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How bacteria recognise and respond to surface contact
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One sentence summary: This review describes the current knowledge on bacterial surface sensing, as the very initial step in bacterial biofilm formation.

This review describes the current knowledge of surface sensing and experimental developments for the study of this process, which is the initial step in
bacterial biofilm formation.
Editor: Oscar Kuipers
†Matthias Heinemann, http://orcid.org/0000-0002-5512-9077

ABSTRACT

Bacterial biofilms can cause medical problems and issues in technical systems. While a large body of knowledge exists on
the phenotypes of planktonic and of sessile cells in mature biofilms, our understanding of what happens when bacteria
change from the planktonic to the sessile state is still very incomplete. Fundamental questions are unanswered: for
instance, how do bacteria sense that they are in contact with a surface, and what are the very initial cellular responses to
surface contact. Here, we review the current knowledge on the signals that bacteria could perceive once they attach to a
surface, the signal transduction systems that could be involved in sensing the surface contact and the cellular responses
that are triggered as a consequence to surface contact ultimately leading to biofilm formation. Finally, as the main obstacle
in investigating the initial responses to surface contact has been the difficulty to experimentally study the dynamic
response of single cells upon surface attachment, we also review recent experimental approaches that could be employed
to study bacterial surface sensing, which ultimately could lead to an improved understanding of how biofilm formation
could be prevented.

Keywords: surface sensing; planktonic cells; sessile cells; signal transduction; adhesion; Escherichia coli

INTRODUCTION

Bacterial biofilms generate significant technological and thera-
peutic problems. These issues range from increased fuel con-
sumption of ships due to higher flow resistance (Callow and
Callow 2011; Schultz et al. 2011), via fouling of membranes in
water treatment facilities (Subramani and Hoek 2010), to seri-
ous medical problems. For instance, it is estimated that two-
thirds of human infections involve biofilm formation, includ-
ing infections of the urinary tract, lungs and ears, dental plaque
and fouling of implants and contact lenses (Potera 1999). The
increased tolerance of bacteria in biofilms towards antimicrobial
compounds and the host immune system constitutes a central
issue in treatment of bacterial infections (Mah and O’Toole 2001).

While the developmental steps leading to a mature biofilm
are reasonably well-characterised, at least in laboratory condi-
tions (Costerton et al. 1995; Monds and O’Toole 2009; Laverty,
Gorman and Gilmore 2014), little is known about the first step of
biofilm development. Specifically, it is unclear how cells initially
sense the surface, which eventually leads to phenotypic adjust-
ment from the planktonic (suspended) to the sessile (surface-
attached) state, involving substantial changes in gene expres-
sion (Prigent-Combaret et al. 1999; Kuchma and O’Toole 2000;
Beloin et al. 2004; Domka et al. 2007). The main reason for this
limited knowledge possibly lies in the challenge to experimen-
tally investigate the dynamic response of single cells on a very
short timescale during the transition between these two states.
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Here, towards pointing out the existing gaps in our under-
standing of surface sensing, we review the current knowledge
on how bacteria recognise and respond to surface attachment
with a special emphasis on the model organism Escherichia coli.
Although we also describe the attachment process, the sensing
of this attachment and the subsequent downstream effects are
the focus of this review. For more extensive descriptions of the
bacterial attachment process, the reader is referred to another
recent review (Berne et al. 2018a). Specifically, we will first review
the signals a cell might perceive in close proximity to, or in con-
tact with, a surface and describe the mechanisms that bacteria
employ to perceive the presence of and attachment to a surface.
While not all biofilms are surface-attached and may instead
be formed by bacterial aggregates (Kragh et al. 2016; Melaugh
et al. 2016; Sønderholm et al. 2017), such non-surface-connected
biofilms are beyond the scope of this review. Second, we report
the initial downstream effects that are triggered in response
to surface attachment. Third, as the limited understanding of
surface sensing and of the very first steps of biofilm formation
is likely connected with the fact that the respective processes
are difficult to study, we highlight recent technological develop-
ments that might support future research on further elucidating
the process of surface sensing. Closing the knowledge gaps will
offer valuable insights on how to combat biofilm formation.

SURFACE SENSING

Bacteria can adhere to a large variety of surfaces, including glass,
metals, many different polymers, as well as to other bacteria and
eukaryotic cells (for a review, see Tuson and Weibel 2013; Berne
et al. 2018a). In fact, it is practically impossible to develop a sur-
face that cannot be colonized by bacteria, making it resistant
towards biofouling, while at the same time being harmless to
humans and the environment (Callow and Callow 2011). When
a planktonic bacterial cell advances towards a surface from the
bulk of a liquid, there are three different cues that might be
sensed: (i) changes in physicochemical properties, (ii) attach-
ment of cell appendages and (iii) attachment of the cell body
(Fig. 1).

Physicochemical changes

The microenvironment close to the surface differs from the
bulk liquid in terms of ionic strength, osmolarity, pH and nutri-
ent availability (for reviews, see Goodman and Marshall 1995;
Berne et al. 2018a). Since many surfaces are charged, counter-
ions accumulate at the solid-liquid interface. In the case of a
negatively charged surface, which is the most common, these
counter-ions include protons, causing a lowered pH at the sur-
face. It has been suggested that close to a glass surface, the pH
may decrease by as much as two units (Hong and Brown 2010).

Furthermore, organic molecules, present in the bulk liquid
or secreted by bacteria, can be adsorbed onto surfaces and
form a conditioning film (reviewed in Tuson and Weibel 2013;
Berne et al. 2018a). Such films can consist of a mixture of
(macro)molecules, including proteins, amino acids, lipids and
polysaccharides (Loeb and Neihof 1975; Taylor et al. 1997; Garg,
Jain and Bhosle 2009) – nutrients that can be metabolised by
attached bacteria (Marshall 1988; Samuelsson and Kirchman
1990). Sessile bacteria may therefore be able to grow, even when
the nutrient concentration in the bulk liquid is insufficient
to sustain growth of planktonic cells (Zobell 1943; Kjelleberg,
Humphrey and Marshall 1982).

Figure 1. Schematic overview of the different signals that a surface may present
to an approaching cell. When a cell approaches and contacts the surface, it may
sense (i) different physicochemical properties compared to the bulk liquid, (ii)
attachment of cell appendages and (iii) envelope stress due to attachment of the

cell body.

To sense changes in pH, ionic strength, osmolarity and nutri-
ent availability, bacteria typically employ two-component signal
transduction, consisting of a membrane-bound histidine kinase,
which senses the stimulus and a cytoplasmic response regulator
mediating the cellular response. As physicochemical properties
can vary also in the bulk liquid, the stimuli of respective sys-
tems are not specific for surfaces. To the best of our knowledge,
direct involvement of these signals in surface sensing also has
not been demonstrated. However, as we describe below, multiple
systems that are responsive to these signals have downstream
target genes linked to biofilm formation, which indicates that
these systems could be part of the surface sensing machinery.

In E. coli, for instance, systems that sense physicochemical
properties and have downstream targets with a role in biofilm
formation are CpxAR (Danese and Silhavy 1998; Jubelin et al.
2005; Clarke and Voigt 2011; Raivio 2014), EnvZ/OmpR (Hall and
Silhavy 1981; Heyde and Portalier 1987; Mizuno and Mizushima
1990; Thomas and Booth 1992; Pratt et al. 1996; Sato et al.
2000; Clarke and Voigt 2011), RcsCDB (Sledjeski and Gottesman
1996; Francez-Charlot et al. 2005) and possibly BasSR (Hagiwara,
Yamashino and Mizuno 2004; Lee, Barrett and Poole 2005; Perez
and Groisman 2007). As will also be described below, these sys-
tems regulate biofilm-related genes (Table 1), with for instance
motility being regulated by CpxAR (Raivio, Leblanc and Price
2013), EnvZ/OmpR (Shin and Park 1995) and RcsCDB (Francez-
Charlot et al. 2003). The downstream effects are discussed in
more detail below.

Alternatively, close to surfaces, bacteria could sense
increased nutrient concentrations via changes in metabolism.
The uptake of a compound may in some cases act as a signal
that is transmitted by the respective transporter to a sensor
protein (for a review, see Tetsch and Jung 2009). If the adsorbed
nutrients are metabolised, this will change the intracellular
metabolic fluxes and may in turn affect gene expression (Kotte,
Zaugg and Heinemann 2010; Kochanowski et al. 2013). The
metabolic state of the cell is also influenced by alterations in
pH, as a local drop in pH close to a negatively charged surface
can directly affect the proton motive force (Hong and Brown
2009).

Overall, the physicochemical properties in the vicinity of a
surface may trigger a cellular response via two-component sys-
tems. However, because these properties can also vary in the
bulk liquid, these stimuli are not specific for surfaces and are
therefore unlikely to be the main cue indicating surface contact.
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Table 1. An overview of the sensing systems in E. coli that can sense properties associated with surface proximity or attachment. Only the
inducing signals that may be relevant for surface sensing, as described in the section ’Surface sensing’, are shown. Also, the downstream
targets are limited to those that are related to biofilm formation and described in the section ’Downstream effects of the potential surface
sensing pathways’.

