂(tk) is in the convex hull between the last observed
slope â(tk) − â(tk−1) (indicated by circle C) and the previ-
ous forecast b̂(tk−1) (indicated by circle D).

2.2. Receding horizon

The running cost for each player introduces the dependence
on the distribution m(x, y, t) through the error ê(tk+1) and is
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given below:

c(x̂(τ, tk), ŷ(τ, tk), û(τ, tk), ê(tk+1))

= 1
2

(
qx̂(τ, tk)2 + ronûon(τ, tk)2 + roff ûoff (τ, tk)2

)
+ŷ(τ, tk)(Sê(tk+1) +W ),

(3)
where q, ron, roff , and S are opportune positive scalars.

In the running cost (3) we have four terms. One term pe-
nalizes the deviation of the EVs’ levels of charge from the
nominal value, which we set to zero. Setting the nominal level
of charge to a nonzero value would simply imply a translation
of the origin of the axes. This penalty term is then given by
1
2qx(τ, tk)2.

A second term penalizes fast switching and is given by
1
2ronuon(τ, tk)2; this cost is zero when either uon(τ, tk) = 0
(no switching) and is maximal when uon(τ, tk) = 1 (proba-
bility 1 of switching). The same reasoning applies to the term
1
2roffuoff (τ, tk)2. A positive error forecast e(tk+1) > 0,
means that demand exceeds supply. Therefore, with the
term y(τ, tk)Se(τ, tk) we penalize the EVs that are in state
on when power consumption exceeds the power supply
(e(τ, tk) > 0). On the contrary, when the power sup-
ply exceeds power consumption, the error is negative, i.e.
e(τ, tk) > 0, and the related term y(τ, tk)Se(τ, tk) penalizes
the EVs that are in state off . The last term is y(τ, tk)W and
is a cost on the power consumption; when the EV is in state
on the consumption is W . We also consider a terminal cost
g : R→ [0,+∞[, x 7→ g(x) to be yet designed.

Let the following update times be given, tk = t0 + δk,
where k = 0, 1, . . . . Let x̂(τ, tk), ŷ(τ, tk) and ê(tk+1), τ ≥
tk be the predicted state of player i and of the error e(t) for
t ≥ tk, respectively. The problem we wish to solve is the
following one.

For all players and times tk, k = 0, 1, . . ., given the initial
state x(tk), and y(tk) and ê(tk+1) find

û?(τ, tk) = arg minJ (x̂(tk), ŷ(tk), ê(tk+1)), û(τ, tk)),

where

J (x̂(tk), ŷ(tk), ê(tk+1), û(τ, tk))

= limT→∞
∫ T

tk
c(x̂(τ, tk), ŷ(τ, tk), û(τ, tk), ê(tk+1))dτ

(4)
subject to the following constraints:

˙̂x(τ, tk) =
(
ŷ(τ, tk)

[
− α(x̂(τ, tk)− xon)

]
+(1− ŷ(τ, tk))

[
− β(x̂(τ, tk)− xoff)

]
=: f(x̂(τ, tk), ŷ(τ, tk)), τ ∈ [tk, T ),

˙̂y(τ, tk) =
(
ûon(τ, tk)− ûoff(τ, tk)

)
=: g(û(τ, tk)), τ ∈ [tk, T ),

(5)
The above set of constraints involves the predicted state

dynamics of the individual player and of the rest of the pop-
ulation through ê(tk+1). The constraints also involve the

ê(tk+1)

ê(tk)

ê(tk−1)

tk−1 tk tk+1

e(tk+1)

e(tk)

e(tk−1)

Fig. 3. One iteration of the forecasting method based on the
Holt’s model

boundary conditions at the initial time tk. Note that a player
restrains the error to be constant over the planning horizon.

