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ABSTRACT Integrative multi-omics analyses can empower more effective investi-
gation and complete understanding of complex biological systems. Despite recent
advances in a range of omics analyses, multi-omic measurements of the same sam-
ple are still challenging and current methods have not been well evaluated in terms
of reproducibility and broad applicability. Here we adapted a solvent-based method,
widely applied for extracting lipids and metabolites, to add proteomics to mass
spectrometry-based multi-omics measurements. The metabolite, protein, and lipid
extraction (MPLEx) protocol proved to be robust and applicable to a diverse set of
sample types, including cell cultures, microbial communities, and tissues. To illus-
trate the utility of this protocol, an integrative multi-omics analysis was performed
using a lung epithelial cell line infected with Middle East respiratory syndrome coro-
navirus, which showed the impact of this virus on the host glycolytic pathway and
also suggested a role for lipids during infection. The MPLEx method is a simple, fast,
and robust protocol that can be applied for integrative multi-omic measurements
from diverse sample types (e.g., environmental, in vitro, and clinical).

IMPORTANCE In systems biology studies, the integration of multiple omics mea-
surements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidom-
ics) has been shown to provide a more complete and informative view of biological
pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs,
RNAs, proteins, and metabolites) and performing multiple omics measurements on
single samples is very attractive, but such studies are challenging due to the fact
that the extraction conditions differ according to the molecule type. Here, we
adapted an organic solvent-based extraction method that demonstrated broad ap-
plicability and robustness, which enabled comprehensive proteomics, metabolomics,
and lipidomics analyses from the same sample.

KEYWORDS: metabolomics, multi-omics analysis, lipidomics, proteomics, sample
preparation, MERS-CoV

Multi-omic measurements and the integration of the resulting information can
transform our understanding of complex biological systems (1–4). Multiple layers

of information (DNAs, RNAs, proteins, metabolites, and lipids) can provide key insights
regarding regulatory networks that are often overlooked using a single type of mea-
surement (e.g., only proteomics or metabolomics). For instance, changes in levels of a
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given metabolite can be measured by metabolomics, which can result from the
regulation of either its biosynthetic or degradation pathways. However, also measuring
the levels of enzymes of each pathway using proteomics can reveal which mechanism
is being regulated. Further, measurements of the enzyme RNA levels can also provide
key information on whether the regulation occurs at the transcriptional or posttran-
scriptional level. For example, Bordbar et al. built a metabolic network model based on
available genomic sequences to study macrophage activation and subsequently used
transcriptomics, proteomics, and metabolomics information to further refine the model,
which led to a better understanding of the impact of metabolism during an inflam-
matory response (1).

In the context of multi-omics analyses, being able to perform multiple measure-
ments on the same sample can also decrease experimental variation. Additionally, this
approach can be very useful when samples are difficult to obtain, i.e., for some
environmental and patient samples (e.g., biopsy specimens) and for samples from
high-biosafety-level laboratories, where working conditions are not optimal and are
otherwise rigorously controlled. In addition, limited volumes or amounts of samples
may preclude splitting them prior to performing parallel extractions and sample
processing. Recent studies have evaluated the use of variations of chloroform/metha-
nol extraction methods to isolate proteins, metabolites, and lipids or to sequentially
extract DNA, RNA, proteins, metabolites, and lipids, sometimes with the use of different
commercial kits, and all from the same sample (5–9). While the use of chloroform/
methanol mixtures is well established for metabolomics and lipidomics sample prep-
aration (we routinely use such a protocol in our laboratory), the reproducibility of
proteomics, transcriptomics, and genomics measurements and their applicability for a
diverse range of samples require further investigation. Indeed, we have found only a
single report of an evaluation of the reproducibility of extraction of RNA and protein
and of the reproducibility of the resulting proteomics data from a single sample type;
Weckwerth et al. found that RNA and protein that were extracted from Arabidopsis
thaliana had coefficients of variation (CVs) of 30% and 17%, respectively, when using a
multi-omic extraction protocol based on the use of chloroform/methanol (7). Targeted
quantification of peptides mapping to 22 proteins showed CVs of 17% on average.
Recent analysis of the material obtained using different kits for multiple extractions
showed reduced yields and/or quality of the end products (10). This could have been
due to the fact that optimum buffers and solutions differ for extracting DNA, RNA,
proteins, or metabolites and that longer extraction protocols may lead to material
degradation.