Sensing
system Adhesion-related inducing signals Biofilm-related targets

BaeSR Envelope stress (Raffa and Raivio 2002; Leblanc, Oates and
Raivio 2011)

—

BarA/UvrY Attached pili (Zhang and Normark 1996) Motility (Suzuki et al. 2002; Weilbacher et al. 2003; Jonas
et al. 2008), pili (Mitra et al. 2013) and matrix (Wang et al.
2005)

BasSR pH (Perez and Groisman 2007) Curli (Ogasawara et al. 2012) and pili (Ogasawara et al.
2012)

CpxAR Osmolarity (Prigent-Combaret et al. 2001; Jubelin et al. 2005), pH
(Danese and Silhavy 1998; Clarke and Voigt 2011), pili subunits
(Jones et al. 1997) and envelope stress (Otto and Silhavy 2002;
Hirano et al. 2007)

Motility (Raivio, Leblanc and Price 2013) and curli (Evans
and Chapman 2014)

EnvZ/OmpR Osmolarity (Hall and Silhavy 1981; Mizuno and Mizushima
1990; Pratt et al. 1996), pH (Heyde and Portalier 1987; Thomas
and Booth 1992; Sato et al. 2000; Clarke and Voigt 2011)

Motility (Shin and Park 1995) and curli (Evans and
Chapman 2014)

PSP Envelope stress (Jovanovic et al. 2006) Motility (Jovanovic et al. 2006)
RcsCDB Osmolarity (Sledjeski and Gottesman 1996; Francez-Charlot

et al. 2005) and envelope stress (Parker et al. 1992; Chen et al.
2001; Majdalani et al. 2005; Farris et al. 2010)

Motility (Francez-Charlot et al. 2003), curli (Evans and
Chapman 2014), pili (Ferrières and Clarke 2003), Ag43
(Ferrières and Clarke 2003) and matrix (Gottesman, Trisler
and Torres-Cabassa 1985)

Sigma factor
σ E

Envelope stress (Mecsas et al. 1993; Walsh et al. 2003; Lima et al.
2013)

—

Flagella Hindered rotation (Lele, Hosu and Berg 2013; Tipping et al. 2013;
Nord et al. 2017)

Unknown in E. coli

Attachment of cell appendages

After describing the physicochemical changes that a bacterium
experiences upon approaching a surface, we will next describe
the next process that occurs when a cell reaches a surface, which
is the attachment of cell appendages. We review how these
attachment processes can be sensed.

Flagella
When bacteria approach a surface, cell appendages will stick
to it. Adhesion is supported by flagella, which due to their
hydrophobic nature particularly adhere to hydrophobic surfaces
(Pratt and Kolter 1998; van Houdt and Michiels 2005; Wood et al.
2006; Bruzaud et al. 2015; Friedlander, Vogel and Aizenberg 2015;
Berne et al. 2018a). Not only the presence of flagella but also
the ability to rotate them is important for adhesion, as E. coli
mutants with non-functional flagella are impaired in biofilm
formation and detach more readily compared to the wild-type
(Wood et al. 2006; Yoshihara et al. 2015). In contrast, possessing
flagella was found to reduce adhesion in Caulobacter crescentus
(Berne et al. 2018b), indicating the complexity of the adhesion
process.

Once attached, flagella can provide signals to the cell indicat-
ing surface contact, which originate from hindered rotation (for
a review, see Belas 2014). It was recently shown that when flag-
ellar rotation is blocked, either by mutations in flagellar motor
genes or by addition of anti-flagellin antibodies, the DegS-DegU
signal transduction pathway, controlling biofilm formation, is
activated in Bacillus subtilis (Cairns et al. 2013). Furthermore, in
Vibrio parahaemolyticus, an organism that has been long known
to sense flagellar inhibition as a signal to initiate swarming
(McCarter, Hilmen and Silverman 1988), a transcriptomics study
both on mutant strains defective in flagellar rotation and on

wild-type cells treated with flagellum-inhibiting drugs, found
a gene expression pattern similar to sessile cells (Gode-Potratz
et al. 2011). Specifically, about half of the genes that were dif-
ferentially expressed in surface-attached cells also had altered
expression levels when rotation was impaired, suggesting that
the flagella are a main surface sensor in this organism. The E. coli
flagellum has also been shown to be sensitive towards mechan-
ical forces: the number of stators, i.e. the force-generating pro-
tein complexes of the flagellar motor, increases within minutes
when the load of rotation is increased by binding a microbead to
truncated flagella (Lele, Hosu and Berg 2013; Tipping et al. 2013;
Nord et al. 2017).

How hindered flagellar rotation is sensed on the molecular
level seems to vary between bacterial species and the mecha-
nism has not been resolved in all cases. In B. subtilis, the inter-
action affinity of the flagellar motor and the cytoplasmic histi-
dine kinase DegS may be affected by the rotation of the motor,
such that halted rotation leads to activation of the DegS-DegU
two-component system (Cairns et al. 2013). In other cases, sig-
nal transduction of flagellar attachment might go via the flag-
ellar stator-associated FliL protein (Cairns et al. 2013). In one
study, FliL was shown to play an important role in sensing the
presence of a surface, as respective deletion mutants of Proteus
mirabilis and E. coli responded differently to soft agar surfaces
than wild-type cells, in terms of motility and gene expression
(Lee and Belas 2015). However, another study reported that FliL
plays no significant role in mechanosensitivity of the E. coli flag-
ellum, instead suggesting that higher torque in hindered flag-
ella results in exposure of binding sites on the flagellar rotor
(Chawla, Ford and Lele 2017). Other explanations for surface
sensing by flagella are that, after rotation has stopped, a reduced
ion flux through the flagellar motor may impact the mem-
brane potential and energy state of the cell (Cairns et al. 2013)
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or that blocked rotation could result in an increased torque of
the motor, leading to perturbations in the cell envelope (Belas
2013). Sensing surface contact via flagella may also be unrelated
to the rotation of this appendage, as is the case in C. crescen-
tus. Here, it was found that arresting flagellar rotation does not
lead to the expected downstream response, namely, synthesis
of the holdfast structure (Berne et al. 2018b). Instead, the flag-
ellar motor senses the surface by direct contact, via an unre-
solved mechanism that might involve altered intracellular pH
due to changes in ion fluxes (Hug et al. 2017). Sensing via the
motor results in synthesis of the second messenger molecule
cyclic diguanylate (c-di-GMP) by the motor-associated diguany-
late cyclase DgcB (Hug et al. 2017). A complex regulatory mech-
anism then reinforces the switch to the sessile phenotype by
inhibition of motility (Nesper et al. 2017). Thus, while flagella are
known to contribute to the perception of surface contact in a
range of bacterial species, they might employ different sensing
mechanisms.

Pili
In addition to flagella, also pili (fimbriae) attach to surfaces and
support biofilm development (Berne et al. 2018a). Their impor-
tance is illustrated by a genome-wide study in E. coli, which
revealed that loss of genes encoding type I pili had the most
detrimental effect out of all single-gene deletions on the forma-
tion of biofilms (Niba et al. 2007). The importance of type I pili
for adhesion is also illustrated by the finding that attachment
to a variety of abiotic surfaces can be greatly reduced by addi-
tion of mannose to the medium (Pratt and Kolter 1998). As the
FimH subunit on the tip of type I pili is known to bind to man-
nose, which is also present on eukaryotic cells (Old 1972; Ofek,
Mirelman and Sharon 1977), the decreased adhesion is likely due
to a reduced interaction of the mannose-saturated pili with the
surface (Old 1972; Pratt and Kolter 1998).

Also E. coli’s curli (a type of pili) stick to surfaces and are
highly beneficial for adhesion (Pratt and Kolter 1998; Vidal et al.
1998; van Houdt and Michiels 2005; Niba et al. 2007). Increased
production of curli through a point mutation in the ompR gene
has been shown to enhance surface attachment, while muta-
tions generating curli-deficient cells were found to result in a
more than 50% reduction in biofilm formation (Vidal et al. 1998;
Niba et al. 2007). A wide range of pili are known to exist in various
bacterial species but also within single species generally multi-
ple types of pili are expressed. For example, in addition to type I
pili and curli, E. coli may also carry P-pili, type IV pili and several
others (Wurpel et al. 2013; Berne et al. 2015).

Mediating adhesion to the surface is a main role of pili
but they may have other functions as well. In the case of
type IV pili, that are present in many organisms, a continu-
ous process of extension, eventual attachment and retraction
facilitates twitching motility on the surface (Skerker and Berg
2001; Xicohtencatl-Cortes et al. 2009). In Pseudomonas aeruginosa,
another type of pilus, Cup, does not only mediate cell-surface
interactions but seems to also be involved in cell–cell aggrega-
tion (D’Argenio et al. 2002; Ruer et al. 2007), underscoring the
importance of pili also during subsequent stages of biofilm for-
mation. In C. crescentus, one role of the polar Tad pili might be
to bring the cell pole into close proximity of the surface, such
that the flagellar motor can sense the contact (Hug et al. 2017;
Sangermani et al. 2019). Countless other cell appendages exist,
but listing them all is beyond the scope of this review and the
reader is referred to a comprehensive review (Berne et al. 2015).
Overall, bacteria use a wide range of pili mainly to mediate adhe-
sion to surfaces but also for a variety of other functions.