At tk+1 a new sample data e(tk+1) becomes available.
Then the players update their best-response strategies, which
we refer to as receding horizon control policies. Conse-
quently, for the individual player, we obtain the closed-loop
system

˙̂x(τ, tk) =
(
ŷ(τ, tk)

[
− α(x̂(τ, tk)− xon)

]
+(1− ŷ(τ, tk))

[
− β(x̂(τ, tk)− xoff)

]
=: f(x̂(τ, tk), ŷ(τ, tk)), τ ∈ [tk, T ),

˙̂y(τ, tk) =
(
uRH

on (τ)− uRH
off (τ)

)
=: g(uRH(τ)), τ ∈ [tk, T ),

(6)
where the receding horizon control law uRH(τ) satisfies

uRH(τ) = û?(τ, tk), τ ∈ [tk, tk+1).

Figure 3 provides a graphical illustration of the reced-
ing horizon model. Given three consecutive samples e(tk−1),
e(tk) and e(tk+1) (diamonds), the forecasts obtained from the
Holt’s method are ê(tk−1), ê(tk) and ê(tk+1) (circles). The
dashed lines indicate that each value is kept fixed throughout
the horizon when running the receding horizon optimization.

In [11], it was showed that the mean-field game can be ap-
proximated by a sequence of linear quadratic problems, one
per each player. Note that the receding horizon problems
constitute a sequence of consecutive approximations of the
mean-field game. In [11] it was also shown that the an ex-
plicit solution can be obtained by solving three matrix equa-
tions. We refer to such solution as receding horizon equilib-
rium. This equilibrium is an approximation of the mean-field
equilibrium. We use the same approach here to perform the
following numerical analysis.
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3. NUMERICAL STUDIES

Consider a population of 100 EVs, and set n = 100.
Simulations are carried out with MATLAB on an Intel(R)
Core(TM)2 Duo, CPU P8400 at 2.27 GHz and a 3GB of
RAM. Simulations involve a number of iterations T = 1000.
Parameters are set as follows. The step size dt = 0.1, the
charging and discharging rates are α = β = 1, the lowest
and highest level of charge are xon = 1, and xoff = −1, re-
spectively; the penalty coefficients are ron = roff = 20, and
q = 10, and the initial distribution is normal with zero-mean
and standard deviation std(m(0)) = 0.3 for x and mean
equal to 0.5 and standard deviation std(m(0)) = 0.1 for y.

For the optimal control we get

u∗ = −R−1BT [PX + Ψ],

where P is calculated using the MATLAB in-built function
[P]=care(A,B,Q,R). This function takes the matrices as
input and returns the solution P to the algebraic Riccati equa-
tion. Assuming BR−1BT Ψ ≈ C we get the closed-loop dy-
namics

X(t+ dt) = X(t) + [A−BR−1BTP ]X(t)dt.

Fig. 4. Time plot of the state of each EV when no noise affects
the measure of e(tk)

Figure 4 displays the time plot of the state of each EV,
namely level of charge x(t) (top row) and charging mode
y(t) (bottom row) when no noise affects the measure of e(tk),
namely ε(tk) = 0. Dynamics is affected by some Gaussian
noise in N (0, 0.1). The simulation is carried out assuming
that any 10 iterations a new sample is obtained and any 100
iterations initial states are re-initialized randomly.

Figure 5 displays the time plot of the state of each EV,
namely level of charge x(t) (top row) and charging mode
y(t) (bottom row) when Gaussian noise affects the measure

Fig. 5. Time plot of the state of each EV when Gaussian noise
affects the measure of e(tk).
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Fig. 6. Time plot of data e(tk) and forecasts ê(tk+1).

of e(tk), namely ε(tk) ∈ N (0, 0.5). Due to the estimation
noise, we observe osciallations of the level of charges around
that value.

Finally Fig. 6 displays the time plot of the observed data
e(tk) and forecasts ê(tk+1).

4. CONCLUDING REMARKS

The model proposed advances knowledge on mean field
games with applications to a population of EVs. The model
takes into account measurement disturbances. We have stud-
ied equilibria and designed stabilizing charging strategies.
The estimation disturbance can be viewed as an attempt to
compromise data. In the future, we will extend our study to
dynamic pricing, coalitional production aggregation, and the
design of incentives to stabilize aggregation of producers.
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