Methods employing organic solvent extractions, such as the combination of chlo-
roform, methanol, and water, have been widely used for extracting lipids and other
metabolites (11, 12). In this procedure, a chloroform and methanol solution is added to
samples resuspended in water or aqueous buffer, or directly to samples that have
sufficient water content, so as to induce the formation of two solvent layers—an upper
aqueous phase, containing hydrophilic metabolites, and a lower organic phase, con-
taining lipids and other hydrophobic metabolites—while proteins precipitate in the
interphase. Since organic solvent extraction is a simple and quick procedure, we
reasoned, as others have (5–8), that it would prevent protein loss by degradation and
make possible the simultaneous extraction of lipids, metabolites, and proteins for
subsequent omics analyses. Furthermore, organic solvents can be easily removed by
evaporation, minimizing the introduction of artifacts during sample preparation.

In this work, we sought to develop a robust protocol for simultaneous metabolite,
protein, and lipid extraction (MPLEx) from the same samples for integrative multi-omic
analyses. We based the protocol on a chloroform-methanol-water extraction method
routinely used in our laboratory to simultaneously prepare metabolite and lipid extracts
from the same sample. Others have demonstrated the reproducibility of the resulting
metabolomics and lipidomics data in using variations of this protocol for select sample
types (5, 7, 9, 13). To evaluate the broad applicability of expansion of this method for
proteomics, we performed comprehensive proteomics analyses of the protein material
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extracted with the MPLEx procedure from a variety of samples, including a Gram-
negative bacterium, an archaeon, an environmental microbial community, a plant leaf,
a murine tissue, a human body fluid, and a cell line. We found that the proteome
coverage for this diverse set of samples was very similar to that seen with matched
control samples prepared in parallel using a standard proteomics sample preparation
method, suggesting the broad applicability of the protocol. We then applied this
methodology and integrated proteomic, lipidomic, and metabolomic analyses in the
study of Middle East respiratory syndrome coronavirus (MERS-CoV) infections in a lung
epithelial cell line, which showed the impact of viral infection on different host
metabolic pathways.

RESULTS AND DISCUSSION
Impact of different metabolite extraction methods on proteomic analysis. Inte-
grative multi-omics analysis is a powerful approach to study complex biological re-
sponses and has gained popularity in recent years (1–3). In this context, the prospect
of being able to perform multiple omics measurements on the same sample is very
attractive but the method is still difficult to implement, likely due to the distinct optimal
conditions for extracting different types of molecules. Aiming to develop a protocol for
global multi-omic analyses of the same sample, we modified an extraction approach
based on a chloroform-methanol-water solution to simultaneously obtain metabolite,
protein, and lipid fractions. Since the protocol is well established and since we have
applied it successfully for the analysis of lipids and other metabolites in several studies
(14–19), we focused our efforts on determining if the method is applicable for global
proteomic analysis and the associated quantification of relative amounts of proteins
(i.e., the determination of fold increase or decrease in protein expression). We tested
the MPLEx method with the Gram-negative bacterium Shewanella oneidensis by ex-
tracting its proteins, lipids, and metabolites (n � 5). As a comparison, we also per-
formed extractions using 100% methanol (MeOH) or 100% acetonitrile (ACN) (n � 5
[each]), which are commonly used solvents for metabolomics extractions.

We found that significantly reduced total protein fractions were recovered after
extraction of metabolites and lipids by all three methods compared to control samples
prepared using a standard protocol (Control) (Fig. 1A). These results are in agreement
with previous data from the literature showing that some protein mass is lost during
precipitation procedures (20). We then evaluated if these protein losses affected the
ability to obtain useful proteomic data, since a method that can simultaneously extract
multiple omics sources from the same sample would be extremely useful for systems
biology experiments and subsequent integrated data analysis, as well as in cases where
limited sample amounts are available (e.g., a survey of data from the National Cancer
Institute showed that obtaining an adequate number of samples to conduct a study is
a major difficulty facing researchers [21]). Thus, we investigated whether extraction
with organic solvents would have a major impact on the coverage and the quantitative
aspect of the associated proteomic analysis. To explore this issue, proteins extracted
with MPLEx, ACN, and MeOH methods were digested in parallel with control samples,
normalized by bicinchoninic acid (BCA) assay, and analyzed by liquid chromatography
mass spectrometry (LC-MS) using the accurate mass & time (AMT) tag approach (22).
The results of the proteomic analysis of samples extracted with different methods
showed that the numbers of peptides detected in the MPLEx samples were very similar
(no significant difference) to the numbers seen with controls (Fig. 1B). A significant
increase in the levels of peptides was identified in samples extracted with ACN, but no
significant differences between the control and MeOH extractions in the numbers of
peptides were observed (Fig. 1B). The overlap of the numbers of peptides identified in
samples extracted with all protocols was very high, as shown by a similarity matrix
(Fig. 1C). The similarities between samples were even higher at the protein level (Fig. 1D
and E). The similarity of the proteome coverage results obtained by the different
extraction methods is remarkable, considering that much larger (up to 3-fold to 4-fold)
differences are observed just by digesting proteins using different buffers, surfactants,
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or denaturing agents, even without any previous extraction (23, 24). Our results show
that despite some protein mass losses, the choice of extraction protocol did not
significantly affect the proteome coverage. The selective loss of a few proteins during
the extraction procedure is expected and has been shown in a study carried out with
human plasma samples only (20).

