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Amination of f-hydroxyl acid esters via cooperative
catalysis enables access to bio-based f-amino acid
esters

Anastasiia Afanasenko® ! Tao Yan® ! & Katalin Barta

Tx

B-amino acid esters are important scaffolds in medicinal chemistry and valuable building
blocks for materials synthesis. Surprisingly, the waste-free construction of such moieties from
readily available or renewable starting materials has not yet been addressed. Here we report
on a robust and versatile method for obtaining f-amino acid esters by direct amination of p-
hydroxyl acid esters via the borrowing hydrogen methodology using a cooperative catalytic
system that comprises a homogeneous ruthenium catalyst and an appropriate Brgnsted acid
additive. This method allows for the direct amination of esters of 3-hydroxypropionic acid, a
top value-added bio-based platform chemical, opening a simple route to access -amino acid
esters from a range of renewable polyols including sugars and glycerol.
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-Amino acid esters are privileged structural motifs in a
wide variety of biologically active compounds! and indis-
pensable building blocks for the synthesis of 8-peptides®>
and f-lactam antibiotics®>. While -amino acid moieties
can be readily constructed by classical stoichiometric methods,
these approaches frequently involve the use of toxic reagents and
generate significant amounts of waste (Fig. 12)°~%. Surprisingly,
no waste-free catalytic methods, capable of creating -amino acid
scaffolds via direct coupling of B-hydroxyl acids or esters with
amines, have been reported to date. Nonetheless, for targeting

pharmaceutical compounds as well as functional materials and
polymers, a clean synthetic approach would be certainly preferred
(Fig. 1b)10. Moreover, such atom-economic method would enable
the unprecedented, direct catalytic amination of important bio-
based f3-hydroxyl acid ester building blocks.
3-Hydroxypropionic acid (3-HP) has been identified as one of
the top twelve value-added renewable platform chemicals!!-13,
hence there is a clear demand for its diversification beyond
already existing targets!!-14. Several chemo- and biocatalytic
routes have been proposed for the conversion of 3-HP and its

A\ Classical, stoichiometric pathways for the synthesis -amino acid esters
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Fig. 1 Strategies to access -amino acid esters. a Classical, stoichiometric pathways; b novel catalytic method for N-alkylation of f-amino acid esters via the
hydrogen borrowing strategy established here; ¢ new route to bio-based g-amino acid esters from renewable polyols and subsequent transformation to

valuable bio-based building blocks
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Fig. 2 Catalytic amination of the f-hydroxyl acid esters via the hydrogen borrowing strategy. a Proposed mechanism; b hydrogenation of 3"aa in the
presence of Shvo's catalyst (Cat) and/or diphenyl phosphate additive (AT). Reaction conditions: atm. Hy, 90 °C, 15 min

Table 1 Reaction condition optimization for the f-amino acid esters synthesis
MeO
A o e T
+ NH O
N
O
MeO )\/U\o/\
1a 2a 3aa
Entry Cat [mol%] Additive [mol%] Temp. [°C] Solvent Conv. [%] Sel. 3aa [%]
1 1 - 120 Toluene 17 7
2 1 A1 (5) 120 Toluene >99 >99(87)
3 1 A1 (5) 100 Toluene 21 21
4 1 A1 (5) 110 Toluene 47 47
5 0.5 A1 (5) 120 Toluene 51 51
6 - - 120 Toluene 0 0
7 - A1 (5) 120 Toluene 0 0
8 1 A1 (5) 120 CPME 67 67
9 1 A1 (5) 120 1,4-Dioxane 25 25
10 1 A1 (5) 120 CHsCN 0 0
n 1 A1 (5) 120 THF 19 19
122 1 A1 (5) 120 Toluene >99 85
130 1 A1 (5) 120 Toluene 76 63
General reaction conditions: General Procedure (see Supplementary information, page 1-3), 1T mmol of 1a, 0.5 mmol of 2a, 0.5-1mol% Shvo's complex (Cat), 5 mol% additive (A1), 2 mL of solvent, 18 h,
100-120 °C, under argon, isolated yields in parentheses. Conversion and selectivity were determined by GC-FID. 21.5 equiv. of 1a was used. b1 equiv. of 1a was used

esters to chemical intermediates!!-14, including acrylonitrile!”.