The attachment of pili is also known to be sensed. For
instance, in E. coli attachment of pili was found to result in
altered gene expression (Zhang and Normark 1996; Otto et al.
2001; Bhomkar et al. 2010). While here the molecular mecha-
nism is not fully clear, for P. aeruginosa, it has been suggested
that the continuously extending and retracting type IV pili per-
ceive tension when attached pili are retracted and that these
forces may lead to depolymerisation of the pili and/or conforma-
tional changes in pilus subunits, which then enable the interac-
tion between the major pilus subunit PilA and the sensor pro-
tein PilJ (Persat et al. 2015). As a result, a signalling pathway is
activated that produces the second messenger cyclic AMP to ini-
tiate biofilm formation (Persat et al. 2015; Inclan et al. 2016). In
C. crescentus, a different type of pilus, Tad, using a comparable
mechanism, senses the inability to retract once it is attached to
a surface and then possibly stimulates signalling via c-di-GMP,
leading to synthesis of a holdfast structure that mediates adhe-
sion (Ellison et al. 2017). Besides sensing adhesion, these Tad pili
also play a role in bringing the polar flagellar motor into con-
tact with the surface, which is another cue for adhesion (Hug
et al. 2017; Sangermani et al. 2019). Alternatively, pili-mediated
attachment could be sensed as an accumulation of mislocalised
pilus subunits in the periplasm of attached cells (Mulvey et al.
1998), known to induce the CpxAR two-component system in E.
coli (Jones et al. 1997). A second signalling system in E. coli that
has been implicated in pili-mediated sensing of the surface is
the BarA/UvrY two-component system: the transcription of barA
is stimulated by P-pilus attachment in uropathogenic E. coli by
a yet unknown mechanism (Zhang and Normark 1996). For a
recent review that covers surface sensing via type IV pili, see
O’Toole and Wong (2016). Thus, bacteria have different mecha-
nisms in place to sense the adhesion of pili, leading to altered
gene expression.

In summary, flagella and pili do not only facilitate adhesion
to the surface but also transmit signals that allow bacteria to
respond to this adhesion. Surface sensing via cell appendages
has been found in multiple species, indicating that it is a com-
mon mechanism to perceive surface contact in bacteria.

Cell body attachment

In addition to surface attachment via cell appendages, also the
cell body can attach to the surface. We will next first describe
the attachment process of the cell body and the forces involved,
where the reader is also referred to another recent review (Berne
et al. 2018a), and we will then review potential mechanisms to
sense attachment of the cell body. Here, adhesion to a surface is
mainly mediated by Van der Waals, electrostatic and acid-base
interactions between the bacterium and the surface (for reviews
see (Hermansson 1999; Renner and Weibel 2011; Berne et al.
2018a)). Upon approaching a surface, a bacterium will initially
be attracted by the long-range Van der Waals forces, but short-
range repulsive electrostatic forces, for instance provided by the
fact that most bacteria and material surfaces are both negatively
charged (Jucker, Harms and Zehnder 1996), may subsequently
prevent close contact to the surface. This phenomenon is the
basis of the Derjaguin-Landau-Verwey-Overbeek theory, which
has provided insight in explaining cellular adhesion, although
it is a highly simplified representation (Derjaguin and Landau
1941; Verwey and Overbeek 1948). Due to the oppositely oriented
forces, the energy minimum may lie at a distance on the order
of tens of nanometers from the surface (Figs 2A and 2B) (Simoni
et al. 1998). Shielding of the charges on the surface by a condi-
tioning film or high ionic strength of the medium can decrease
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Figure 2. Summary of the forces involved in adhesion and strategies to over-
come unfavourable surface interactions. (A), Schematic representation of forces

acting on a bacterium when it approaches a surface, with the balance between
attractive and repulsive forces keeping the bacterium at a small distance from
the surface. (B), Adhesion forces as a function of distance from the surface. Van
der Waals forces are attractive, electrostatic forces are generally repulsive and

acid-base forces might be either. The total force reaches an energy minimum,
which determines the separation of the bacterium from the surface (Busscher
et al. 2010). (C), Strategies employed by bacteria to achieve a smaller separation
from the surface than allowed by the initial energy minimum, which include

(i) conditioning of the surface with e.g. proteins, amino acids, (poly)saccharides
and lipids, (ii) polar adhesion, (iii) attachment of appendages and (iv) production
of adhesive proteins and polysaccharides that are exposed on the cell surface.

the contribution of the electrostatic forces, allowing a smaller
distance between cell and surface (Marshall, Stout and Mitchell
1971; Renner and Weibel 2011). Physical contact of the cell body
with the surface during adhesion can furthermore be facilitated
by the long O-antigen part of lipopolysaccharides (LPS) or by cell
appendages, while also polar adhesion can be a way to reach
surface contact before transitioning to a flat orientation (Fig. 2C)
(Feldner, Bredt and Kahane 1983; Jucker et al. 1997; Pratt and
Kolter 1998; Prigent-Combaret et al. 2000; Jones et al. 2003; van
Houdt and Michiels 2005; Chao and Zhang 2011; DeBenedictis,
Liu and Keten 2016; Berne et al. 2018a). Here, it should be noted
though, that some organisms do not transition to a flat orien-
tation on the surface, instead remaining solely attached by the
cell pole (Ellison et al. 2017; Hug et al. 2017).

Following the initial adhesion of the cell body, gradually the
attachment becomes stronger over a time window of seconds
to minutes, which is facilitated by rearrangements at the inter-
face between cell envelope and surface that progressively max-
imise attractive interactions, e.g. by removal of interfacial water,
protein conformational changes and an increase of favourable
acid-base and hydrophobic interactions between cell and sur-
face (Boks et al. 2008; Busscher et al. 2010). Indeed, establishing
initial stable attachment to the surface does not require biolog-
ical activity, as the adhesion force of polystyrene particles to
glass has also been found to strongly increase within minutes
on a surface (Meinders and Busscher 1993).

At this stage, the adhesive strength could still be rein-
forced through production of adhesins. Irreversible adhesion
in fact does not require a large contact area between cell and
surface. For instance, C. crescentus can irreversibly attach in
a polar orientation due to the production of adhesins at the
cell pole (Ellison et al. 2017; Hug et al. 2017). Similar results
have been found for Asticcacaulis biprosthecum and Agrobacterium
tumefaciens, where also polar adhesins were produced within
minutes following surface contact, which shows that rapid

surface-induced strengthening of polar adhesion is a common
strategy in multiple genera (Li et al. 2012). However, other bac-
terial species preferentially assume a flat orientation on the
surface. For example, in P. aeruginosa, production of the Pel
polysaccharide, a component of the exopolymeric matrix, stim-
ulates the transition from polar adhesion to a flat orientation
by increasing short-range attractive interactions (Cooley et al.
2013). Pseudomonas fluorescens uses a similar mechanism to tran-
sition to irreversible attachment, secreting the large adhesive
protein LapA, which remains associated with the cell-surface, to
assume a flat orientation (Hinsa et al. 2003). Initial adhesion does
not necessarily result in irreversible attachment within a short
time span, as bacteria may first explore the surface by mov-
ing (or swarming) over it, using Type IV pili or flagella (Mobley
and Belas 1995; Gibiansky et al. 2010; Lee and Belas 2015). Also,
some bacteria possess detachment programs to allow one cell
to leave the surface following division (Conrad et al. 2011; Laven-
tie et al. 2019). Recently, it was found that detached P. aeruginosa
cells retain a multigenerational memory, mediated by oscilla-
tions of cAMP levels and Type IV pili activity, that prepares them
for a stronger adhesion when a new surface is encountered (Lee
et al. 2018). These examples illustrate that the adhesion response
upon surface contact can differ between bacterial species and
even between single genetically identical cells.

Following irreversible adhesion, bacteria stick together
mainly by production of an exopolymeric matrix and via their
appendages (van Houdt and Michiels 2005), but also by synthe-
sizing adhesins (e.g. Ag43 for E. coli) that promote aggregation of
bacteria (van der Woude and Henderson 2008).

The importance of understanding adhesion forces is exem-
plified by the effect that combined adhesion forces between cell
and surface have on the fate of the attached cell (Busscher and
van der Mei 2012). Weak adhesion forces (e.g. on polymer brush-
coatings) can lead to the formation of unstable biofilms with
aberrant structure and smaller thickness (Nejadnik et al. 2008;
Gu et al. 2017). Possibly, such weak interactions do not provide
sufficient signal for the adhered bacteria to transition to subse-
quent steps in the development of the biofilm, such that they
fail to form a robust matrix-enclosed structure. On the other
hand, in the case of too strong adhesion forces, which bacteria
especially encounter on positively charged surfaces, extensive
envelope stress and loss of viability may occur (Liu, Strauss and
Camesano 2008; Busscher and van der Mei 2012). In the inter-
mediate regime, corresponding to interactions between bacteria
and many common materials, the forces are sufficiently strong
to trigger biofilm formation, without affecting viability (Buss-
cher and van der Mei 2012). Generally, surfaces are not per-
fectly homogeneous but instead contain patches with different
properties, in terms of surface charge, hydrophobicity, rough-
ness and composition of the conditioning film (Ren et al. 2018).
This means that attached bacteria may experience different
interactions with the same surface, which, together with the
limited range of interbacterial communication, was proposed
to be the cause of commonly observed heterogeneous micro-
environments within biofilms where bacteria have distinct phe-
notypes (Ren et al. 2018). Thus, understanding the forces that
govern bacteria-surface interactions not only allows us to pre-
dict whether irreversible adhesion will occur but might also
explain emergent properties in mature biofilms.