Another important feature for multi-omic analysis is that of being able to accurately
identify differentially expressed or abundant molecules. In this context, if the extraction

FIG 1 Extraction of S. oneidensis proteins with metabolite, protein, and lipid extraction (MPLEx),
acetonitrile (ACN), and methanol (MeOH). A parallel sample was digested with trypsin without
previous extraction (Control) as a control. (A) Protein recovery after extraction. (B) Numbers of
identified peptides in different extractions. ns, not significant. (C) Matrix showing the numbers of
overlapping peptides identified in samples extracted with different methods. In the matrix, the
numbers of common peptides are indicated in the intersections between sample rows and columns.
(D) Numbers of identified proteins in different extractions. (E) Matrix showing the numbers of
overlapping proteins identified in samples extracted with different methods. (F) Correlation of
peptide intensities of samples extracted with different methods. (G) Correlation of protein intensities
of samples extracted with different methods. (H) Distribution of coefficients of variance across
proteins identified in samples extracted with different methods. *, P < 0.001 (compared to control
sample).
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procedure affects the quality of the proteins, then it might increase the variance across
different samples. Thus, we examined the correlation of the proteomics data between
samples extracted with different organic solvents, and the results showed remarkable
similarity at both peptide and protein levels (Fig. 1F and G). We then calculated the
variance of protein measurements by comparing different extraction protocols. Indeed,
no significant differences in the distributions of coefficients of variance (CV) were
observed comparing MPLEx with controls, with the CVs of the great majority of the
proteins smaller than 25%, with peaks of �10% (Fig. 1H). MeOH extraction led to CVs
that were similar to but slightly smaller than those seen with the MPLEx and control
samples (Fig. 1H). On the other hand, ACN extraction had a bimodal distribution, with
very low and very high CVs (Fig. 1H), suggesting that some proteins are not reproduc-
ibly precipitated with this solvent. This phenomenon might be due to the fact that
acetonitrile does not fully precipitate small proteins (25). Taken together, these results
showed that MPLEx did not affect the proteome coverage or the results of quantitative
analysis of the S. oneidensis samples.

Performance of MPLEx in the analysis of different sample types. To inves-
tigate whether the MPLEx protocol is robust and broadly applicable, we performed
proteomic analyses of a very diverse set of samples that included the archaeon
Sulfolobus acidocaldarius, a unicyanobacterial consortium (26), mouse brain cortex
tissue, human urine, cells of the Calu-3 human lung epithelial cell line, and leaves from
Arabidopsis thaliana. Whereas we compared MPLEx results to control results for most of
these samples, the A. thaliana sample results were compared to results of extractions
performed with saturated phenol or trichloroacetic acid (TCA), because plant leaves are
rich in phenolic compounds that need to be removed and that otherwise would
interfere with mass spectrometric analysis, and these alternative protocols have been
shown to perform well in preparations of plant samples (27). As observed for S. one-
idensis, the proteome coverage was very high at both the peptide (see Fig. S1 in the
supplemental material) and protein (Fig. 2) levels across the diverse set of samples
when using MPLEx and comparable to that obtained using the standard protein
extraction protocol, although minor differences were detected for the unicyanobacte-
rial consortium and human urine samples. In the case of A. thaliana, similar proteome
coverage results were observed in samples extracted using either TCA or MPLEx
(Fig. 2E; see also Fig. S1E). However, despite repeating the experiment twice, we had
very limited success in extracting leaf proteins using the phenol protocol. In terms of
quantitative measurements, similar correlations were observed across different samples
by comparing MPLEx results to control or TCA extraction results at both the peptide
and protein levels, although minor differences were observed in the results from the
human urine samples (Fig. 2; see also Fig. S1). Overall, comparing MPLEx to control or
TCA extraction, the levels of proteome coverage and correlation between samples were
very similar (see Fig. S2), suggesting no qualitative losses.