Interestingly, among these (de)functionalization pathways, the
direct and selective amination of the (3-HP) alcohol moiety has
not been recognized or achieved yet. In recent years, much
attention has been devoted to the development of industrially
relevant, scalable methods for the production of 3-HP and its
ethyl ester from renewable polyols (Fig. 1c)121>-17 Thus realizing
the above mentioned one-step catalytic amination would create
access to valuable synthetic f-amino acid esters from diverse
renewable sugar feedstocks, including non-edible lignocellulosic

agricultural or forestry waste materials!8, as well as glycerol, the
major byproduct of biodiesel production!®.

An attractive method for carrying out the desired catalytic C-N
bond formation is the direct amination of alcohols via the bor-
rowing hydrogen approach (Fig. 2a)20-23. Despite tremendous
progress?4-27, methodology development in the field has gen-
erally overlooked the use of potentially strongly coordinating
substrates and no examples on f-hydroxyl acids or derivatives
have been reported. In the recent pioneering work, Yan and co-
workers have reported the first example of catalytic amination of
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Fig. 3 a An imine-enamine equilibrium. Herein TH NMR spectrum of the 3-(4-methoxyphenylamino)-but-2-enoic acid ethyl ester (3"aa) in presence of
diphenyl phosphate additive (A1) is displayed. b Proposed adducts involved in cooperative catalysis. Details of the 3'P NMR investigation are reported in

Supplementary Fig. 12, Supplementary Note 1

biomass-derived a-hydroxyl acids with ammonia, using hetero-
geneous Ru-based catalysts?8, This work pioneered sustainable
pathways from sugars to a-amino acids by a tandem biocatalysis/
heterogeneous catalysis approach. Earlier, Beller described the
first example of catalytic amination of a-hydroxyl amides with
amines using [Ru3(CO),,]/DCPE?. This study also included
methyl 2-hydroxypropanoate as substrate, but only the corre-
sponding a-amino amide was formed, indicating low ester
functional group tolerance under the reported conditions.

Here we set to realize the catalytic amination of S-hydroxyl acid
esters, including esters of the bio-based 3-hydroxypropionic acid.

Results

Establishment of the reaction conditions. This transformation is
expected to be challenging because of side reactions such as
intermolecular transesterification, partial ester hydrolysis or f-
amino acid amide formation. Moreover, the 3-hydroxyl acids or
corresponding f-ketoacid/fB-iminoacid intermediates (Fig. 2a)
may form chelating complexes with the homogeneous catalyst,
blocking coordination sites necessary for efficient catalysis>0-32.
Therefore, the desired transformation requires a robust catalytic
system with great functional group tolerance. Very recently, we

developed the first N-alkylation of unprotected a-amino acids
with alcohols using the Ru-based Shvo’s catalyst33. This robust
and base-free catalytic system appeared as excellent starting point
for the synthesis of S-amino acid esters from S-hydroxyl acid
esters and various amines (Fig. 1b). We started our investigation
using ethyl 3-hydroxybutanoate and p-anisidine, with the Ru-
based Shvo’s catalyst. Very poor substrate conversion was seen
even at 120°C, and the desired product was observed only in
traces beside a small amount of imine (Table 1, entry 1).

In view of the possible side reactions and with the aim to keep
low catalyst loading and mild reaction conditions, we explored
alternative ways of enhancing reactivity. Achiral and chiral
Bronsted acids have emerged as powerful tools in a wide variety
of transformations34-42, In particular, the use of Brensted acids in
combination with transition metal catalysts have shown beneficial
in hydrogenation reactions, such as Ru?4, Ir?> and Fe-catalyzed
hydrogenation of imines®, as well as reductive amination®’.
Interestingly, recently Zhao has demonstrated the enantioselec-
tive amination of alcohols by a cooperative catalytic system
comprising an iridium complex and an appropriate chiral
phosphoric acid, via the borrowing hydrogen methodologys.
Thus, inspired by the remarkable achievements in cooperative
transition-metal and Brensted acid catalysis>4-42 we have applied
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Fig. 4 Scope with variation of the amine substrate. General reaction conditions: General Procedure (see Supplementary information, page 1-3), 1 mmol of
1a, 0.5 mmol of 2a-r, 1 mol% Shvo complex (Cat), 5 mol% additive (A1), 2 mL toluene, 18 h, 120 °C, under argon, full conversion unless otherwise indicated,
isolated yields are presented. @ 95% conversion. ® 94% conversion. See also Supplementary Table 1

diphenyl phosphate (A1) as a Bronsted acid additive, assuming
that it may facilitate imine reduction by bifunctional catalysis,
and in addition potentially enhance imine formation, both steps
involved in the borrowing hydrogen cycle (Fig. 2a).

