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Abstract

Ophthalmic gene therapy is an intellectual and intentional manipulation of desired gene expression 

into the specific cells of an eye for the treatment of ophthalmic (ocular) genetic dystrophies and 

pathological conditions. Exogenous nucleic acids such as DNA, small interfering RNA (siRNA), 

micro RNA (miRNA), etc., are used for the purpose of managing expression of the desired 

therapeutic proteins in ocular tissues. The delivery of unprotected nucleic acids into the cells is 

limited due to exogenous and endogenous degradation modalities. Nanotechnology, a promising 

and sophisticated cutting edge tool, works as a protective shelter for these therapeutic nucleic 

acids. They are able to be safely delivered to the required cells in order to modulate anticipated 

protein expression. To this end, nanotechnology is seen as a potential and promising strategy in 

the field of ocular gene delivery. This review focused on current nanotechnology modalities and 

other promising non-viral strategies being used to deliver therapeutic genes in order to treat 

various devastating ocular diseases.
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1. Introduction

Over the last few decades, gene based therapeutic clinical strategies have been extensively 

explored for the treatment of ocular diseases1–8. Gene therapy, from its inception, aims to 

repair or replace the disease-causing mutations by delivering the suitable therapeutic genetic 

materials along with the rational regulatory elements into the desired cells to express the 

deficient protein at normal levels. For therapeutic purposes, it has already been established 

that the genomic and the coding and/or non-coding RNA sequences can be modulated by 

introducing nucleic acids into the ocular tissues (Fig. 1). The effectiveness of inserting 

therapeutic genes into the desired cell is not only manipulated by DNA designing strategies, 
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but also significantly depends on the efficiency and safety of its delivery vehicle(s). This 

review will summarize details on several ocular dystrophies of the leading causes of 

blindness in the world. In addition, major focus will be on the existing preclinical studies on 

nanotechnology-motivated synthetic non-viral gene delivery vehicles. These vehicles have 

already resulted in the improvements of structural and functional recovery of several major 

retinal disorders in animal models, and might have promising clinical significance in future 

human ocular gene therapy.

2. Ocular disorders

2.1. Retinitis pigmentosa

Retinitis pigmentosa (RP) is a group of clinically and genetically heterogeneous 

disorders3, 9. RP has a worldwide prevalence of 1 in 3000 to 7000 people10. This is 

characterized by initial night blindness (tunnel vision) due to the loss of rod cells in the 

periphery of the retina. As the disease progresses, cone cells start to degenerate, which leads 

to complete physical blindness of the patient via loss of central vision. The reason behind 

the loss of cone cells in RP cases is not yet clear, although rod cells possess defective genes. 

In this context, it is assumed that these cone cell dystrophies might be due to loss of rod cell-

based supporting factors11. Multiple genetic inheritance patterns were found in RP patients. 

Among these patients, 15–25% of cases were autosomal dominant (adRP), 5–25% of cases 

showed autosomal recessive (arRP), and 5–15% showed X-linked traits10, 12. In general, RP 

is divided into two categories: one is syndromic (40%), and the other one is non-syndromic 

(or simple, 60%). The non-syndromic, or simple RP, is limited to the eye. The syndromic 

RP is beyond the eye, which also affects other organs and tissues in the body. The most 

frequent and studied syndromic disease is Usher syndrome (hearing loss followed by RP)10.

2.1.1. Rhodopsin (Rho) mutations—RP is associated with more than 100 mutations12 

in the different regions of the rhodopsin (Rho) gene that accounts for 30–40% of adRP10, 

and thus is genetically heterogeneous3, 5, 10. Rhodopsin protein helps to keep the structural 

integrity of the rod outer segments, as it was observed that Rho−/− mice were not able to 

extend rod outer segments. Rhodopsin protein is covalently associated with the 11-cis retinal 

chromophore to form a visual pigment, G protein-coupled receptor (GPCR), and plays a 

vital role in the conversion of electromagnetic radiation (light) to electrical signal in the 

retina, which is further processed in the brain as an image10. Upon absorption of a photon, 

the chromophore (11-cis retinal) is isomerized to all-trans (Fig. 2a) and causes 

conformational changes in the visual pigment (GPCR), which triggers a signal transduction 

cascade. This cascade results in the closure of nonselective cyclic guanosine 3'-5'-

monophosphate (cGMP)-gated cation channels in the photoreceptor (PR) outer segment and 

hyperpolarization of the PR plasma membrane that generates receptor potential at PR 

synapse. Rod cells are responsible for night vision and remain sensitive as they are activated 

by single photons.

Mutation in the Rho gene can affect the rod cell functions at different severity levels. The 

same RP phenotype is observed from mutations in different regions of the rhodopsin gene 

that can cause different amino acid substitutions, and therefore leads to different rates of 

progression of this disorder. When the interdiscal protein mutates, it remains less severe than 
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that in the cytoplasmic or retinal binding site domains. Mutated rhodopsin protein in the 

cytoplasm possesses inappropriate transport properties towards the outer segment of rod 

cells.

The adRP currently does not have any therapeutic support. Rho mutations are classified as 

Class I and Class II based on tissue culture studies13–15. In Class I mutation, opsin expresses 

wild type level and binds to 11-cis retinal to form retinal photopigment (Fig. 2a) along with 

proper folding.