The fact that the proteome coverage, correlation, and variability results of compar-
isons of samples using MPLEx are not different from those seen with the standard
protocol indicates that the relative quantification of proteins, which is the type of
quantification employed in the vast majority of proteomics studies, is not compro-
mised. Nonetheless, we investigated any losses of specific proteins that could affect
studies focusing on absolute quantification of protein copy numbers. Only 1.1% and
1.9% of the proteins in Shewanella oneidensis were shown to be significantly enriched
and depleted by more than 2-fold, respectively (Table 1). The ACN extraction showed
a smaller number of significantly enriched or depleted proteins, which was likely a
consequence of the higher variability in the replicates observed using this solvent
(Table 1). In contrast, the MeOH extraction showed much higher losses than MPLEx
(Table 1). With the exception of the human urine sample, all samples had losses
corresponding to less than 5% of the proteins (Table 1). To investigate possible causes
of protein enrichment or depletion using MPLEx, several physical-chemical properties
of the significantly enriched or depleted proteins were examined, including the number
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of proteins with transmembrane domains, molecular weight, length, hydrophobicity
calculated by grand average of hydropathy (GRAVY), and isolectric point (pI). No
pattern was consistently observed across the different samples for any of the tested
physical-chemical properties, indicating that the small amount of enrichment or de-
pletion of proteins induced by MPLEx is not based on such properties. Although these
small differences in protein extraction results seen using MPLEx should be considered
in proteomics studies employing absolute quantification, they likely do not introduce
artifacts in the results, as these studies typically have very small (up to 15%) errors when
stable isotope-labeled peptides are used as internal standards (28) and up to 2-fold to
3-fold variations in label-free analyses (29, 30).

Although protein oxidation is an important physiological posttranslational modifi-
cation, it is also an artifact introduced during sample processing for proteomic analysis.
Considering that there is more O2 dissolved in organic solvents than in water (31), it is
reasonable to suspect that extraction performed with such solvents could increase the

FIG 2 Proteomic coverage of diverse sets of samples. (A) The archaeon S. acidocaldarius. (B)
Unicyanobacterial consortium. (C) Human urine. (D) Human lung epithelial cell line Calu-3. (E)
A. thaliana plant leaves. (F) Mouse brain cortex. Each figure shows the number of identified proteins,
correlation between replicates, and proteome coverage. Abbreviations: MPLEx, metabolite, protein,
and lipid extraction; Control, no-extraction control; TCA, trichloroacetic acid extraction. All samples
were prepared and measured in 5 replicates and analyzed by t test, assuming two tails and equal
distributions.
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oxidation of peptides. Thus, the number of peptides containing oxidized methionine
residues was counted in each sample, and an increase in methionine oxidation was
observed only in the S. acidocaldarius sample extracted with the MPLEx protocol (see
Fig. S3 in the supplemental material). However, the opposite trend was observed in
S. oneidensis, mouse brain cortex, and unicyanobacterial consortium samples, and no
difference was observed in the other samples (see Fig. S3). These results suggest that
the oxidation of peptides is sample dependent and that it is not induced by MPLEx.

Taken together, our data show that MPLEx is a robust protocol and can be applied
for a variety of sample types without compromising the proteome coverage or quan-
titative measurements or inducing oxidation artifacts.

Application of MPLEx in multi-omics study of MERS-CoV infection in a lung
epithelial cell line. To illustrate an application for MPLEx and the value of multiple
omics measurements obtained from the same sample, we applied the method to study
MERS-CoV infection. We specifically chose MERS-CoV because it is a deadly emerging

TABLE 1 Comparative analysis of protein extractionsa

Protein
category
and
parameter

Value(s)

Shewanella oneidensis
Arabiposis
thaliana

Calu-3
cells

Human
urine

Mouse
brain
cortex

Sulfolobus
acidocaldarius

Unicyanobacterial
consortium

MPLEx ACN MeOH MPLEx MPLEx MPLEx MPLEx MPLEx MPLEx

Enriched
No. of proteins 20 9 26 111 42 130 55 37 78
% of total 1.1 0.5 1.4 5.6 1.8 17.1 2.4 3.3 4.4
Proteins with

TMDb

5 (25%) 5 (55.6%) 13 (50%) 12 (10.8%) 4 (9.5%) 31 (23.8%) 12 (21.8%) 7 (18.9%) 13 (16.7%)

MWc 40,808 �
26,150

44,400 �
31,645

44,230 �
21,553

34,789 �
33,487

559,869 �
35,360

57,950 �
54,709

56,830 �
62,457

35,533 �
20,022

40,193 �
25,185

Length (aa) 373 �
241

406 �
292

402 �
198

313 �
299

497 �
311

525 �
495

507 �
557

309 �
183

370 �
232

GRAVY scored �0.029 �
0.434

�0.164 �
0.588

0.096 �
0.452

�0.195 �
0.254

�0.255 �
0.269

�0.375 �
0.308

�0.286 �
0.393

�0.056 �
0.316

�0.090 �
0.288

pIe 6.76 �
1.71

7.06 �
1.57

7.40 �
1.66

6.30 �
1.58

7.35 �
1.67

6.75 �
1.63

7.61 �
1.80

7.67 �
1.32

5.73 �
1.42

Depleted
No. of proteins 37 3 88 15 32 179 38 32 86
% of total 1.9 0.2 4.6 0.8 1.4 23.5 1.6 2.9 4.9
Proteins with