Indeed, perfect (>99%) conversion and selectivity (>99%) were
achieved using diphenyl phosphate (A1) and Cat at 120°C
(Table 1, entry 2). The high level of product selectivity shows that
under these carefully selected conditions, the tendency for -
elimination is overcome in favor of dehydrogenation and imine
formation. Further lowering the reaction temperature or catalyst
amount have not proven beneficial (Table 1, entries 3-5). A blank
reaction in the absence of catalyst and additive, or just with Al,
gave no detectable conversion (Table 1, entries 6-7). Solvent
screening showed moderate success (Table 1, entries 8-11).
Decreasing the amount of alcohol to 1.5 and 1 equivalents
(Table 1, entries 12-13) gradually declined conversion therefore
for future study an alcohol: amine ratio of 2:1 was kept.

Additional in situ 1D and 2D 'H NMR (Supplementary Figs. 1-
8) and GC-FID and GC-MS studies (Supplementary Figs. 9-10) of
the amination of ethyl 3-hydroxybutanoate (la) and ethyl 3-
hydroxy-2,2-dimethylpropanoate (shown later, le) with p-anisi-
dine (2a) in presence of Cat with/without diphenyl phosphate
additive (A1) were performed. All key intermediates (Supplemen-
tary Figs. 1-4, 7-10), such as the corresponding imine (3’ea),
enamine (3”aa) and ketone (1’a), were detected that affirmed the

proposed borrowing hydrogen mechanism Fig. 2a. Deuterium
incorporation experiments using the separately prepared, selec-
tively D-labeled key substrate ethyl 3-hydroxyhexanoate-3-d (1b-
d1) and applying the simpler substrate, benzyl alcohol-a,a-d,7
(see Supplementary Note 2) showed deuterium transfer from the
substrate to the amine product in accordance with a borrowing
hydrogen mechanism. Furthermore amination of chiral alcohols
(see Supplementary Note 3), namely ethyl (S)-3-hydroxybutyrate
((S)-1a) and ethyl (R)-3-hydroxybutyrate ((R)-1a) with p-anisidine
(2a) lead to racemic amine products, as further evidence for the
existence of the borrowing hydrogen pathway over an ionic
mechanism*3. The former pathway proceeds through a loss of the
chirality of the substrate alcohol by its dehydrogenation to furnish
the corresponding achiral carbonyl compound.

Role of the Bronsted acid additive. Gratifyingly, additional 'H
NMR experiments also revealed the existence of an imine (3’aa) -
enamine (3”aa) equilibrium and the shift of this equilibrium in
the presence of additive A1 toward the more reactive imine 3’aa
form (Fig. 3a).

More experiments were conducted to further elaborate on the
role of the acid additive in the crucial imine formation and imine
hydrogenation steps of the hydrogen borrowing cycle. Reactions
between ketone (1’a) and p-anisidine (2a) with and without
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additive A1 were conducted, showing a beneficial effect of the
additive on the imine formation step, as expected: full conversion
and >99% selectivity were achieved with Al while 64%
conversion and 22% selectivity were seen without Al. Conducting
this reaction step separately also shows the advantage of the full
borrowing hydrogen cycle that starts from the alcohol directly
and results in the stable amine product. Advantageously, in this
case the ketone and apparently labile imine intermediates are kept
at low concentration thereby minimizing the possibility for side
reactions. Next, we examined the hydrogenation of the enamine
(3”aa), which was obtained via synthetic procedure**, in the
presence of 1 mol% Shvo’s catalyst (Cat) with/without acid co-
catalyst (A1) (Fig. 2b). The excellent, 99% 3aa yield in the
presence of A1 compared to the lower 61% 3aa yield obtained in
the absence of A1 underscores its beneficial effect on the rate of
imine hydrogenation.