Physical contact of the cell body with a surface is widely
thought to be sensed as envelope stress (Otto and Silhavy 2002;
Ferrières and Clarke 2003; Lejeune 2003; Hirano et al. 2007; Dorel
2010; Busscher and van der Mei 2012; Morgenstein and Rather
2012; Harapanahalli et al. 2015b; O’Toole and Wong 2016), which
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is often defined as the presence of unfolded proteins (Jones et al.
1997; DiGiuseppe and Silhavy 2003) and LPS (Lima et al. 2013) in
the periplasm. However, to the best of our knowledge, there is no
direct experimental evidence for such surface-induced protein
unfolding or LPS mislocalization. If a broader definition of enve-
lope stress is used, including all perturbations of the extracyto-
plasmic space of the cell, such as altered membrane curvature
(Conter et al. 2002; Mcdonald et al. 2015) and loss of membrane
integrity (Guilvout et al. 2006), then adhesion of the cell body
can indeed be seen as a cause of envelope stress. Specifically,
there is evidence, obtained in Staphylococcus aureus with three
different experimental techniques, that adhesion causes defor-
mations of the cell shape, and thus altered membrane curvature
(Chen et al. 2014; Harapanahalli et al. 2015a), and compresses the
thickness of the cell envelope near the site of surface contact
(Gu et al. 2017). Such attachment-related membrane tension has
also been proposed to cause mechanosensitive channels to open
(Harapanahalli et al. 2015b), potentially having large effects on
cellular homeostasis.

Usually, cellular responses to envelope stress are studied
after invoking the stress by chemical means (e.g. treatment with
compounds that insert into or disrupt the lipid bilayer (Conter
et al. 2002; Farris et al. 2010)), or by genetic modifications (e.g.
overexpression of membrane proteins (DiGiuseppe and Silhavy
2003) or mutations in the synthesis pathways of LPS or phos-
pholipids (Parker et al. 1992; Mileykovskaya and Dowhan 1997;
Keller et al. 2015)). Since a number of signalling systems that
respond to such laboratory-induced envelope stress regulate
biofilm-associated genes, it is plausible that surface-induced
envelope stress upon physical contact of the cell body may be a
way to sense adhesion. While in the following, we will describe
the envelope stress response systems with a focus on E. coli, it
should be noted that in many cases homologous systems exist
in other species. For instance, as described below, the Rcs sys-
tem is also found in P. mirabilis (Morgenstein and Rather 2012)
and P. aeruginosa (Mikkelsen et al. 2009), and the Cpx system is
also found in multiple organisms (Raivio 2014).

Besides the above-mentioned physicochemical parameters
and attachment of pili, envelope stress can activate the E. coli
CpxAR two-component system. Activation can happen when
there are defects in LPS assembly (Klein et al. 2009, 2014). Also,
unfolded proteins can induce the system, by binding to the aux-
iliary regulator CpxP, which lifts its inhibition of the histidine
kinase CpxA (Raivio, Popkin and Silhavy 1999; Zhou et al. 2011;
Vogt and Raivio 2012; Tschauner et al. 2014). Once bound to
an unfolded protein, the direct interaction of CpxP with CpxA
is released and CpxP is proteolysed (Isaac et al. 2005). It has
also been suggested that, in response to physical contact with
a surface, the Cpx system gets activated via the outer mem-
brane lipoprotein NlpE (Otto and Silhavy 2002). Its tertiary struc-
ture might predispose NlpE to partial unfolding by membrane
perturbations, leading to activation of the kinase functional-
ity of the inner membrane protein CpxA, supposedly by direct
interactions between these proteins (Hirano et al. 2007). If this
model is correct, then it exemplifies how envelope stress can be
exploited by the cell as a signal for surface attachment. However,
recent findings indicate that the CpxAR system is not activated
by NlpE-mediated surface sensing, as the previously reported
results could not be reproduced, neither by employing the origi-
nal population-level assay, nor by a novel single-cell experimen-
tal approach (Kimkes and Heinemann 2018), consistent with
recent findings on the interaction between NlpE and CpxA (Del-
haye, Laloux and Collet 2019). Thus, more research is needed to
clarify if and how CpxAR is involved in surface sensing.

Envelope stress can also activate the RcsCDB phosphorelay.
The activity of this system was found to be altered upon dele-
tion of genes involved in LPS synthesis (Parker et al. 1992; Maj-
dalani et al. 2005), mutation or overexpression of genes encod-
ing envelope-localised proteins (Chen et al. 2001; Majdalani and
Gottesman 2006), and upon membrane damage caused by the
action of antimicrobial peptides (Farris et al. 2010). When E. coli
is grown on a solid surface, the expression of genes controlled
by the Rcs phosphorelay has been shown to increase rapidly, but
the underlying mechanism had not been solved (Ferrières and
Clarke 2003). Also in P. mirabilis, it was found that the Rcs system
is responsive to surface contact, but contrary to what was found
in E. coli, surfaces inhibit the Rcs system in P. mirabilis (Morgen-
stein and Rather 2012). Likely, the outer membrane lipoprotein
RcsF is involved in surface sensing. RcsF is inserted into the
outer membrane via the major subunit of the β-barrel assem-
bly machinery BamA and forms complexes with several abun-
dant β-barrel proteins (Fig. 3) (Cho et al. 2014; Konovalova et al.
2014). Here, part of RcsF is exposed on the cell surface, which was
proposed to enable RcsF to sense perturbations of the LPS layer
(Konovalova et al. 2014). Upon envelope stress, BamA may fail
to generate the complexes between RcsF and other outer mem-
brane proteins, thereby enabling RcsF to activate the Rcs phos-
phorelay via the inner membrane receptor IgaA (Cho et al. 2014).
This model is in agreement with findings that inner membrane
anchored RcsF or truncated forms that localise to the periplasm,
constitutively activate the Rcs phosphorelay (Farris et al. 2010). A
recent study found that it is crucial for activation of the pathway
that RcsF has the correct length to span the periplasm (Asmar
et al. 2017). Possibly, the activation of the Rcs system on a surface
might be facilitated by small deformations in the cell envelope
that affect the distance between the membranes, enabling the
direct contact.

Three other systems in E. coli that are or might be responsive
to envelope stresses, although without any clear involvement
in surface sensing or role in biofilm formation, are the sigma
factor σ E (Mecsas et al. 1993; Lima et al. 2013), the phage shock
protein (PSP) response system (Brissette et al. 1991; Jovanovic,
Weiner and Model 1996; Lloyd et al. 2004; Jovanovic et al. 2006)
and the BaeSR two-component system (Nagasawa, Ishige and
Mizuno 1993; Raffa and Raivio 2002).

Also in P. aeruginosa, surface-induced envelope stress could
be a trigger for biofilm initiation. Specifically, contact with a sur-
face can lead to the activation of the Wsp pathway (Güvener
and Harwood 2007; Francis, Stevenson and Porter 2017). It has
been proposed that deformation of the cell envelope is the sig-
nal that is sensed by this pathway, as the WspA protein forms
weakly interacting clusters in the inner membrane that might be
affected by mechanical forces originating from bacteria-surface
interactions (O’Connor et al. 2012). Activation of this system
leads to the phosphorylation of the diguanylate cyclase WspR
and, in turn, the produced c-di-GMP inhibits the transcription
factor FleQ (Hickman and Harwood 2008). Thereby, activation
of the Wsp system on a surface represses flagella biosynthe-
sis genes and induces the production of biofilm matrix com-
ponents. Very recently, it was found that activation of the Wsp
system on a surface is highly heterogeneous, resulting in two
subpopulations on a surface: one that colonises the surface by
initiating microcolonies and one that remains motile to explore
the surface (Armbruster et al. 2019).