TMD
2 (5.4%) 2 (66.7%) 4 (5%) 0 1 (3.1%) 60 (33.5%) 10 (26.3%) 1 (3.1%) 13 (15.1%)

MW 24,198 �
16,914

39,929 �
28,848

22,974 �
14,236

68,158 �
48,708

26,063 �
24,477

67,746 �
71,966

71,216 �
96,637

23,857 �
11,867

32,116 �
27,627

Length (aa) 222 �
158

365 �
267

209 �
129

617 �
440

229 �
210

617 �
664

642 �
856

212 �
106

294 �
251

GRAVY score �0.104 �
0.283

�0.057 �
0.166

�0.182 �
0.257

�0.316 �
0.168

�0.719 �
0.476

�0.258 �
0.311

�0.301 �
0.459

�0.197 �
0.248

�0.301 �
0.434

pI 6.14 �
1.58

7.45 �
1.43

5.85 �
1.21

6.67 �
1.49

7.30 �
1.83

6.54 �
1.39

6.68 �
1.42

6.29 �
1.14

5.61 �
1.56

Total
No. of proteins 1,898 1,996 2,351 762 2,320 1,121 1,763
Proteins with

TMD
335 (17.6%) 190 (9.5%) 350 (14.9%) 216 (28.3%) 377 (16.2%) 69 (6.2%) 230 (13.0%)

MW 42,093 � 28,556 47,463 �
32,164

62,933 �
63,256

62,704 �
71,856

64,029 �
67,423

36,211 �
20,586

41,646 �
29,689

Length (aa) 381 �
261

430 �
288

564 �
565

571 �
661

575 �
605

322 �
184

381 �
270

aValues for differentially abundant proteins were determined by T and G tests, and the numbers of proteins with more the 2-fold enrichment or depletion are listed.
aa, amino acids.

bTMD, transmembrane domain.
cMW, molecular weight.
dGRAVY, grand average of hydropathy.
epI, isoelectric point.
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infectious agent with subsequent disease mortality rates of approximately 40% and
because there are currently no effective drugs available for treatment (32). Since
MERS-CoV is a newly emergent virus, information about the mechanism of virulence of
the infection is very scarce in the literature and any new data would immensely
contribute to a better understanding of the disease. In addition, experiments investi-
gating MERS-CoV need to be performed in biosafety level 3 (BSL3) facilities, which
require extensive safety and decontamination procedures. Thus, being able to analyze
multiple omics from the same sample would significantly reduce the time of exposure
risk of the researcher inside the biosafety facility.

For this experiment, we used human lung epithelial Calu-3 cells, which we initially
tested as described above and which showed good proteome coverage (Fig. 2D). Nine
replicates of cell cultures were infected for 18 h with MERS-CoV, while 3 replicates were
left uninfected as mock controls. Samples were subjected to MPLEx and submitted for
global proteomic, metabolomic, and lipidomic analyses. In total, 2,670 proteins, 51
metabolites, and 236 lipid species were identified and quantified (see Tables S1 to S4
in the supplemental material). Data from all three global measurements were then
integrated using the Metscape plugin of Cytoscape (Fig. 3A) (33, 34). We also performed
a function-enrichment analysis based on the KEGG database using the LRpath tool (35)
and combined this information into Metscape. The LRpath analysis showed that 25
pathways were significantly enriched in differentially abundant proteins (see Table S5)
and that 5 of the pathways were from the central metabolism of the cell (Fig. 3A). From
these pathways, we chose the glycolysis and gluconeogenesis pathways due to their
complexity and the fact that these two pathways share most of the metabolites and
enzymes therein. Being able to determine which of these pathways is affected more
during infection would result in valuable information for better understanding the
disease. In Fig. 3A, the nodes highlighted in yellow represent the glycolysis/gluconeo-
genesis pathway, which was separated into a subnetwork in Fig. 3B for a better
visualization. This pathway showed several proteins that were downregulated during
MERS-CoV infection, which are represented in Metscape by the small nodes (Fig. 3B).
This pathway was then manually curated and visualized using the VANTED tool (36)
(Fig. 3C), showing quantitatively that almost all proteins in the glycolysis/gluconeo-
genesis pathway were reduced in abundance during the infection with MERS-CoV
(Fig. 3C). Although limited numbers of metabolites from the glycolysis/gluconeogen-
esis pathways were detected, the reduced levels of glucose 6-phosphate (G6P), dihy-
droxyacetone phosphate (DHAP), and 3-phospho-D-glycerate (3PG) further support the
idea of a decrease in activity of this central pathway (Fig. 3C). Since glycolysis and
gluconeogenesis share the same enzymes, proteomics alone is insufficient to deter-
mine exactly which process is affected. However, results from the addition of metabo-
lomics, specifically, the observation that the initial substrate, glucose (Glc), had accu-
mulated, indicated that glycolysis was more likely than gluconeogenesis to have been
affected by the viral infection (Fig. 3C). To conclude, the proteomics analysis by itself
would show differences only in the abundances of the enzymes from the glycolysis/
gluconeogenesis pathway, but the addition of metabolite measurements helps confirm
that the pathway activity is reduced and which direction is the more affected, clearly
illustrating the advantage of integrating multi-omic measurements for studying specific
metabolic pathways.