To further understand how this rate enhancement occurs, and
to gain more insight into a possible cooperative catalysis by Cat-
A1, in situ 3'P NMR spectroscopic investigations using toluene-
dg as solvent at 60 °C were conducted (Supplementary Fig. 12,
Supplementary Note 1). These experiments have provided
support for the formation of adducts between Shvo’s complex
(Cat) and diphenyl phosphate (A1) (Fig. 3b, Complex 1) and
between the imine 3’aa, Shvo’s complex (Cat) and diphenyl
phosphate (A1) (Fig. 3b, Complex 2) desired in cooperative
catalysis3®, The interaction between enamine 3”aa and Al was
also confirmed (Fig. 3b, Adduct 3). We assume that in the
absence of Al, tautomerization of the imine 3’aa (formed during
the borrowing hydrogen cycle) to the corresponding enamine
3”aa would take place, while in the presence of Cat and Al, 3’aa
is rapidly reduced to the desired f-amino acid ester (3) via the
ruthenium-amine complex (Fig. 3b, Complex 2).

Scope of the methodology. Next, the scope and limitation of the
newly established method were explored. A wide range of anilines
were effectively coupled with ethyl 3-hydroxybutanoate (Fig. 4,
Supplementary Table 1). With anilines bearing electron-donating
substituents (2a-f), including those with bulky groups (2e, 2f),
48-87% isolated product yields were achieved. Anilines with
electron-withdrawing substituents (2g-1) also showed generally
high reactivity affording products 3ag-al in 47-87% isolated yield.
Functional groups such as -NO,, -CN, -CH;COOCH; were
well-tolerated under the reaction conditions. Notably, also when
(2p) and (2r) containing heterocycles were examined, the alky-
lated -amino acid esters (3ap, 3ar) were obtained in 78% and
44% isolated yield, respectively.

Furthermore, we examined different S-hydroxyl acid esters as
coupling partners to p-anisidine (2a)/p-bromoaniline (2i) (Fig. 5,
Supplementary Table 2). Employing S-hydroxyl acid esters with
bulky aliphatic substituents at f-position (1b, 1c) delivered the
desired B-amino acid esters (3ba, 3bi, 3ca and 3ci) in good yields
(79%, 68%, 78%, and 54%, respectively) while with ethyl 3-
hydroxy-3-phenylpropanoate (1d) generally lower isolated yields
were obtained (3da-3di, 43-48%). Excellent results (81-96%)
were obtained with ethyl 3-hydroxy-2,2-dimethylpropanoate (1e)
comprising two methyl substituents in the a-position (3ea-3ei,
81-96%). In comparison, 1f bearing an a-phenyl substituent
displayed moderate results (3fa-3fi, 33-59%).

Having a highly selective method in hand for obtaining 3ei, the
power of our developed catalytic method was demonstrated in the
two-step, gram-scale synthesis of a -lactam (4ei, Fig. 6). A 12-
fold upscale of the amination of le with p-bromoaniline 2i
(Fig. 5) furnished the desired -amino acid ester (3ei) with
excellent isolated yield (86%), which was subsequently cyclized
following a known literature procedure (Fig. 6)4°.

R

1 mol% Cat
5 mol% A1

OH @ NH NH O
Toluene, 120 °C, 18 h

R o\ + _ > R o\
R R" R R R™
rot R = OCH; 2a R = OCH, 3aa-3fa
a R = Br2i R = Br 3ai-3fi

3aa, 87%

NH O NH O
WO/\

3ca, 78% 3ci, 54%
/O : Br< :
NH O NH (o]
o™ K\/u\o/\
3ea, 81% 3ei, 96%
3ei, 86%”