Class II mutation is the major cause of RP in North America15. Class II mutants accumulate 

and remain misfolded in the endoplasmic reticulum (ER). The misfolded protein causes 

activation of unfolded protein response (UPR), and leads to the cellular dystrophies 

associated with various ocular diseases. The first identified, and so far the most important 

Class II, RP is associated with the single missense mutation in the codon 23 in the human 

opsin gene. This mutation results in one proline substitution by histidine (RhoP23H), and is 

responsible for the most frequent cause of adRP15. The cause related to the RhoP23H 

toxicity remains unclear. Due to the dominant nature of the disorder, suppression and 

replacement of the gene are considered a useful and logical therapeutic approach in the 

treatment of the mutational heterogeneity of these adRP cases.

2.1.2. Phosphodiesterase 6b (PDE6b)—Rod cyclic guanosine 3'-5'-monophosphate 

(cGMP)-specific phosphodiesterase-6 (PDE6) enzyme is responsible for the hydrolysis of 

cytoplasmic cGMP in photoreceptor cells of the retina. PDE6 is a peripheral membrane 

heterotetramer enzyme that is composed of two inhibitory gamma (γ) subunits and two 

catalytic homologous α and β subunits in rods (PDE6αβγγ), and related α’ subunits in cones 

(PDE6 α’α’γγ). PDE6 plays a key role in the photo-transduction cascade by regulating 

cGMP levels in the photoreceptor cells. Guanylate cyclase synthesizes cGMP from GTP and 

regulates the ion channel in the plasma membrane. During dark adaptation, cGMP keeps the 

ion channels open, thus allowing the influx of calcium ions into the outer segment of 

photoreceptors that causes overall depolarization of these cells. In light adaptation, PDE6 

hydrolyses the cGMP and thus the cGMP amount is reduced, which leads to closing of 

cGMP gated ion channels and overall hyperpolarization of the photoreceptor cells. The beta 

subunits of PDE6 are encoded by the PDE6B gene, and therefore mutations in this PDE6B 

gene lead to malfunctioning of the PDE6 enzyme activity. In the light and dark adapted 

mechanism, the non-functional PDE6 enzyme is not able to hydrolyse cGMP, which results 

in accumulation of cGMP without closing the ion channels. This leads to the accumulation 

of excess calcium in cytoplasm that finally induces the degeneration of photoreceptor cells, 

resulting in blindness16. The mutation in the PDE6B gene is responsible for the arRP in 

humans. This earliest and most severe form of the disease is contributing to 5% of all arRP 

cases.

2.2. Usher syndrome

Usher syndrome (USH) is a genetically heterogeneous group of autosomal recessive genes 

that affects both hearing and vision (related to inner ear and retina, the most sensitive 

neurosensory organs in mammals), along with occasional loss of balance. This syndrome 
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was first discovered by Scottish ophthalmologist Charles Usher in 1914, upon examination 

of over 69 patients who were dealing with deafness with RP. There is a predictable 

occurrence in which 3–6 per 100,000 human patients are observed with both blindness and 

deafness17, 18. Clinically, there are three types of Usher syndrome (USH1, USH2 and 

USH3)3, 19, 20. Regarding the onset of hearing loss, USH1 is the most severe19. In USH1, a 

child is born with severe to profound deafness. The vision problem starts within 10 years of 

age, and progresses quickly to complete blindness. The child with USH1 might also have 

more balance problems associated with sitting and walking than normal. USH2 is 

comparatively less severe than USH1. The child is born with moderate to severe hearing loss 

and normal balance. Night vision problems appear in late childhood or teens with slow 

progressive loss of vision19. In USH3 cases, the child is born with normal hearing and 

balance, but there is an advanced loss of hearing by adolescence19. Vision loss varies in 

severity, and night vision problems develop during the teenage years. Night blindness and 

loss of peripheral vision are the early symptoms of RP due to the loss of rod photoreceptor 

cells. As the disease progresses, the cone photoreceptor cells also start to degenerate, leading 

to loss in the central vision that finally results in blindness of USH patients.

Significant amounts of research are currently underway to identify the genes related to USH 

syndrome. There are six genes that have been found so far to be associated with USH1, and 

these are MYO7A (myosin VIIA), USH1C (harmonin), CDH23 (cadherin 23), PCDH15 

(protocadherin 15), SANS (scaffold protein containing ankyrin repeats and sam domain) and 

CIB2 (calcium- and integrin-binding protein 2) 18. The proteins, encoded by these genes, are 

expressed in the cochlear hair cells in the inner ear, as well as in the photoreceptor cells of 

the retina. These USH proteins are helping the inner ear hair cell bundles in their 

development and maintenance of their function and stability. Mutations in these genes can 

result in the loss of protein functions that finally lead to the prevention of hair cell 

developments and loss in hearing. In mice, MYO7A has also been found in the RPE (retinal 

pigmented epithelium) cells, along with different sections of photoreceptor cells like 

connecting cilia, inner segment, and synapse. The USH2 (usherin, VLGR1 and whirlin) and 

USH3 (clarin-1) proteins are also found in the same sections of photoreceptor cells in the 

mouse retina. Literature shows that MYO7A functions the same way in both human and 

mouse RPE cells with respect to melanosome mortality21.