Recently it was shown that mechanical forces on surface-
attached cells could, besides causing envelope stress, could also
be sensed by other means. One of these means might be sens-
ing shear forces. This has been shown in P. aeruginosa cells that
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Figure 3. Proposed method of activation of the Rcs system via the outer membrane sensor RcsF. Left: Under non-inducing conditions, the lipoprotein RcsF is tethered to

the outer membrane and threads through the lumen of β-barrel proteins (Cho et al. 2014; Konovalova et al. 2014) (the two studies reported opposite orientations of RcsF
in the membrane). In this state, RcsF is unable to contact its inner membrane receptor IgaA, and can therefore not activate the Rcs system, i.e. the dephosphorylation
activity of RcsC predominates. Right: By a yet unclear mechanism, envelope stress can interfere with the ability of periplasmic chaperones or BamA to localize RcsF
to its regular location and thereby enables it to activate the Rcs system (Cho et al. 2014).

were attached via type IV pili, where flow caused the produc-
tion of c-di-GMP and subsequent biofilm initiation (Rodesney
et al. 2017). Similar results have been obtained in enterohem-
orrhagic E. coli, where increasing flow rates on attached cells
led to increased induction of a pathogenicity island, although
here the involvement of pili was less clear (Alsharif et al. 2015).
Although it is often assumed that bacteria that are responsive to
flow, sense the shear force, a recent study showed that P. aerug-
inosa can in fact sense the shear rate, i.e. the speed at which
the liquid moves along the bacterium (Sanfilippo et al. 2019). The
mechanism for sensing the shear rate is, however, yet unsolved.
Another means to sense mechanical forces on surface-attached
cells could be via induction of voltage and calcium transients
in E. coli (Bruni et al. 2017). Changes in calcium concentration
were found to result in alterations in protein levels. The mecha-
nisms by which these calcium transients are generated and reg-
ulate gene expression remain unsolved but may prove to be an
interesting novel sensing system for bacteria attached via the
cell body.

In summary, attachment of the cell body can give rise to
envelope deformations and maybe other forms of envelope
stress. These perturbations are sensed by at least the Rcs system
in E. coli and P. mirabilis, and the Wsp system in P. aeruginosa. It is
very plausible that other bacteria also recognise surface-induced
envelope deformations as a signal for adhesion.

DOWNSTREAM EFFECTS OF THE POTENTIAL
SURFACE SENSING PATHWAYS

In the following, we outline how the above-mentioned systems
that may sense the proximity to or contact with a surface could
induce the changes necessary to switch from a mobile to a ses-
sile lifestyle. Here, we will focus on how those potential surface
sensing systems that specifically affect motility and adhesion,
as key phenotypic changes for the lifestyle switch.

Central role of c-di-GMP

Several of the above sensing systems ultimately lead to
increased cyclic-diguanylate (c-di-GMP) levels, which plays a
central role in signal transduction that leads to the switch to

the sessile phenotype. At high concentrations, c-di-GMP leads
to enhanced synthesis of pili and matrix and reduced motil-
ity, and thereby plays an important role in the switch between
mobile and biofilm lifestyles (for reviews, see Wolfe and Visick
2008; Jenal, Reinders and Lori 2017). Regulation of biofilm ini-
tiation via c-di-GMP is highly conserved in the bacterial king-
dom, and species that do not synthesize this compound, e.g. S.
aureus, use similar second messengers, e.g. c-di-AMP, to fulfill
the same functions (Corrigan et al. 2011). The E. coli genome con-
tains 29 genes that are proposed to synthesize or degrade c-di-
GMP (Weber et al. 2006), a number of them known to be induced
by the above described potential surface sensing pathways. For
instance, the CpxAR system upregulates the expression of the
diguanylate cyclase dgcZ (ydeH) (Raivio, Leblanc and Price 2013;
Lacanna et al. 2016). Furthermore, the production of a number of
diguanylate cyclases is regulated by the carbon storage protein
CsrA (Jonas et al. 2008), whose activity is indirectly controlled
by the BarA/UvrY two-component system via regulation of the
expression of the small RNAs CsrB and CsrC (Suzuki et al. 2002;
Weilbacher et al. 2003). In P.aeruginosa, c-di-GMP production is
regulated by surface contact via the Wsp system (Güvener and
Harwood 2007; Hickman and Harwood 2008; Francis, Stevenson
and Porter 2017). Thus, c-di-GMP links the activation of some
potential surface sensing systems to biofilm initiation.

Another second messenger molecule that is induced upon
surface contact, is cyclic AMP (Persat et al. 2015). This signal-
ing molecule is important for the regulation of virulence factors,
such as Type II and III secretion systems, motility systems and
adhesive appendages in P. aeruginosa (Wolfgang et al. 2003).

Downregulation of motility

Some of the above-mentioned surface sensing systems down-
regulate motility, which is no longer needed for sessile cells in
a biofilm. Although the biosynthesis and rotation of flagella are
decreased on a surface, there are generally microenvironments
within biofilms where flagella are still expressed to mediate cell–
cell and cell–surface interactions (Serra et al. 2013). With con-
stitutive expression of the flagellar regulator FlhDC, biofilm for-
mation by E. coli is significantly impaired, indicating the impor-
tance of their timely regulation (Prüß et al. 2010), even though
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the reduced biofilm formation might also have been due to the
constitutive expression of a coregulated phosphodiesterase in
this case. The above outlined, putative surface sensing pathways
CpxAR (Raivio, Leblanc and Price 2013), RcsCDB (Francez-Charlot
et al. 2003), EnvZ/OmpR (Shin and Park 1995) and BarA/UvrY
(Suzuki et al. 2002; Weilbacher et al. 2003; Jonas et al. 2008) are
all involved in controlling flagellar expression and activity in E.
coli, for instance by repressing the flagellar regulator flhDC (Sou-
tourina and Bertin 2003) or by increasing the production of c-
di-GMP (Wolfe and Visick 2008), which activates YcgR, which in
turn binds to and slows down the rotation of the E. coli flag-
ella (Boehm et al. 2010). The c-di-GMP level affects motility not
only in E. coli, but also in e.g. P. aeruginosa (Petrova, Cherny and
Sauer 2014) (Hickman and Harwood 2008), C. crescentus (Abel
et al. 2013) and V. cholerae (Krasteva et al. 2010). For a review
about two-component-system-based regulation of motility, see
(Prüß 2017).

Control over adhesive appendages

Some of the surface sensing systems exert control over expres-
sion of adhesive appendages. For switching to the sessile
lifestyle, it is essential to control attachment to the surface and
other cells, which can be mediated in part by the synthesis of
pili. A number of the above mentioned pathways are involved
in expression of the E. coli curli (for a review see (Evans and
Chapman 2014)). Activators are the two-component systems
EnvZ/OmpR and BasSR, while the CpxAR and RcsCDB systems
have been found to repress the curli genes (Evans and Chapman
2014). Probably connected to the loss of curli, deletion of the gene
encoding the response regulator OmpR has been found to result
in complete loss of adhesion (Vidal et al. 1998), although other
studies only reported a moderate reduction in biofilm formation
(Niba et al. 2007; Prüß et al. 2010). The genes for curli synthesis
are encoded by two operons in E. coli, csgBAC and csgDEFG, both
of which are dependent on the general stress response sigma
factor σ S (Hammar et al. 1995). The csgD gene encodes a tran-
scription factor that plays a major role in reduction of motility
and is considered as a master regulator of the switch to the ses-
sile phenotype (Ogasawara, Yamamoto and Ishihama 2011).

Different types of pili in a variety of species are dynamically
regulated by c-di-GMP, such as MshA pili in Vibrio cholerae (Jones
et al. 2015), Type IV pili in multiple species including Myxococ-
cus xanthus (Skotnicka et al. 2016), P. aeruginosa (Jain, Sliusarenko
and Kazmierczak 2017) and Xanthomonas citri (Guzzo et al. 2013)
and Tad pili in C. crescentus (Sangermani et al. 2019). Also in E.
coli, the production of pili has been shown to be regulated by the
second messenger c-di-GMP (Claret et al. 2007). The BarA/UvrY
two-component system also plays a role in the expression of pili;
in a uvrY deletion strain fewer cells express pili, while the oppo-
site is true for a strain missing the csrA gene, whose product is
negatively regulated by BarA/UvrY (Mitra et al. 2013). However,
since CsrA regulates the expression of a number of diguanylate
cyclases (Jonas et al. 2008), the effect of the BarA/UvrY system
on pili expression could also be indirect, via altered levels of
c-di-GMP. Furthermore, the two-component system BasSR was
found to directly control expression of pilus genes (Ogasawara
et al. 2012). Biosynthesis of the CupD fimbriae of P. aeruginosa,
which play an important role in biofilm formation in more viru-
lent strains, is regulated by the Rcs system (Mikkelsen et al. 2009).
As described above, this system is highly responsive to surface
contact in E. coli and P. mirabilis (Ferrières and Clarke 2003; Mor-
genstein and Rather 2012), however, it has not been tested for
surface sensing in P. aeruginosa.

Production of the exopolymeric matrix

Another important aspect of the sessile lifestyle is the syn-
thesis of the exopolymeric matrix, supporting bacteria to stick
together and shielding them to some extent from influences
from outside, both physical and chemical. In E. coli, the RcsCDB
system positively regulates the expression of the wca (also
called cps) genes, which are responsible for the production of
the polysaccharide colanic acid (Gottesman, Trisler and Torres-
Cabassa 1985). Colanic acid is essential for the development
of the three-dimensional biofilm structure (Danese, Pratt and
Kolter 2000). The BarA/UvrY system can increase the production
of another polysaccharide, poly-β-1,6-N-acetyl-D-glucosamine
(PGA), via inhibition of CsrA (Wang et al. 2005). PGA is important
for sessile E. coli cells, as indicated by the finding that enzymatic
hydrolysis of this compound greatly reduces the ability to form
biofilms (Wang, Preston III and Romeo 2004; Itoh et al. 2005).