Br\©\
NH o

3bi, 68%

Br\©\
NH O

ph)\/u\o/\ Ph)\/”\

QL
NH O
A~AA A

3ba, 79%

o™
3da, 43% 3di, 48%
/O\ : Br< :
NH O NH (o]
o™ 0"
Ph Ph
3fa, 33%2° 3fi, 59%¢

Fig. 5 Scope with variation of the f-hydroxyl acid ester substrate. General reaction conditions: General Procedure (see Supplementary information, page
1-3), Tmmol of 1a-f, 0.5 mmol of 2a or 2i, 1mol% Shvo's complex (Cat), 5 mol% additive (A1), 2 mL toluene, 18 h, 120 °C, under argon, full conversion
unless otherwise indicated, isolated yields are presented. 2 48 h. ® 12 mmol of 1e, 6 mmol of 2i, 1mol% Shvo's complex (Cat), 5 mol% additive (A1), 5 mL
toluene, 18 h, 120 °C, under argon. ¢ 79% conversion. 4 83% conversion. See also Supplementary Table 2
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Bio-based f-amino acid esters from 3-hydroxypropionates.
Finally, to demonstrate the feasibility of this method for obtaining
renewable f-amino acid esters in a remarkably simple manner,
we turned our attention to the direct catalytic amination of esters
of bio-based 3-HP, identified as one of the Top 12 value-added
platform chemicals!13. It is important to mention that the ethyl
ester of 3-HP can be directly obtained from renewable resources,
similarly to the acid 3-HP itself!>16. Herein we have investigated
the use of commercially available tert-butyl 3-hydroxypropionate
(1i) as well as ethyl 3-hydroxypropanoate (1j) as substrates.
Gratifyingly, both (1i) as well as (1j) were smoothly aminated
with 2a-o using the methodology developed herein (Fig. 7, Sup-
plementary Table 3). Notably, the reaction conversion was sig-
nificantly decreased in the absence of the additive Al
(Supplementary Table 3, entry 7), confirming the necessity of the
catalytic system designed above. Interestingly, selective double N-
alkylation of 2a with 1i-j was easily achieved by doubling the
catalyst amount to 2 mol%, showing modularity of the method.
The isolated yields of products obtained from the 3-HP esters,
were somewhat lower compared to previously tested substrates
(especially 3-hydroxy-2,2-dimethylpropanoate (1e)), thus the
possibility of side reactions cannot be ruled out, although no side
products (e.g. amides) were detectable by GC-MS or GC-FID
methods. Hydrolysis of the 3-HP esters or the product -amino
acid esters to the corresponding carboxylic acids would be a
possible pathway. Interestingly, with substrate le, minimal

amount of side products attributable to intermolecular
Br. MeMgBr, THF, Br.
\©\ 1)-78 °C, 1h; @
NH O 2) RT, overnight N O
k{)(o/\ —_— _JE
3ei 4ei, 76%

Fig. 6 Application of the developed method in a f-lactam (4ei) synthesis

transesterification processes (Supplementary Figs. 9-10) were
seen. Similar reactivity may also be expected starting from the
bio-based 3-HP esters 1i or 1j albeit presumably toward higher
molecular weight analogs due to the decreased steric hindrance of
the primary alcohol moiety.

Discussion

In summary, we have achieved the first direct catalytic coupling
of B-hydroxyl acid esters with amines to construct $-amino acid
esters by cooperative catalysis using the combination of the
Shvo’s catalyst and a Brensted acid additive. The methodology is
highly atom-economic, demonstrates a broad scope, excellent
functional-group tolerance and potential application for the
synthesis of f8-lactams. Notably, the method allows for catalytic
amination of a commercially available ester of 3-
hydroxypropionic acid, an important bio-based platform chemi-
cal, opening an entirely new possibility to access valuable -
amino acid scaffolds from several classes of abundant renewable
resources. The obtained f-amino acid esters can be applied as
value-added building blocks or further transformed to a variety of
bio-based amines, diamines, amino-alcohols usable in the fine
chemical, materials or polymer chemistry sectors. The novel
cooperative catalytic system presented should be broadly applied,
in the future, for the waste-free amination of other highly oxy-
genated renewable building blocks.

Methods

Synthesis and characterization. For general information about used chemicals,
analytical methods, synthetic procedures, please see Supplementary Methods. 'H,
13¢C, 31p NMR spectra, GC-FID, GC-MS chromatograms related to the mechanism
of the observed catalytic reaction are available in Supplementary Figs. 1-16 and
Supplementary Notes 1-3. Full procedures for synthetic transformations to com-
pounds 3aa-3jo, 4ei are available in Supplementary Tables 1-3. 'H, 13C NMR
spectra of purified compounds are available in Supplementary Figs. 17-58.

1 mol% Cat R?