2.3. Stargardt’s disease

Stargardt’s is an autosomal recessive juvenile disorder22 which mainly occurs in children 

between the ages of 6–16 years, with a prevalence of 1 in 8000 to 10000 patients23. This 

common genetic macular disorder presents throughout the world, due to the mutation in a 

gene that encodes a photoreceptor ATP binding cassette (ABC) lipid transporter protein 

(more commonly known as ABCA4)1, 24, 25. ABCA4 is mainly expressed in photoreceptor 

cells and remains in the outer segment disc membrane25. In dark adaptation, opsin protein 

remains covalently conjugated with the 11-cis retinal chromophore. During light activation, 

this 11-cis retinal is isomerized to the all-trans retinal (atRAL) form that isomerizes back to 

11-cis retinal in RPE cells to reconstitute the photopigment in maintaining the visual cycle 

(Fig. 2b). In this process, atRAL is converted to all-trans retinol (atROL) by all-trans retinol 

dehydrogenase 8 (atRDH8), and is transported to the RPE cells by interphotoreceptor 
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retinoid-binding proteins (IRBP). Through some enzymatic pathways, atROL is now 

converted back to 11-cis retinal in RPE, and is immediately shuttled back to the 

photoreceptor outer segment by IRBP to reconstitute rhodopsin photopigment. During this 

process, there is another pathway where a fraction of atRAL is conjugated with 

phosphatidylethanolamine (PE) to form N-retinylidenephosphatidylethanolamine (N-ret-PE) 

in the disc membrane lumen side24. The flipase ABCA4 protein binds with N-ret-PE and 

flips it from the lumen side to the cytoplasmic side of the disc membrane using ATP energy 

source24. Once this N-ret-PE is brought to the cytoplasmic side, it is hydrolysed by all-trans 

retinol dehydrogenase 8 (RDH8) to atROL and PE. Therefore, ABCA4 makes sure the disc 

membrane atRAL is converted to atROL in cytoplasm, and is shuttled towards RPE to 

regenerate 11-cis retinal.

Mutation in the ABCA4 gene can cause the accumulation of N-ret-PE in the lumen side of 

the disc membrane, which facilitates further possible reaction with another molecule of 

atRAL in the disc membrane to form a phosphatidyl pyridinium diretinoid derivative A2PE 

(2: 1 ratio)25. Under normal phagocytocis of photoreceptor cells, A2PE is engulfed by RPE 

and degraded to A2E by lysomal enzymes. RPE cells are not able to metabolize the A2E that 

leads to a high amount of A2E accumulation as fluorescent lipofusin25. This A2E 

accumulation causes excessive generation of reactive oxygen species (ROS) and leads to 

degeneration of RPE cells. The macula also has a high density of photoreceptor cells, and 

therefore causes high levels of A2E accumulation. RPE, just underlying the macula (which 

possesses the highest density of cone photoreceptor cells), plays a key role in providing the 

structural and functional integrity of photoreceptor cells. The loss of RPE cells causes 

damage to the photoreceptor cells in the macula, which finally leads to Stargardt’s disease.

2.4. Leber congenital amaurosis (LCA)

Leber congenital amaurosis (LCA) is an autosomal recessive inheritance pattern which was 

found by Theodor Leber in 1869. So far, there are 14 genes evaluated which are responsible 

for this severe congenital blindness that presents in early childhood26. The worldwide 

prevalence of this disease is 1 out of 30,000 cases 27, 20% of all congenital blindness, and 

5% of all inherited retinal dystrophies. One of the most important mutations is the RPE65 

gene that encodes RPE65 (RPE-specific 65 KDa) protein in RPE cells 6, 8, 28, 29. This 

protein works as a retinoid isomerohydrolase in RPE cells to convert all-trans retinoid to 11-

cis retinal in the reconstruction process of photopigments in the photoreceptor cells, which 

completes the visual cycle6 (Fig. 2b). Therefore, mutation in the RPE65 gene can cause a 

generation of non-functional RPE65 protein that will not be able to regenerate 11-cis retinal, 

and causes genetically heterogeneous and severe visual impairment at birth or during the 

first month of life. The RPE65 thus causes the disturbances in the visual cycle at this early 

stage of life.

Another form of severe LCA gene is the retina specific guanylate cyclase-1 (GUCY2D), 

which encodes guanylate cyclase-1 (GC-1) in the photoreceptor cells that convert GTP to 

cGMP and control the cyclic nucleotide-gated (CNG) ion channels in the photoreceptor cell 

plasma membrane28, 30. Therefore, GC-1 plays a vital role in the visual photo-transduction 

process and conversion of electromagnetic radiation to chemical signals. The mutation in 
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this gene causes malfunctioning of GC-1 protein, which impairs the production of cGMP 

that leads to a permanent closure of the cGMP gated channel.

Proto-oncogene tyrosine-protein kinase (MER)31 is a transmembrane protein that is encoded 

by the MERTK gene in humans. This protein has an intracellular tyrosine kinase domain. 