Also in other species, matrix production is controlled upon
arriving at a surface. In V. cholerae matrix production, specifically
the synthesis of the Vibrio polysaccharide, is controlled by the c-
di-GMP level (Krasteva et al. 2010). In P. aeruginosa, the biofilm
matrix is formed by nucleic acids, proteins and the polysac-
charides alginate, Psl and Pel (Ma et al. 2009; Franklin et al.
2011). Biosynthesis of Pel is regulated by c-di-GMP (Ueda and
Wood 2009) (Hickman and Harwood 2008). Alginate production
is under control of the sigma factor AlgT (Wozniak, Sprinkle
and Baynham 2003), which is homologous to the E. coli σ E (Her-
shberger et al. 1995). Thus, also in P. aeruginosa, production of
exopolymeric matrix components depends on surface sensing.

EXPERIMENTAL DEVELOPMENTS FOR
STUDYING SURFACE SENSING

Investigation of surface sensing and the corresponding initial
responses is complicated due to several inherent and experi-
mental challenges. First, cells simultaneously encounter multi-
ple changes once they approach a surface, i.e. variation in pH,
osmolarity, nutrient availability, forces on the flagella and pili,
and potentially envelope stress, which makes it difficult to trace
the response to a single stimulus. Also, biofilm-related genes are
not solely regulated by surface-induced stimuli. For instance, it
has been found that pH affects motility and the ability of plank-
tonic E. coli to adhere, as exemplified by the presence of fewer
and shorter flagella and more pili when cells are cultured in non-
neutral pH (Chang et al. 2013). Thus, identifying the molecular
mechanisms activating surface-induced systems requires either
‘isolation’ of the phenomena that can be sensed at a surface or
requires solving of an intertwined, multivariate problem.

Second, the different potential surface sensing systems over-
lap in both their activating signals and downstream functions.
For instance, the activity of the EnvZ/OmpR system depends
on at least three other systems implicated in surface sensing:
CpxAR regulates transcription of ompR itself (Dudin et al. 2014),
both CpxAR and σ E control transcription of mzrA (Dartigalongue,
Missiakas and Raina 2001; Raivio, Leblanc and Price 2013), which
in turn influences the activity of the EnvZ/OmpR system (Gerken
et al. 2009), and there appears to be crosstalk between histidine
kinase BarA and response regulator OmpR (Nagasawa et al. 1992).
Also for the downstream targets there is overlap, as both CpxAR
and EnvZ/OmpR regulate the expression of the membrane pro-
teins TppB, OmpC and OmpF (Goh, Siino and Igo 2004; Batchelor
et al. 2005; Raivio, Leblanc and Price 2013) and both RcsCDB and
EnvZ/OmpR may control the colanic acid synthesis genes (Hagi-
wara et al. 2003). Similar overlaps in inputs and outputs exist also
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Figure 4. Experimental approaches for the study of surface sensing. (A), Mixing of bacteria with microbeads leads to a mixed population, in which both planktonic and
sessile cells are present. Subsequent measurements with flow cytometry will therefore allow for a comparison of both phenotypes in the same experiment, such that

surface-specific induction can be fully isolated from any potentially confounding effects (Beloin et al. 2008). (B), Atomic force microscopy could be employed to measure
changes in adhesion forces. Shown here is a bacterium that is brought into contact with a surface for an extended time, which may induce production of adhesins or
appendages, followed by retraction of the cantilever and measurement of the required force. (C), A typical microfluidic setup for continuous microscopic observation of
sessile cells. Pictured here is the immobilization of bacteria under an agar pad. However, with a surface coating such as polylysine or (3-aminopropyl)triethoxysilane,

the bacteria can also be immobilised directly to the glass without the need for an agar pad, in which case the flow of medium is directly over the cells. This kind
of experimental approach is not suitable for obtaining quantitative fluorescence data for planktonic cells. (D), A specially designed microfluidic setup that allows
for invoking temporary surface contact of bacteria in a flow channel, by reversibly collapsing the channel (Okumus et al. 2016, 2018). (E), Side view of a microfluidic
channel, showing a focussed infrared laser beam (‘optical tweezers’) that enables the manipulation of individual bacteria. Once trapped, the bacteria can be moved

freely through a microfluidic device. Oscillating the laser trap gives control over the orientation of the bacteria, such that well-focussed images of planktonic cells can
be obtained (Zhang, Kimkes and Heinemann; Carmon and Feingold 2011).

for other proposed surface sensing systems. Thus, together the
systems form an entangled network that obscures investigation
of individual pathways.

Third, a more practical limitation with respect to the study
of initial surface contact is that most current experimental
approaches require relatively large numbers of cells. However,
if the initial responses to spontaneous cellular adhesion to sur-
faces is studied, generally only very few cells will be attached
to the surface initially. Additionally, not all cells get in contact
with the surface at the same time, implying that in the earli-
est stages of surface attachment there will be significant het-
erogeneity within the population.

The low number of attached cells and heterogeneity in
the population, could be tackled with single-cell methods. In
one study, it was demonstrated that incubating bacteria with
microbeads to which they can adhere, followed by flow cytomet-
ric analysis of this mixture, allows for the observation of both
planktonic and sessile cells at the same time (Fig. 4A) (Beloin
et al. 2008). Using this method, it was shown that there is a rapid
decrease in respiration when E. coli cells adhere to polystyrene
microbeads (Geng et al. 2014).

Moreover, recent improvements of RNA-seq techniques
towards single cell sensitivity (Wu et al. 2014) will enable tran-
scriptome analyses on the single attached cell level. For tran-
scriptomic profiling of individual bacterial cells, single-cell RNA-
seq is still plagued by a number of problems, i.e. handling of
individual cells, low amounts of mRNA and the absence of
polyadenylated tails (Zhang et al. 2018). Microfluidics-based plat-
forms for isolation of DNA or mRNA from single cells in micro-
chambers exist, that also allow for microscopic observation prior

to cell lysis (e.g. Fluidigm C1). While such devices are gen-
erally aimed at research on eukaryotic cells, they have been
successfully applied also to a bacterial study (Yu et al. 2017).
If adhesion in the micro-chambers could be well-controlled,
for instance by application of surface coatings, and the time
point of initial surface contact of each cell would be known
from microscopic observation, then the transcriptional response
to adhesion could be studied in bacteria with single-cell
sensitivity.

For transcriptomics of surface-attached cells, instead of RNA-
seq, a recent adaptation to single-molecule fluorescence in
situ hybridization (smFISH) could be employed, which greatly
increased the throughput and number of detectable transcripts.
This technique, called multiplexed error-robust FISH (MERFISH),
allows for the detection and quantification of hundreds to thou-
sands of individual mRNA species in single-cells (Chen et al.
2015; Moffitt et al. 2016a). As MERFISH uses fixed cells that are
immobilised to a cover glass, it should be possible to get tran-
scriptomic data of individual cells at several time points after
adhesion, by varying the time between surface attachment and
fixation. While mainly designed for eukaryotic cells, MERFISH
has been successfully applied in an E. coli study (Moffitt et al.
2016b). Also in the field of proteomics, there are experimen-
tal developments that may in the future prove promising for
the analysis of single surface-attached cells, with the sensitivity
now approaching the level of single mammalian cells (Budnik
et al. 2018; Swaminathan et al. 2018).

To study the adhesion strength of single cells to surfaces,
atomic force microscopy (AFM) is a well-established method
(Camesano, Liu and Datta 2007). Briefly, in AFM the deflection
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of a cantilever is detected while a sharp tip connected to the
cantilever interacts with a surface. From the deflection and
spring constant of the cantilever, the force of interaction can
then be calculated. By binding a single bacterium to the tip,
its interaction with a variety of surfaces can be determined, or
alternatively, the tip can be modified with different surface prop-
erties (i.e. by attaching a microbead) and sample a surface con-
taining a confluent layer of attached cells (Razatos et al. 1998a,
1998b; Ong et al. 1999). Surface-induced cellular responses that
can be detected by AFM are limited to those that affect the inter-
action strength with the surface, such as the regulation of cell
appendages (Fig. 4B). With AFM it has been found that Shewanella
oneidensis produced an iron reductase that affected its adhe-
sion to an iron mineral surface within 30 min of surface contact
(Lower, Hochella and Beveridge 2001). While this response was
probably not due to physical contact sensing per se, but rather
due to the chemical signal iron, AFM should be a suitable tech-
nique to study surface sensing. Indeed, AFM was used to show
that attachment of Staphylococcus aureus led to higher abundance
of an adhesin on the cell surface (Lower et al. 2010). AFM has also
been used to study surface-induced cell envelope deformation in
single bacteria (Chen et al. 2014). A very recent review describes
the possibilities of AFM as a tool for the study of microbial adhe-
sion (Mathelié-Guinlet et al. 2019).