MPLEx reveals global changes in lipid profiles induced by MERS-CoV
infection. To further demonstrate the utility of multi-omic analyses facilitated by the
MPLEx protocol, we investigated MERS-CoV-stimulated changes in the Calu-3 lipidome
by integrating the measurements of sphingolipids and glycerophospholipids from the
lipidomics analysis, free fatty acids from the metabolomics analysis, and enzymes from
the proteomic analysis using the VANTED tool (Fig. 4). Increases in the levels of all 5
detected fatty acid species were observed in MERS-CoV-infected cells compared to
mock controls (Fig. 4). The increases in fatty acid levels appear unrelated to lipid
synthesis itself, since almost all the enzymes of the synthesis pathway are downregu-
lated with infection (Fig. 4). Conversely, the decrease in levels of enzymes in the fatty
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acid degradation pathway might be contributing to the accumulation of fatty acids
(Fig. 4). In addition, degradation of phosphatidylcholines (PC), lyso-PC, phosphatidyl-
serines (PS), and lyso-PS by phospholipases might also have been contributing to the
accumulation of fatty acids during infection (Fig. 4). Although the responsible phos-
pholipase was not detected in the proteomic analysis, it seems to be specific to PC and
PS, since other classes of glycerophospholipids and glycerolipids remained mostly
unchanged during infection (Fig. 4).

More-extensive changes in abundance were observed in members of sphingolipid
classes than in phospholipids. The abundance of hexosylceramide increased during
MERS-CoV infection, seemingly due to a decrease in the levels of its degradation
enzyme glucosylceramidase (GBA) (Fig. 4). An increase of ceramide levels was also
detected during infection which did not appear to be related to synthesis, since the
abundance of serine palmitoyltransferase (SPTLC1), the enzyme that catalyzes the first

FIG 3 Integrative network of proteomics, metabolomics, and lipidomics of human lung epithelial Calu-3 cells infected
with Middle East respiratory syndrome coronavirus (MERS-CoV). (A) Complete human metabolic network designed with
Metscape and metabolic pathways enriched on differentially abundant proteins during viral infection. up, upregulation;
down, downregulation. (B) Subnetwork of the glycolysis/gluconeogenesis pathway from Metscape analysis, which
corresponds to the nodes highlighted in yellow in panel A. (C) Glycolysis/gluconeogenesis pathway manually curated
using VANTED.
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step of ceramide synthesis by condensing serine and palmitate into 3-ketosphinganine,
was decreased (Fig. 4). The accumulation of ceramides was most likely due to the
degradation of sphingomyelin in combination with a decrease in levels of the cerami-
dase (ASAH1) (Fig. 4). Sphingolipids have been reported to play an integral role in viral
uptake, replication, maturation, and budding during viral infection. Membrane domains
enriched with ceramides have been proposed to facilitate the entry of enveloped
viruses into host cells by changing the membrane fluidity and enhancing vesicular
fusion (37). Ceramides are also known to trigger apoptosis and death of the host cells
(38, 39). Indeed, apoptosis has already been reported in bronchial epithelial cells
infected with MERS-CoV (40), but its relationship with the increased levels of ceramides
still needs to be further investigated.

Overall, the lipid metabolic network built by integrating multi-omics measurements
shows a much more complete and likely more accurate view of the lipid landscape
compared to lipidomics alone and provides more insights concerning the mechanism
of lipid regulation.

Concluding remarks. Integration of multi-omics measurements has been consol-
idated as a technique for studying complex biological systems (1–3). Thus, methods
that enable multiple omics measurements on the same sample are not only attractive

FIG 4 Lipid metabolic network integrating proteomics, metabolomics, and lipidomics of human lung epithelial Calu-3
cells infected with Middle East respiratory syndrome coronavirus (MERS-CoV).
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but the only choice in cases of samples with limited availability. In this context, the
MPLEx method can be an excellent alternative since it has been shown to be robust and
applicable for a variety of samples ranging from bacterial cells to environmental
samples to animal tissue. It is worth noting that, in addition to metabolomics, pro-
teomics, and lipidomics, it is very likely that MPLEx can be used for the analysis of
posttranslational modifications. Indeed, a preliminary unpublished phosphoproteomic
analysis using MPLEx led to the identification of several thousand phosphopeptides,
although more careful analysis is required to determine if there are losses in this
process. To conclude, we demonstrate the utility of multi-omics integration using
MPLEx to study a lung epithelial cell line infected with MERS-CoV, which showed major
differences in central carbon and lipid metabolism during infection.