The extracellular signaling domain of this protein remains on the apical portion of RPE 

cells32. MERTK signaling plays an important role in the daily clearance of shed 

photoreceptor outer segment debris by RPE phagocytosis and survival of photoreceptor cells 

of the retina32. Therefore, it helps to inhibit the intracellular antigen-induced inflammation 

and autoimmune responses. It is observed that 0.6% of LCA is caused by the mutation of 

this MERTK gene, which encodes non-functional MER protein. Mutation in this gene 

causes the reduction of phagocytic activity of RPE cells that results in the accumulation of 

photoreceptors shed in the subretinal space of the retina. As a consequence, the subretinal 

debris generates inflammation and autoimmune diseases and blocks the oxygen and nutrition 

supply to photoreceptor cells. These detrimental effects lead to rapid loss of vision due to 

photoreceptor degenerations.

2.5. Choroideremia

Choroideremia (CHM), an X-linked inheritance, was found in 1871 by Mauthner, and is the 

leading rare inheritance with a prevalence of 1 in 50,000 patients33. This disease causes a 

progressive degeneration of the choroid, retinal pigment epithelium, and retina that leads to 

loss of peripheral vision (night blindness) followed by loss of central vision in middle age. 

Female carriers have a rare progression of degeneration, but the males are affected by severe 

damage of RPE cells and choriocapillaries that develop night blindness during adolescence 

and complete loss of visual acuity by late adulthood. Choroideremia is caused by a mutation 

in the CHM gene that encodes ubiquitously expressed Rab-escort protein-1 (REP-1)33. 

REP-1 plays a key role in intracellular trafficking of vesicles to the cellular compartments. 

The mutation in the CHM gene remains null most of the time, and absence of this protein 

results in the severe effect of trafficking of the opsin protein to photoreceptor outer segment, 

migration of melanosome to the apical part of RPE cells, and phagocytosis activity of RPE 

cells.

2.6. Diabetic retinopathy (DR)

There are 93 million people suffering from diabetic retinopathy (DR) worldwide34. Diabetes 

can cause damage to the retinal blood vessels that feed the retina. The leaky blood and other 

fluids can cause thickening and swelling of the retina35. Fluid is accumulated by chronic 

high blood sugar levels, which cause blurred vision. Hyperglycemia is assumed to be the 

main reason for microvascular complications in DR, where generation of reactive oxygen 

species, vascular growth factor, and increase in vascular permeability play a vital role. 

Retinal vasculature plays a supporting role in the health of retinal neuronal and glial cells, 

and they are degenerated as the microvascular complications begin. DR can sometimes be 

controlled if the blood glucose level is stabilized, but not in all cases. For example, DR 

associated with gene alteration may not always be controlled by the long-term management 

of blood sugar by using insulin therapy. Currently, multidisciplinary strategies are being 

evaluated, such as laser photocoagulation, anti-vascular endothelial growth factor (anti-
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VEGF), and intravitreal steroid therapies. With the progression of DR, proliferative DR 

generates as the retinal blood vessels proliferate towards the retinal cells and vitreous. This 

leads to the generation of new blood vessels and results in vitreous hemorrhage, retinal 

detachments, and increase in the permeability of retinal blood vessels.

2.7. Age-related macular degeneration (AMD)

Symptoms of age-related macular degeneration generally present around age 60, and are 

caused by damage to the macula, according to a National Eye Institute (NEI, USA) report 15 

million Americans and millions of people around the world are affected by this devastating 

retinal disorder. Macular degeneration does not affect the majority of patients until old age, 

and it is therefore difficult to study the sequential pattern in family members. There are two 

forms of AMD; one is “DRY” (non-nonvascular) and the other is “WET” (neovascular) 

AMD. The majority of AMD presents in dry form. Dry AMD is associated with the 

deposition of yellowish lipid proteins known as drusen under the retina that develop slowly 

and lead to gradual loss in central vision. Dry AMD can progress to geographic atrophy or 

the more devastating wet form. In wet AMD, an abnormal angiogenesis quickly leads to the 

choroidal neovascularization (CNV) within the retina and degenerates photoreceptor cells in 

the macula. This is responsible for 90% of AMD related blindness. There are some 

treatments available for wet AMD that involve inhibiting the growth of new blood vessels. 

Several delivery approaches of anti-angiogenic drugs like bevacizumab (trade name: 

Avastin) or ranibizumab (trade name: Lucentis) have been studied to inhibit vascular 

endothelial growth factor A (VEGF-A), which is responsible for the proliferation and 

growth of new blood vessels 36. There is no specific gene candidate established for AMD, 

and thus gene therapy remains an unpredictable therapeutic approach so far.

2.8. Glaucoma

Glaucoma is the second leading cause of blindness in the world. Overall, 9% to 12% of 

blindness is attributed to glaucoma. Damage to the optic nerve causes irreversible dystrophy 

in the eye, leading to blindness37. Increased intraocular pressure (IOP) is a key risk factor 

associated with this disease. However, this is not a guaranteed cause of glaucoma, as it is 

observed that 25% of glaucoma patients do not have elevation in their IOP37. In the anterior 

chamber, the aqueous humor forms by the ciliary body and is removed by the trabecular 

meshwork outflow pathways. IOP is based on the rate of removal of this aqueous humor 

from the interior chamber, which under normal conditions remains balanced with the rate of 

formation. The loss of retinal ganglion cells (RGCs) leads to damage in the ganglion cell 

axons, which finally degenerates the optic nerve. There are several therapeutic approaches 

developed so far to reduce the IOP by using drugs or surgery. The neuroprotection of these 

RGC cells is established as another well-studied therapeutic approach using different 

neuroprotective agents.