Ultimately, microscopic techniques might be the method
of choice to observe changes upon surface contact. Nearly all
currently used techniques for microscopic time-lapse analyses,
such as immobilisation of cells under an agar pad or binding of
cells to a glass slide (Fig. 4C; for a comparison of methods, see e.g.
(Louise Meyer et al. 2010)), are in fact techniques to investigate
cells while they are attached to a surface. In contrast, only very
few microscopic techniques allow for tracking single planktonic
cells over time (e.g. (Johnson-Chavarria et al. 2014), where sin-
gle bacteria are hydrodynamically trapped at the junction of two
flow channels, or (Taute et al. 2015), which uses phase-contrast
microscopy to follow the position of freely moving bacteria over
time in 3D, for which the Z-position is determined from the
diffraction pattern of out-of-focus cells). Generally, microscopic
methods for planktonic cells are either very low-throughput
or not suitable for quantitative fluorescence measurements, as
freely moving cells will rarely be located perfectly within the
focal plane.

Although microscopic investigation of planktonic cells is
problematic, as it is hindered by lack of focus, it is possible to
enforce a temporary surface contact and immediately image
the cells. Planktonic cells can be forced into contact with the
surface by reversibly collapsing the flow channel in a specially
designed PDMS-based microfluidic device (Fig. 4D) (Okumus et
al. 2016, 2018). This setup should also enable the observation
of the response to attachment, by collapsing the channel for an
extended time.

Being able to observe cell appendages, such as flagella and
pili, might yield a deeper understanding of their role in surface
sensing. Recent work described the labelling of pili by a click
chemistry approach (Ellison et al. 2017, 2019). Cell appendages
can also be observed under the microscope in a label-free
way, namely, by interferometric scattering microscopy (iSCAT)
(Ortega Arroyo, Cole and Kukura 2016; Talà et al. 2019).

The possibility to handle individual cells during continued
microscopic observation, such that surface attachment could
be induced in a controlled manner, would facilitate investi-
gations of the initial response to surface contact. Here, opti-
cal tweezers, an instrumentation that uses focussed light to
hold objects, might offer exciting possibilities, specifically the

manipulation of single cells in a microfluidic setup (Fig. 4E)
(Ashkin and Dziedzic 1989; Zhang and Liu 2008). Use of an
oscillating optical trap allows for imaging of rod-shaped cells
with the long cell axis along the focal plane (Carmon and Fein-
gold 2011). Optimization of this approach enabled stable hold-
ing of bacteria for tens of minutes without affecting their via-
bility (Zhang, Kimkes and Heinemann 2019), such that plank-
tonic cells could be investigated under the microscope and sub-
sequently be brought into contact with the surface in a con-
trolled and dynamic manner to observe their initial response.
Apart from controlling attachment, it is conceivable that with
two tweezers forces could be applied to two different points
on the cell surface, which might induce tension in the mem-
brane and therefore enable controlled generation of envelope
stress. So far, however, optical tweezers have been applied to
investigate the effect of spatial organisation in a multispecies
biofilm (Hutchison et al. 2014) and to inhibit rotation of E. coli
flagella (Lele, Hosu and Berg 2013), but not to investigate the cel-
lular response to induced surface contact. Combined with high-
resolution microscopy and fluorescence microscopy techniques,
such as fluorescence resonance energy transfer (FRET) (Kent-
ner and Sourjik 2010), optical tweezers might ultimately allow
for the investigation of conformational changes and protein-
protein interactions that eventually are responsible for surface
sensing.

CONCLUSION

In this review, we provided an overview of the current knowl-
edge of surface sensing mechanisms and the very initial steps of
biofilm formation. The phenomena that can occur when a cell
approaches a surface (i.e. physicochemical changes, attachment
of surface appendages and envelope stress) are mostly well char-
acterised. Also, the global phenotypic changes that cells undergo
when switching from planktonic to sessile lifestyle are known.
However, much less is understood about how contact with a sur-
face is perceived and how the actual biofilm initiation is regu-
lated. Thus, the complete picture of the switch from planktonic
to sessile lifestyle remains elusive.

For most of the discussed sensing systems, even those that
are extensively investigated, involvement in surface sensing
has not been confirmed and the precise molecular mechanisms
are still unknown. For example, upon attachment to a sur-
face, does the cell envelope slightly compress, allowing outer
membrane-localised RcsF to span the periplasm to transduce
the signal to the inner membrane, or does attachment-induced
envelope stress prevent insertion of RcsF into the outer mem-
brane, thereby facilitating interaction with its inner membrane
receptor IgaA? How does E. coli sense the attachment of its flag-
ella and pili and does the former regulate gene expression?
Further, for many pathways that have a biofilm-related down-
stream effect, the primary stimulus of surface sensing remains
unsolved.

Another key question is why E. coli has multiple pathways
that may sense adhesion, and how these systems are inter-
connected with each other. The decision to switch to a ses-
sile lifestyle has important implications for the fate of the cell.
Therefore, the presence and usage of multiple sensing systems,
each responding to different inputs, likely ensures that the
adaptation to the sessile lifestyle is only initiated if all conditions
indicating surface attachment are met. However, the advan-
tage of sensing the same input via multiple systems is difficult
to understand (e.g. osmolarity can be sensed by EnvZ/OmpR,
CpxAR and RcsCDB). Are these seemingly redundant sensors
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all activated under the same conditions or do they respond
differently to specific surface properties? It has been proposed
that the EnvZ/OmpR, CpxAR and RcsCDB systems form a combi-
natorial sensor, enabling a cell to distinguish between different
inputs by the ratio of induction of these pathways (Clarke and
Voigt 2011). Even though this has not been shown in relation to
surface sensing, such combinatorial sensing could be relevant
in this case as well.

Until now, the multiple and simultaneous changes occurring
when a cell approaches a surface, the similar inputs for mul-
tiple surface-related sensing systems and the overlap in their
target genes tremendously obscures a systems-level picture of
the first steps in the initiation of biofilm formation. However,
novel single-cell technologies could generate valuable insights
into time-dependent cellular responses after surface contact.
Improved understanding of surface sensing will greatly con-
tribute to better prevention of biofilm formation.
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Francez-Charlot A, Castanié-Cornet M-P, Gutierrez C et al.
Osmotic Regulation of the Escherichia coli bdm (Biofilm-
Dependent Modulation) Gene by the RcsCDB His-Asp Phos-
phorelay. J Bacteriol 2005;187:3873–7.

Francez-Charlot A, Laugel B, Van Gemert A et al. RcsCDB His-Asp
phosphorelay system negatively regulates the flhDC operon
in Escherichia coli. Mol Microbiol 2003;49:823–32.

Francis VI, Stevenson EC, Porter SL. Two-component systems
required for virulence in Pseudomonas aeruginosa. FEMS Micro-
biol Lett 2017;364:fnx104.

Franklin MJ, Nivens DE, Weadge JT et al. Biosynthesis of the Pseu-
domonas aeruginosa extracellular polysaccharides, alginate,
Pel, and Psl. Front Microbiol 2011;2:167.

Friedlander RS, Vogel N, Aizenberg J. Role of flagella in adhesion
of escherichia coli to abiotic surfaces. Langmuir 2015;31:6137–
44.

Garg A, Jain A, Bhosle NB. Chemical characterization of a marine
conditioning film. Int Biodeterior Biodegrad 2009;63:7–11.

Geng J, Beloin C, Ghigo J-M et al. Bacteria hold their breath upon
surface contact as shown in a strain of escherichia coli, using
dispersed surfaces and flow cytometry analysis. PLoS One
2014;9:e102049.

Gerken H, Charlson ES, Cicirelli EM et al. MzrA: a novel modula-
tor of the EnvZ/OmpR two-component regulon. Mol Microbiol
2009;72:1408–22.

Gibiansky ML, Conrad JC, Jin F et al. Bacteria use type iv pili to
walk upright and detach from surfaces. Science 2010;330:197.

Gode-Potratz CJ, Kustusch RJ, Breheny PJ et al. Surface sensing in
Vibrio parahaemolyticus triggers a programme of gene expres-
sion that promotes colonization and virulence. Mol Microbiol
2011;79:240–63.

Goh E-B, Siino DF, Igo MM. The Escherichia coli tppB (ydgR) gene
represents a new class of OmpR-regulated genes. J Bacteriol
2004;186:4019–24.

Goodman AE, Marshall KC. Genetic responses of bacteria at
surfaces. In: Costerton JW, Lappin-Scott HM (eds). Micro-
bial Biofilms. Cambridge: Cambridge University Press, 1995,
80–98.

Gottesman S, Trisler P, Torres-Cabassa A. Regulation of capsular
polysaccharide synthesis in Escherichia coli K-12: characteri-
zation of three regulatory genes. J Bacteriol 1985;162:1111–9.

Guilvout I, Chami M, Engel A et al. Bacterial outer membrane
secretin PulD assembles and inserts into the inner mem-
brane in the absence of its pilotin. EMBO J 2006;25:5241–9.

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article-abstract/44/1/106/5643895 by guest on 04 M
arch 2020



118 FEMS Microbiology Reviews, 2020, Vol. 44, No. 1

Gu J, Valdevit A, Chou TM et al. Substrate effects on cell-envelope
deformation during early-stage Staphylococcus aureus biofilm
formation. Soft Matter 2017;13:2967–76.