MATERIALS AND METHODS
Samples. For this study, we chose a variety of sample types: plant leaves from Arapdopsis thaliana,
human urine as an example body fluid, the Gram-negative bacterium Shewanella oneidensis, the cultured
tissue cell line Calu-3, a unicyanobacterial consortium isolated from Hot Lake, WA, USA (26), mouse brain
cortex tissue, and the archaeon Sulfolobus acidocaldarius strain DSM 639. Calu-3 cell infection with
MERS-CoV was performed as described in Text S1 in the supplemental material. S. oneidensis, the
unicyanobacterial consortium, and S. acidocaldarius cells were lysed by bead beating in a Bullet Blender
(Next Advance, Averill Park, NY) with 0.1-mm-diameter zirconia beads at speed 8 for 3 min at 4°C, and
the lysate was spun into a Falcon tube at 2,000 � g for 10 min at 4°C. Additional lysis was done via
pressure cycling technology (PCT) using a Barocycler (Pressure BioSciences Inc., South Easton, MA). The
suspended cells were subjected to 20 s of high pressure at 35,000 lb/in2 followed by 10 s of ambient
pressure for 10 cycles. A. thaliana leaves were frozen with liquid nitrogen and mechanically disrupted on
a mortar with a pestle. Mouse brain cortex tissue was homogenized in ice-cold Nanopure H2O at full
speed with a hand-held Omni tool and a disposable probe (Omni, Kennesaw, GA) for 30 s, allowed to
cool, and homogenized again.

Extraction methods. Each sample was processed in 5 replicates using the following protocols.
(i) Metabolite, protein, and lipid extraction (MPLEx). The extraction procedure was adapted from

the method of Folch et al. (41) by keeping the same final solvent proportions; however, the monophasic
extraction step was not performed, as water was initially added to the sample along with the chloroform
and methanol to simultaneously extract and partition molecules into the three different phases. Cell
pellets or lysates were resuspended in water, and 5 volumes of cold (�20°C) chloroform-methanol (2:1
[vol/vol]) solution was added to the samples. Samples were incubated for 5 min on ice, subjected to
vortex mixing for 1 min, and centrifuged at 12,000 rpm for 10 min at 4°C. For the samples for which
metabolomics and lipidomics analyses were performed, the upper aqueous phase and bottom organic
phase, containing hydrophilic metabolites and lipids, respectively, were collected in glass autosampler
vials. The interphases, containing proteins, were washed by adding 1 ml of cold (�20°C) methanol, vortex
mixed for 1 min, and centrifuged at 12,000 rpm for 10 min at 4°C. The supernatants were discarded, and
the resulting pellets were dried in a vacuum centrifuge for 5 min.

(ii) Phenol extraction. Powdered A. thaliana leaves were resuspended in 10 ml of phenol extraction
buffer (0.5 M Tris-HCl [pH 7.5], containing 0.7 M sucrose, 0.1 M KCl, 50 mM EDTA, 2% [vol/vol]
�-mercaptoethanol, and 1 mM phenylmethanesulfonylfluoride), and then 10 ml of phenol solution
saturated with 10 mM Tris-HCl (pH 7.5) was added to each tube. Samples were shaken for 30 min at 4°C
and centrifuged at 5,000 � g for 30 min at 4°C. The upper phenolic phase was collected into a fresh tube
and washed twice by adding 10 ml of phenol extraction buffer, followed by centrifugation at 5,000 � g
for 30 min at 4°C, and discarding of the lower phase. The upper phenolic phase was collected in a fresh
tube, and 5 volumes of 0.1 M ammonium acetate in methanol was added. Samples were incubated
overnight at �20°C and centrifuged at 5,000 � g for 30 min at 4°C. Protein pellets were then washed
twice with 10 ml ice-cold methanol and twice with 10 ml ice-cold acetone by adding the solvent,
centrifuging at 5,000 � g for 30 min at 4°C, and discarding of the supernatant. The resulting protein
pellet was dried under a stream of N2.

(iii) TCA extraction. 10 ml of freshly prepared ice-cold TCA-acetone extraction buffer (0.61 M
trichloroacetic acid–90% acetone) was added to powdered A. thaliana leaves, and the mixture was
incubated overnight at �20°C. Proteins were then precipitated by centrifuging for 30 min at 5,000 � g
at 4°C, and the supernatant was discarded. The protein pellet was washed three times by adding 10 ml
of ice-cold acetone, followed by centrifugation for 10 min at 5,000 � g at 4°C, and discarding of the
supernatant. The resulting protein pellet was dried under a stream of N2.