3. Ocular gene delivery

The success of retinal gene therapy primarily depends on the efficiency of the delivery 

vehicle to the targeted cells. The monogenic nature of retinal diseases is the basis for using 

the gene replacement therapeutic strategies. Two main approaches have been shown to be 
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promising for the delivery of therapeutic genes to the targeted cells. One approach is viral 

vector, and the other is a non-viral synthetic cargo-based gene delivery vehicle.

The targeting and delivery efficiency of the viral vectors depends on the vector serotype and 

nature of targeting tissues. Different types of viral vectors, including adenovirus, adeno-

associated virus (AAV, a non-pathogenic), and lentivirus, were demonstrated to be efficient 

for the retinal tissues in in vivo animal models and in vitro tissue cultures. To date, viral 

vectors are among the most commonly used vectors for gene therapy. Among these, AAVs 

(Fig. 3) are currently the most frequently used viral vectors and AAV2 is the most widely 

used AAV serotype38. Significant progress has been made using viral vector for gene 

targeting. For example, in 2001, the successful viral gene replacement therapy using AAV 

was carried out in three Briard dogs with RPE65 mutation39. Delivery of the MYO7A gene 

(~9kb), packaged in AAV2 and AAV5, was injected into the subretinal space of the shaker 1 

mice of a USH1 model40. By splitting into two separate AAV virions that contained splice 

donor and splice acceptor independently, they were able to efficiently express large MYO7A 

cDNA (~6.7 kb) in vitro and in vivo 40. The use of EIVA (equine infectious anemia virus) 

lentivirals mediated delivery of large wild type ABCR genes (~6.8kb) into the subretinal 

space of ABCR−/− mice, which increased the transduction efficiency of both rod and cone 

photoreceptor cells and decreased the toxic A2E levels in RPE cells41, 42, etc. However, the 

packaging capacities of AAV and lentivirus vectors are limited to ~5 and 9 kb, respectively. 

This size capacity restricts their delivery efficiency for large therapeutic genes. Therefore, 

this can also limit the delivery of large genes which might be composed of non-coding 

elements (e.g. intron) required for the improvement of in vivo gene expression43. In 

addition, the major drawbacks are their potential immunogenicity, carcinogenesis, broad 

tissue tropism, and genomic insertional mutagenesis that generate severe patient outcomes.

Based on these disadvantages of viral vectors, synthetic non-viral gene delivery and 

replacement methods have been evaluated as promising gene delivery alternatives. This 

synthetic field has several important advantages, which include nonimmunogenecity, ease 

and low production costs, simplicity in manipulating molecular structure according to 

requirements, and most importantly, safety to the genome. Therefore, this area of research 

has been growing as an attractive and opportunistic field for the development of promising 

synthetic lipid based liposomes, polymers (linear and branched dendrimers and 

polysaccharides), and polypeptide based gene carriers. Next, we will review recent progress 

for using non-viral nanoparticles (NPs) to carry out gene targeting in ocular cells.

3.1 Lipid based liposomes vehicles

Lipid based liposomes are widely applied as non-viral gene delivery vectors. It was first 

discovered in the 1980s when phosphatidylserine phospholipid was utilized to compact and 

deliver SV40 DNA to the monkey kidney cells44. The constituent lipid molecules are 

composed of a cationic or neutral or zwitterionic head group, a hydrophobic tail group, and a 

linker group in between them. When these lipid molecules come into contact with negatively 

charged DNA, they form a complex (lipoplex, schematically presented in Fig. 5a) with the 

dimension of 100–300 nm. The shape and overall charge of the complex depends on the 

structure of the lipid and conditional adjustments. The overall charge of the lipoplex remains 
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positive, which helps it to interact with the cell surface, followed by the fusion with cell 

membrane and internalization into the endosomal compartment45. To enhance the NP 

stability and transfection efficiency, a neutral/zwitterionic lipid such as fusogenic 

phospholipid DOPE (1, 2-dioleoyl-3-phosphatidylethanolamine) or membrane component 

cholesterol are introduced in the lipoplex formulation (Fig. 4a). DNA gets released into the 

cytosol generally via an endosomal escape pathway.

For the first time in 1996, the beta galactosidase reporter gene, under the control of 

cytomegalovirus (CMV) promoter, was administered in the adult Wistar rats using three 

cationic liposomes via topical, anterior chamber, vitreous, and subretinal space routes46. The 

three liposomes were TMAG (N-(triethylamminoacetyl)-didodecyl-D-gluamate), DDAB 

(dimethyldioctadecylammonium bromide), and DC-Cholesterol (3-beta [N-(N’-N’-

dimethylaminoethane)-carbamyl] cholesterol) (Fig. 4a). The gene was expressed in the 

RGCs on topical administration using TMAG and DC-cholesterol, but not by using DDAB 

up to 1 month. The TMAG liposome directed delivery of the gene and exhibited its highest 

level of expression among all three liposomes, irrespective of administrative route. The 

major problem associated with this technique was that the expression pattern was seen only 

in RGCs and RPE cells, whereas no expression was found in photoreceptor cells.