5 mol% A1
Toluene, 120 °C, 18 h

RZ
R3 = -Bu 1i RS = t-Bu 3ia-3io
2a-o
R3 = Et 1j R® = Et 3ja-3jo
(0]
N (0] NH O
N - NG - N
3ia 52%° 3ia® 51%" 3ii 52%
3ja 49%3 3ja® 56%° 3ji 55%
NH O NH O
N - N - N -
3ik 72% 3im 59% 3i0 48%
3jk 45% 3jm 51% 3jo 52%

Fig. 7 Novel route to bio-based f-amino acid esters via direct catalytic amination of 3-HP esters. General reaction conditions: General Procedure
(see Supplementary information, page 1-3), Tmmol of 1i-j, 0.5 mmol of 2a-0, 1mol% Shvo's complex (Cat), 5 mol% additive (A1), 2 mL toluene, 18 h,
120 °C, under argon, isolated yields are presented. @ 48 h. b 1 mmol of Ti=j, 0.5 mmol of 2a, 2 mol% Shvo's complex (Cat), 5 mol% additive (A1), 2 mL

toluene, 48 h, 120 °C, under argon
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General procedure for the preparation of f-amino acid esters. An oven-dried
20 mL Schlenk tube, equipped with a stirring bar, was charged with amine (0.5
mmol, 1 equiv.), B-hydroxyl acid ester (1 mmol, 2 equiv.), Shvo’s catalyst (0.005
mmol, 1 mol%), diphenyl phosphate (0.025 mmol, 5mol%) and toluene (as a
solvent, 2 mL). Solid materials were weighed into the Schlenk tube under air. Then
the Schlenk tube was subsequently connected to an argon line and vacuum-argon
exchange was performed three times. Liquid starting materials and solvent were
charged under an argon stream. The Schlenk tube was capped and the mixture was
rapidly stirred at room temperature for 1 min, then was placed into a pre-heated oil
bath at 120 °C and stirred for a given time (typically, 18 h). Then, the reaction
mixture was cooled down to room temperature. After taking a sample (app. 0.5
mL) for GC analysis, the crude mixture was filtered through silica gel, eluted with
ethyl-acetate, and concentrated in vacuo. The residue was purified by flash column
chromatography to provide the pure ff-amino acid ester.

General procedure for in situ 3P NMR study. An oven-dried 20 mL Schlenk
tube, equipped with a stirring bar, was charged (depending on the experiment)
with Shvo’s catalyst (0.02 mmol, 1 equiv.), diphenyl phosphate (0.02 mmol, 1
equiv.) and/or 3-(4-methoxyphenylamino)-but-2-enoic acid ethyl ester (3”aa, 0.02
mmol, 1 equiv.) and toluene-dg (as a solvent, 1 mL). Solid materials were weighed
into the Schlenk tube under air. Then the Schlenk tube was subsequently connected
to an argon line and vacuum-argon exchange was performed three times. Liquid
starting materials and solvent were charged under an argon stream. The Schlenk
tube was capped and the mixture was rapidly stirred at room temperature for 1
min, then was placed into a pre-heated oil bath (60°C) and stirred for 15 min.
Then, the reaction mixture was cooled down to room temperature. Preparing the
sample, 0.6 mL of the reaction mixture was placed to a J-Young NMR tube under
argon. All spectra were recorded using Bruker Avance NEO 600 machine.

General procedure for the hydrogenation of N-aryl enamine. An oven-dried 20
mL Schlenk tube, equipped with a stirring bar, was charged with Shvo’s catalyst
(0.002 mmol, 1 equiv.), diphenyl phosphate (0.01 mmol, 1 equiv.) or 3-(4-meth-
oxyphenylamino)-but-2-enoic acid ethyl ester (3”aa, 0.2 mmol, 1 equiv.) and
toluene (as a solvent, 2 mL). Solid materials were weighed into the Schlenk tube
under air. Then the Schlenk tube was subsequently connected to an argon line and
vacuum-argon exchange was performed three times. Liquid starting materials and
solvent were charged under an argon stream. The Schlenk tube was capped and the
mixture was rapidly stirred at room temperature for 1 min. At the same time the
pre-dried autoclave, equipped with the stirring bar, was purged three times with
hydrogen. Under the stream of hydrogen, the reaction mixture was transferred
from the Schlenk tube to the autoclave and heated at 90 °C for 15 min. The
autoclave was then cooled to RT and the reaction mixture was transferred to a
flask. The reaction mixture was analyzed by GS-MS and GC-FID to determine
conversion.

Data availability

The authors declare that all other data supporting the findings of this study are available
within the article and Supplementary Information files, and also are available from the
corresponding author upon reasonable request.
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