(iv) Acetonitrile extraction. Lysates were resuspended in 4 volumes of ice-cold (�20°C) pure
acetonitrile and incubated for 10 min at 4°C to precipitate the proteins. The samples were centrifuged
for 10 min at 4°C at 12,000 � g to pellet the protein. The supernatant was removed, and the protein
pellets were dried by evaporation before digesting with trypsin.

(v) Methanol extraction. The methanol extraction was performed with the exact same procedure as
the acetonitrile extraction, with the difference that the organic solvent was replaced by methanol.

Proteomic, lipidomic, and metabolomic analyses. The detailed methodology of proteomic, lip-
idomic, and metabolomic analyses are provided in Text S1 in the supplemental material. For proteomic
analysis, proteins were digested with trypsin into peptides and analyzed using the accurate mass & time
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(AMT) tag approach (22). Peptides were separated by nano-capillary liquid chromatography (nano-LC),
and eluting peptides were directly analyzed using LTQ-Orbitrap Velos or Exactive mass spectrometers
(Thermo Fisher Scientific). Peptides were identified by matching to the appropriate mass tag database,
and the peak areas were extracted using VIPER (42). Matching results were filtered with Statistical Tools
for AMT tag confidence and uniqueness probability scores (43). Lipids extracted from Calu-3 cells
infected with MERS-coronavirus were analyzed by LC-tandem MS (LC-MS/MS) using an LTQ-Orbitrap
Velos mass spectrometer as previously described (14). Then, raw data files were analyzed using LIQUID
(lipid informed quantitation and identification) software developed in-house for semiautomated identi-
fication of lipid molecular species followed by manual validation of identified species. Polar metabolites
extracted from Calu-3 cells infected with MERS-coronavirus were derivatized with N-methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA) and analyzed by gas chromatography-mass spectrometry
(GC-MS) as described previously (16). The raw data files were processed using MetaboliteDetector (44)
and manually validated.

Comparative analysis of different extractions. The proteomic analyses comparing the different
extraction methods were performed by rolling up the intensity values of peptides into values corre-
sponding to proteins using the R rollup function of Inferno RDN (formerly DAnTE) (45). Only proteins with
two or more peptides that were unique were considered for further analysis. The intensity values were
transformed to log2 values and submitted to standard paired t tests and G tests (46) (considering only
proteins present in 0 or 1 of 5 replicates).

Statistical analysis of MERS-CoV-infected cells. For analyses of proteomics, lipidomics, and
metabolomics data from the Calu-3 cells infected with MERS-CoV, the quantitative data profiles were
evaluated for extreme outlier behavior (47). No outlier samples were observed in the metabolomics and
lipidomics data; however, one proteomics replicate from the infected group showed extremely poor
coverage and correlation, indicating an issue with the protein extraction. That one sample was removed
from subsequent analyses. Further quality assessment of the proteomics data included evaluation of
individual peptides to identify those with inadequate coverage for either statistical analyses or protein
quantification (46). Metabolomic and lipidomic data were normalized via standard median centering, and
proteomics data were normalized via median centering against a rank-invariant peptide subset identified
to reduce bias (48). To allow evaluation of the proteomic data at the protein level, a signature-based
protein quantitation methodology was employed (49). Finally, the protein, metabolite, and lipid data
were evaluated for quantitative differences between the results of mock infection and MERS-CoV
infection via a standard two-sample t test.

Multi-omics data integration. Accession numbers from proteomics data of the MERS-CoV-infected
cells were converted into Entrez Gene identifiers (ID) and uploaded to LRpath for function-enrichment
analysis (35). Then, expression values of metabolomics, lipidomics (both converted to KEGG compound
IDs), and proteomics data were integrated using Metscape v. 3.1.1 (33) plugin of cytoscape v3.2.1 (34)
along with the function-enrichment results from LRpath analysis. Specific pathways of interest were
manually curated using VANTED v2.2.0 (36).

Accession numbers. All LC-MS/MS and GC-MS data files were deposited into the MassIVE repository
(http://massive.ucsd.edu/) under accession numbers MSV000079410, MSV000079409, MSV000079408,
MSV000079407, MSV000079406, MSV000079405, MSV000079404, MSV000079609, and MSV000079610.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSystems.00043-16.

Text S1, DOCX file, 0.04 MB.
Figure S1, TIF file, 0.5 MB.
Figure S2, TIF file, 0.4 MB.
Figure S3, TIF file, 0.4 MB.
Table S1, XLSX file, 0.9 MB.
Table S2, XLSX file, 0.02 MB.
Table S3, XLSX file, 0.02 MB.
Table S4, XLSX file, 0.02 MB.
Table S5, XLSX file, 0.01 MB.
Table S6, DOCX file, 0.01 MB.
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