In 2005, Kachi and colleagues showed that the LacZ gene under the control of vitelliform 

macular dystrophy 2 (VMD2) promoter transduced to the RPE cells by using commercial 

40% lipofectamine 2000 (Lf)47. Use of another lipid carrier, NeuroPorter, was tolerated 

well47. At two weeks, the scotopic a- and b- wave electroretinography (ERG) values were 

reduced by 40% and 8%, respectively, after subretinal injection of Lf in adult bulb/c mice. 

On the other hand, after 10% of NeuroPorter injection in the subretinal space, normal retinal 

morphology and functions were revealed for up to 14 days, and expressed in the RPE cells 

without any noticeable toxicity to retinal cells. Due to phagocytic activity of RPE cells, the 

transfer of reporter or therapeutic genes using lipid complex (lipoplex) is feasible (Fig. 5a), 

and may be a future therapeutic approach for RPE cell-related human ocular diseases.

More recently in 2014, Puras and colleague showed that a novel noisome composed of 

cationic lipid 2, 3-di (tetradecyloxy) propan-1-amine with polysorbate 80 additive, could 

deliver pCMS-EGFP plasmid DNA into the rat retina48. Injection into the subretinal space 

transduced both photoreceptor and RPE cells. Intravitreal injection expressed a uniform 

distribution of the reporter EGFP gene throughout the inner retina. Also in 2014, a novel 

strategy was discovered when liposome-proteamine decorated with cell-penetrating nuclear 

localizing signal peptides entrapped functional DNA and expression in the RPE cells49. So 

far, all of these ocular gene therapeutic approaches are limited to proof-of-principle steps 

and in the near future we can expect more novel lipid based formulations for human use.

3.2 Polymer based vehicles

A cationic polymer combines with negatively charged anionic DNA and forms a polyplex 

(Fig. 4b) of different surface charges45. The well-known polymers used for ocular gene 

delivery are composed of biopolymers (proteins), dendrimers, polysaccharides, polylysin, 

polyethyleneimines and small organic biocompatible lactic acid (e.g. PLA) and/or glutamic 

acid (e.g. poly (lactic-co-glycolic acid) molecules (Fig. 4b). In 2013, Puras and colleagues 
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evaluated the gene delivery efficiency of low molecular weight oligochitosan (Fig. 4b) and 

pCMS-EGFP polyplex in vitro and in vivo50. This polyplex protected plasmid DNA from 

nuclease degradation and transfected well to the ARPE 19 cells at pH 7.1. Subretinal 

injection expressed EGFP to the RPE cells, while intravitreal injections exhibited 

transfection to the inner nuclear layer, plexiform layer, and primarily to RGCs in rat retina.

In 2014, Mitra and colleagues synthesized and characterized an ethylene glycol modified 

chitosan (glycol chitosan, GCS, Fig. 4b) and pCBA-EGFP polyplex that protected plasmid 

DNA from nuclease, which expressed reporter EGFP gene in the RPE cells when injected 

into the subretinal space of adult Balb/c mice without affecting the morphology and function 

(using ERG) of retinal cells51. In 2012, Klausner and colleagues evaluated the enhancement 

of transgene expression using chitosan DNA nanoformulation on topical administration on 

the rat cornea52. At 1 day post injection of chitosan DNA complex, it was observed that 

expression of CpG free pCpG-Luc plasmid DNA enhanced by 7.1, 116.8, and 76.8 folds, 

compared to commercially available gWiz-CMV-Luc, pPEI-CMV, and pPEI-UbC plasmid 

DNAs respectively, and demonstrated the development of effective vectors for corneal gene 

therapy52. Another biopolymer gelatin has also been investigated to deliver and significantly 

express mucin MUC5AC (responsible for dry eye syndrome) transgene into the cornea and 

conjunctiva in vivo53. In 2012, Delgado and colleagues reported the ocular gene therapy 

using solid lipid NPs (SLN) composed of biocompatible dextran, protamine, and a plasmid 

DNA (pCMS-EGFP or pCEP4-RS1)54. Dextran is a neutral nonionic polysaccharide and 

combines with cationic polymer to entrap, stabilize, and protect negatively charged DNA. 

On topical administration of SLN to the rat eye, reporter EGFP gene was expressed in the 

cornea and provided a strategic opportunity to deal with various ocular surface diseases54.

In 2014, Alqawlaq and colleagues demonstrated the localization of Cy5 labelled pCMV-

GFP plasmid DNA into the nerve fiber layer of the retina by intravitreal administration 

using Gemini surfactant, whereas the same happened to anterior chamber tissues including 

limbus, iris, and conjunctiva on topical administration to the 4 week old C57BL/6 mice55. 

Intravitreal route of injection is promising, as this reduces the induction of photoreceptor 

cell degeneration seen during subretinal injections. However, this route possesses huge 

viscosity, and thus provides resistance to the mobility of cationic polyplexes (Fig. 4b). 

Therefore, when the polyplexes are strategically coated with the hyaluronic acid (HA, 

component of vitreous matrix), they are less aggregated and able to flow more easily 

through the vitreous space. Most recently in 2015, Martens and colleagues have 

demonstrated that in an ex vivo experiment where cationic N, N′-cystaminebisacrylamide-4-

aminobutanol (p (CBA-ABOL) vector was coated with the HA, there was a significant 

amount of enhancement in the gene expression in the retina via intravitreal route of 

administration 56.