Guzzo CR, Dunger G, Salinas RK et al. Structure of the PilZ-
FimXEAL-c-di-GMP complex responsible for the regulation of
bacterial type IV pilus biogenesis. J Mol Biol 2013;425:2174–97.
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Mathelié-Guinlet M, Viela F, Viljoen A et al. Single-molecule
atomic force microscopy studies of microbial pathogens.
Curr Opin Biomed Eng 2019;12:1–7.

McCarter L, Hilmen M, Silverman M. Flagellar dynamometer
controls swarmer cell differentiation of V. parahaemolyticus.
Cell 1988;54:345–51.

Mcdonald C, Jovanovic G, Ces O et al. Membrane stored curva-
ture elastic stress modulates recruitment of maintenance
proteins pspa and vipp1. MBio 2015;6:e01188–15.

Mecsas J, Rouviere PE, Erickson JW et al. The activity of sigma
E, an Escherichia coli heat-inducible sigma-factor, is modu-
lated by expression of outer membrane proteins. Genes Dev
1993;7:2618–28.

Meinders JM, Busscher HJ. Influence of ionic strength and shear
rate on the desorption of polystyrene particles from a glass
collector as studied in a parallel-plate flow chamber. Colloids
Surfaces A Physicochem Eng Asp 1993;80:279–85.

Melaugh G, Hutchison J, Kragh KN et al. Shaping the growth
behaviour of biofilms initiated from bacterial aggregates.
PLoS One 2016;11:e0149683.

Mikkelsen H, Ball G, Giraud C et al. Expression of Pseudomonas
aeruginosa CupD fimbrial genes is antagonistically controlled
by RcsB and the EAL-containing PvrR response regulators.
PLoS One 2009;4:e6018.

Mileykovskaya E, Dowhan W. The Cpx two-component sig-
nal transduction pathway is activated in Escherichia coli
mutant strains lacking phosphatidylethanolamine. J Bacteriol
1997;179:1029–34.

Mitra A, Palaniyandi S, Herren CD et al. Pleiotropic roles
of uvrY on biofilm formation, motility and virulence
in uropathogenic Escherichia coli CFT073. PLoS One
2013;8:e55492.

Mizuno T, Mizushima S. Signal transduction and gene regulation
through the phosphorylation of two regulatory components:

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article-abstract/44/1/106/5643895 by guest on 04 M
arch 2020



120 FEMS Microbiology Reviews, 2020, Vol. 44, No. 1

the molecular basis for the osmotic regulation of the porin
genes. Mol Microbiol 1990;4:1077–82.

Mobley HLT, Belas R. Swarming and pathogenicity of Proteus
mirabilis in the urinary tract. Trends Microbiol 1995;3:280–4.

Moffitt JR, Hao J, Wang G et al. High-throughput single-
cell gene-expression profiling with multiplexed error-robust
fluorescence in situ hybridization. Proc Natl Acad Sci
2016a;113:11046–51.

Moffitt JR, Pandey S, Boettiger AN et al. Spatial organiza-
tion shapes the turnover of a bacterial transcriptome. Elife
2016b;5:e13065.

Monds RD, O’Toole GA. The developmental model of microbial
biofilms: ten years of a paradigm up for review. Trends Micro-
biol 2009;17:73–87.

Morgenstein RM, Rather PN. Role of the Umo proteins and the
Rcs phosphorelay in the swarming motility of the wild type
and an O-antigen (waaL) mutant of Proteus mirabilis. J Bacteriol
2012;194:669–76.

Mulvey MA, Lopez-Boado YS, Wilson CL et al. Induction and
evasion of host defenses by type 1-piliated uropathogenic
Escherichia coli. Science 1998;282:1494–7.

Nagasawa S, Ishige K, Mizuno T. Novel members of the two-
component signal transduction genes in escherichia coli. J
Biochem 1993;114:350–7.

Nagasawa S, Tokishita S, Aiba H et al. A novel sensor-regulator
protein that belongs to the homologous family of signal-
transduction proteins involved in adaptive responses in
Escherichia coli. Mol Microbiol 1992;6:799–807.

Nejadnik MR, van der Mei HC, Norde W et al. Bacterial adhe-
sion and growth on a polymer brush-coating. Biomaterials
2008;29:4117–21.

Nesper J, Hug I, Kato S et al. Cyclic di-GMP differentially tunes a
bacterial flagellar motor through a novel class of CheY-like
regulators. Elife 2017;6:e28842.

Niba ETE, Naka Y, Nagase M et al. A genome-wide approach to
identify the genes involved in biofilm formation in E. coli.
DNA Res 2007;14:237–46.

Nord AL, Gachon E, Perez-Carrasco R et al. Catch bond drives sta-
tor mechanosensitivity in the bacterial flagellar motor. Proc
Natl Acad Sci 2017;114:12952–7.

O’Connor JR, Kuwada NJ, Huangyutitham V et al. Surface sensing
and lateral subcellular localization of WspA, the receptor in
a chemosensory-like system leading to c-di-GMP production.
Mol Microbiol 2012;86:720–9.

O’Toole GA, Wong GCL. Sensational biofilms: Surface sensing in
bacteria. Curr Opin Microbiol 2016;30:139–46.

Ofek I, Mirelman D, Sharon N. Adherence of Escherichia coli
to human mucosal cells mediated by mannose receptors.
Nature 1977;265:623–5.

Ogasawara H, Shinohara S, Yamamoto K et al. Novel regulation
targets of the metal-response BasS-BasR two-component
system of Escherichia coli. Microbiol 2012;158:1482–92.

Ogasawara H, Yamamoto K, Ishihama A. Role of the biofilm mas-
ter regulator CsgD in cross-regulation between biofilm for-
mation and flagellar synthesis. J Bacteriol 2011;193:2587–97.

Okumus B, Baker CJ, Arias-Castro JC et al. Single-cell microscopy
of suspension cultures using a microfluidics-assisted cell
screening platform. Nat Protoc 2018;13:170–94.

Okumus B, Landgraf D, Lai GC et al. Mechanical slowing-down of
cytoplasmic diffusion allows in vivo counting of proteins in
individual cells. Nat Commun 2016;7:11641.

Old DC. Inhibition of the interaction between fimbrial haemag-
glutinins and erythrocytes by d-mannose and other carbo-
hydrates. J Gen Microbiol 1972;71:149–57.

Ong Y-L, Razatos A, Georgiou G et al. Adhesion forces
between E. coli bacteria and biomaterial surfaces. Langmuir
1999;15:2719–25.

Ortega Arroyo J, Cole D, Kukura P. Interferometric scattering
microscopy and its combination with single-molecule fluo-
rescence imaging. Nat Protoc 2016;11:617–33.

Otto K, Norbeck J, Larsson T et al. Adhesion of type 1-fimbriated
Escherichia coli to abiotic surfaces leads to altered composi-
tion of outer membrane proteins. J Bacteriol 2001;183:2445–
53.

Otto K, Silhavy TJ. Surface sensing and adhesion of Escherichia coli
controlled by the Cpx-signaling pathway. PNAS 2002;99:2287–
92.

Parker CT, Kloser AW, Schnaitman CA et al. Role of the rfaG and
rfaP genes in determining the lipopolysaccharide core struc-
ture and cell surface properties of Escherichia coli K-12. J Bac-
teriol 1992;174:2525–38.

Perez JC, Groisman EA. Acid pH activation of the PmrA/PmrB
two-component regulatory system of Salmonella enterica. Mol
Microbiol 2007;63:283–93.

Persat A, Inclan YF, Engel JN et al. Type IV pili mechanochem-
ically regulate virulence factors in Pseudomonas aeruginosa.
Proc Natl Acad Sci 2015;112:7563–8.

Petrova OE, Cherny KE, Sauer K. The Pseudomonas aeruginosa
diguanylate cyclase GcbA, a homolog of P. fluorescens GcbA,
promotes initial attachment to surfaces, but not biofilm for-
mation, via regulation of motility. J Bacteriol 2014;196:2827–
41.

Potera C. Forging a Link Between Biofilms and Disease. Science
1999;283:1837–9.

Pratt LA, Hsing W, Gibson KE et al. From acids to osmZ:
multiple factors influence synthesis of the OmpF and
OmpC porins in Escherichia coli. Mol Microbiol 1996;20:
911–7.

Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm for-
mation: roles of flagella, motility, chemotaxis and type I pili.
Mol Microbiol 1998;30:285–93.

Prigent-Combaret C, Brombacher E, Vidal O et al. Complex reg-
ulatory network controls initial adhesion and biofilm forma-
tion in Escherichia coli via regulation of the csgD gene. J Bac-
teriol 2001;183:7213–23.

Prigent-Combaret C, Prensier G, Le Thi TT et al. Developmental
pathway for biofilm formation in curli-producing Escherichia
coli strains: role of flagella, curli and colanic acid. Environ
Microbiol 2000;2:450–64.

Prigent-Combaret C, Vidal O, Dorel C et al. Abiotic surface sens-
ing and biofilm-dependent regulation of gene expression in
Esch erichia coli. J Bacteriol 1999;181:5993–6002.
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