Albumin, a widely used protein carrier, is retained with a high percentage (60–70%) among 

all the proteins in the vitreous compartment 57. Therefore, this biocompatible and 

biodegradable component is safe to use for in vivo ocular gene therapy. In 2007, Mo and 

colleagues found enhanced Cu, Zn superoxide dismutase (SOD1) gene expression by 5 fold, 

compared to the untreated control via intravitreal injection in the mouse eye when entrapped 

in human serum albumin NP (HSA NP)58. In another separate study in 2009, Kim and 
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colleagues evaluated the potential of anionic HSA NP as a promising gene delivery tool for 

RPE cells via the subretinal space59. A category of highly branched nanodimension 

molecules made of central core, interior branches, and exterior surface functional groups, 

known as dendrimers, were also evaluated as potential gene delivery vehicles for in vitro 

and in vivo models. When dendrimer is composed of a high number of surface amine 

functional groups, it condenses negatively charged DNA and protects it from external 

nuclease degradation. Polyethylenimine (PEI) and polyamidoamine (PAMAM) are 

commonly used dendrimers for retinal gene delivery applications due to their “proton 

sponge” mediated endosomal escape attitude. Oligonucleotide polyethylenimin (ODN/PEI) 

complex has been observed to be efficient in transfecting retinal glial cells at 72 hours after 

intravitreal injection in normal rat eyes without any detectable toxicity 60. In another 

attempt, PEI condensed shRNA plasmid DNA to target melanopsin in Balb/c mice, and was 

able to knock down melanopsin in RGC cells at 16 hrs of intravitreal injection, which lasted 

for 2 months61. In 2015, Mastorakos and colleagues showed the combined effect of 

hydroxyl-terminated PAMAM and triamcinolone acetonide (TA) in enhancing transfection 

of dendrimer-gene complex into the most challenging human RPE cells in vitro62. In 2012, 

Sunshine and colleagues synthesized a novel poly (β-amino ester, Fig. 4b), which exhibited 

the expression of reporter GFP gene into the RPE and choroid at post injection of 72 hrs via 

subretinal delivery63. In 2004, Marano and colleagues evaluated for the first time the 

intravitreal delivery of anti-vascular endothelial growth factor (VEGF) oligonucleotide 

(ODN-1) into the rat eyes using the lipophilic amino-acid dendrimer, which significantly 

inhibited laser-induced choroidal neovascularization (CNV) for 4–6 months by 95% in the 

initial stage of CNV development, thereby paving the way for the treatment of angiogenic 

eye disorders 64.

Polycationic compounds (Fig. 4b) are generally limited by their high positive charge and 

significant toxicities. These toxicities are strategically eliminated by encapsulating them in 

conjunction with DNA into the neutrally charged (at physiological pH) biocompatible and 

biodegradable poly (lactic-co-glycolic acid) (PLGA) molecules. PLGA has been widely 

used for drug delivery and approved by both the US Food and Drug Administration (FDA) 

and the European Medicine Agency. In 2010, Zhang and colleagues developed hypoxia-

inducible factor 1α (HIF-1α) shRNA and GFP co-expressed plasmid DNA-loaded PLGA 

NPs (pshHIF-1α NPs) 65. The result showed that the intravitreal injection of these NPs 

reduced the mean area of CNV in the rat laser photocoagulation model without any 

deleterious effects on the retina. Another study by Bejjani and colleagues showed the 

expression of reporter RNFP (red nuclear fluorescence) in RPE cells up to 14 days post 

intraocular injection without any apparent structural damage or toxicity66.

3.3 Polypeptide based vehicles

In the pipeline of developing gene delivery vehicles, polypeptide based systems are 

evaluated as a promising tool for ocular gene delivery. A novel cell penetrating peptide, 

peptide for ocular delivery (POD, CGGG(ARKKAAKA)4), was able to transduce GFP 

protein under the control of CMV promoter, which was expressed into the RPE and 

photoreceptor cells via subretinal injection in C57BL6/J mice67. On intravitreal injection, 

the POD compacted GFP plasmid DNA (POD-GFP) transduced retinal ganglion cells, with 
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limited expression in the inner nuclear layers and lens capsule68. The topical administration 

of POD-GFP expressed GFP protein in the corneal epithelium cells. In 2014, Read and 

colleagues demonstrated that the pegylation of POD peptide was able to increase pCAGLuc 

expression by 215-fold, compared to naked plasmid DNA in the RPE cells by subretinal 

injection in Balb/c mice69. These PEG-POD NPs were also able to protect photoreceptor 

cells by delivering glial cell line-derived neurotrophic factor (GDNF) into the subretinal 

space of the blue light-induced photoreceptor apoptosis adult murine model at the 14th day 

post light treatment70. Based on polylysin and DNA compaction strategy, a novel cationic 

CK30-PEG polymer71 was developed to compact plasmid DNA to form an NP formulation 

(Fig. 5b) that could transfect therapeutic genes to the retinal cells in different mice models. 

The shape of these NPs determines the targets in retinal tissues71. The rod shaped NPs 

transfect the RPE and photoreceptor cells, while ellipsoidal NPs transfect only RPE cells in 

vivo. The major advantage of these NPs is the compaction efficiency of plasmid DNA with 

long molecular range (from 5.3 kb to 20.2Kb), while in all cases the charge of the NPs 

remains neutral, minimizing toxicity72. Subretinal injection of these NPs didn’t leave the 

eye, compared to the AAV mediated ocular gene delivery approach. No apparent toxicity to 

the retinal cells was seen, which makes this NP a promising alternative as a non-viral gene 

delivery vehicle to ocular tissues72. The CK30-PEG compacted GFP reporter gene (driven 

by CMV promoter) was able to highly express to RPE and photoreceptor cells by subretinal 

injection, while intravitreal route of injection exhibited GFP expression mainly in ganglion 

cells along with less amounts in the cornea, trabecular meshwork, and lens. The CK30-PEG 

compacted NPs highly expressed human RPE65 gene driven by VMD2 promoter (RPE cell 

specific) in the RPE cells of RPE65−/− mice model of LCA disease, with long term 

phenotypic rescue (up to 2 years)73, 74. Human photoreceptor cell specific ATP-binding 

cassette transporter gene (ABCA4) gene was expressed by subretinal injection of this 

compacted NP (by CK30-PEG polypeptide), under the control of IRBP promoter 

(photoreceptor cells specific), into the retina of the ABCA4−/−- knockout mice model of 

Stargardt’s disease, with a persistent expression of up to 8 months post injection75. A 

significant amount of retinal degeneration slow (RDS) gene expression with partial rescue of 

photoreceptor cell function was observed when compacted with CK30-PEG and delivered 

into the subretinal space of Rds+/− mice 76. This CK30-PEG has not shown any apparent 

toxicity towards retinal cells, even with a second set of subretinal injection of NPs77, and 

can drive gene expression levels on the same scale and duration as AAV78. These NPs have 

so far been evaluated as a promising ocular gene delivery vehicle, and can be the potential 

tool for ocular gene delivery with some modifications in their chemical structures to target 

primary and secondary retinal neuronal cells.

Conclusion

Despite this promising non-viral delivery vehicle development for ocular tissues, 

achievements primarily have been limited to transfection efficiency into RPE cells, but not 

towards photoreceptor and other neuronal tissues in the eye, which is the origin of major 

retinal disorders. Polypeptide-based vehicles have demonstrated some success, but rational 

chemical modifications of these compounds might develop smart gene delivery cargos as a 
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promising alternative to viral vectors and are very appealing for human ocular gene therapy 

in the near future.
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Fig. 1. 
Diagrams of vertebrate eye (left) and the retina (right).
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Fig. 2. 
A) Photo activation leads to an isomerization of 11-cis retinal molecule to all-trans retinal 

(atRAL) in rhodopsin (conjugation of rod opsin + 11-cis retinal) pigment in outer segment 

disc. The atRAL is now converted to all-trans retinol (atROL) by all-trans retinol 

dehydrogenase (atRDH8) and initiates visual photo transduction processes. B) Simple 

representation of the visual cycle in vertebrate eye. In rod cell, retinal chromophore (11-cis 

retinal) binds to the rod opsin protein and forms GPCR. Absorption of light causes 

activation of this photopigment, and leads to isomerization of the 11-cis retinal to atRAL 
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that is subsequently reduced by atRDH8 to atROL in photoreceptor outer segment. This 

atROL is now transferred to RPE cells via IRBP carrier enzymes, where it is esterified to 

long-chain fatty acids (all-trans retinyl esters) by Lecithin retinol acyltransferase (LRAT). 

All-trans retinyl esters are then enzymatically isomerized and hydrolysed to the 11-cis 

retinol by retinal pigment epithelium-specific 65 kDa (RPE65) isomerohydrolase. This 11-

cis retinol is then finally converted to 11-cis retinal, a universal chromophore for visual 

pigment, by 11-cis retinol dehydrogenase (RDH5), and is consequently shuttled back to 

photoreceptor cells by IRBP to reconstitute rhodopsin pigment in photoreceptor disc, where 

it completes the visual cycle.
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Fig. 3. 
Representative 25 nm icosahedral capsid of AAV virion. The ~5 kb AAV genome is 

packaged within the non-enveloped capsid. A gene of interest is inserted between the ITRs 

under the control of promoter at upstream. ITR: Inverted Terminal Repeat.
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Fig. 4. 
Chemical structures of commonly used non-viral compounds for ocular gene delivery. A) 
Chemical structures of lipid based compounds and B) chemical structures of some 

frequently used polymeric compounds.
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Fig. 5. 
Simple representation of A) lipoplex, where lipid molecules can form bilayer structures and 

are thus able to encapsulate hydrophilic nucleic acids inside the nanoparticle core. The lipid 

coating can be used with different targeting agents. The polyethylene glycol (PEG) can also 

work as a shielding element to protect the nucleic acids from harsh extracellular and 

intracellular nuclease, as well as lysomal environments, and B) polyplex, where morphology 

of the nano-composites depend primarily on the chemical structure and charge of the 

constituent polymer compound (s). The negatively charged nucleic acids and positively 

charged polymers (via electrostatic interactions) constitute the compacted charge-neutral 

DNA nanoparticles. The PEG block shields the nanocompactions and protects it from 

nuclease and other degradative pathways.
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