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Abstract

Human papillomavirus (HPV) is the most common sexually transmitted viral infection. Infection 

with certain types of HPV pose a major public health risk as these types are associated with 

multiple human cancers, including cervical cancer, other anogenital malignancies and an 

increasing number of head and neck cancers. The HPV life cycle is closely tied to host cell 

differentiation with late viral events such as structural gene expression and viral genome 

amplification taking place in the upper layers of the stratified epithelium. The DNA damage 

response (DDR) is an elaborate signaling network of proteins that regulate the fidelity of 

replication by detecting, signaling and repairing DNA lesions. ATM and ATR are two kinases that 

are major regulators of DNA damage detection and repair. A multitude of studies indicate that 

activation of the ATM (Ataxia telangiectasia mutated) and ATR (Ataxia telangiectasia and Rad3-

related) pathways are critical for HPV to productively replicate. This review outlines how HPV 

interfaces with the ATM- and ATR-dependent DNA damage responses throughout the viral life 

cycle to create an environment supportive of viral replication and how activation of these pathways 

could impact genomic stability.
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Introduction

HPVs are small, double-stranded, non-enveloped DNA viruses that infect stratified 

epithelium at various anatomical sites, including the skin, anogenital tract and oral cavity 

(1). Of the over 100 hundred types of HPV that have been identified, about 40 of these infect 

the genital mucosa and are categorized into high-risk and low-risk based on their association 

with cancer (2, 3). Low-risk types (e.g. HPV 6, HPV11) cause benign genital warts, and 

rarely progress to malignancy. In contrast, about 15 types are considered high-risk and are 
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the causative agents of 99% of cervical cancers (4). In addition, high-risk HPV types, 

particularly HPV16, are associated with 25% of head and neck cancers (5).

Many viruses have been shown to manipulate DNA repair pathways in order to efficiently 

replicate (6). While some viruses have evolved mechanisms to avoid or eliminate DNA 

repair machinery (e.g. Adenovirus), other viruses (e.g. SV40) activate and utilize the DDR 

to replicate their genomes (7). Numerous studies support a role for the DDR in facilitating 

HPV replication, with activation of the ATM and ATR pathways being required for 

productive viral replication (8–12). Activation of the ATR pathway may also contribute to 

the establishment of HPV genomes (13), as well as to the stable maintenance of viral 

genomes in undifferentiated cells (8, 12, 14). Three licensed HPV vaccines offer great 

promise in reducing the number of deaths due to cervical cancer, however these vaccines are 

not therapeutic. Understanding how HPV activates and utilizes DNA repair pathways to 

promote viral DNA synthesis may identify potential therapeutic targets to limit viral 

replication and block disease progression.

Viral Genome Organization

The HPV genome is maintained as a circular extrachromosamal element (episome) of 

approximately 8kb in length (1). HPV DNA is associated with histones in the virion as well 

as infected cells, forming a nucleosome pattern similar to that of cellular DNA (15, 16). The 

viral genome typically contains six to eight open reading frames (ORF) that are designated 

as early (E) or late (L) (Figure 1). The ORFs are transcribed as polycistronic messages from 

one strand of the DNA that are alternatively spliced to yield individual gene products (17). 

The early proteins are non-structural and are involved in a variety of functions ranging from 

viral genome replication to cell cycle control and immune evasion (18). E1 is an ATP-

dependent helicase that also recruits host DNA replication factors to the viral origin of 

replication (19). E2 cooperates with E1 to facilitate the initiation of viral genome replication, 

and also regulates viral gene expression from the early promoter, as well as plays a role in 

viral genome partitioning (20). E6 and E7 are the oncoproteins for the high-risk HPV types 

and perform a wide variety of functions ranging from inhibiting apoptosis to cell cycle 

manipulation to immune evasion, all of which contribute to cancer development (2, 21, 22). 

E4 and E5 play a role in virion release and immune evasion, respectively, and are also 

required for productive viral replication (23–26). L1 and L2 are structural proteins that form 

the viral capsid. A regulatory region, designated the LCR (long control region) or URR 

(upstream regulatory region), is located at the end of L1 and the start of the early region and 

contains the viral origin of replication, binding sites for E1 and E2, as well as the early 

promoter and transcription factor binding sites (18).

The HPV Life Cycle

The HPV life cycle is tightly linked to the differentiation of the host cell keratinocyte 

(Figure 2) (18). Due to the small coding capacity of the virus, HPV is reliant on cellular 

factors for viral replication. The viral life cycle encompasses three phases of replication; 

establishment, maintenance and productive, all of which are influenced by the DNA damage 

response, and these three phases are described briefly below.
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Establishment Phase

HPVs infect the actively dividing cells of the basal layer of the stratified epithelium to 

establish infection (27). Virions are thought to gain access to these cells through a 

microwound (28). Upon host cell entry, viral genomes enter the nucleus, where E1, E2, E6 

and E7 are expressed from the early promoter (p97 for HPV16, 31; p105 for HPV18). E2 

binds and recruits the E1 helicase to the viral origin of replication (29–31). E1 also binds 

cellular factors required for viral replication, including polymerase alpha, topoisomerase 1 

and Replication Protein A (RPA) (19). Both E1 and E2 are required for the rapid and 

transient initial amplification of viral genomes to establish a low viral copy number (50–100 

copies per cell).

Maintenance phase

Following establishment, the viral genome is maintained is at an approximately stable 

number in the proliferating basal cells of the epithelium. While E2 is required for stable 

maintenance of viral episomes, E1 has been shown to be dispensable in some cases (20, 32, 

33). Maintenance replication of HPV genomes can occur in an ordered once per S-phase 

manner, or randomly, whereby some viral genomes may replicate several times, some once 

and some not at all (34). The mode of replication utilized depends on the type of HPV, the 

cell line used, as well as the levels of E1, with high levels of E1 driving random choice 

replication (34). E2 also contributes to episomal maintenance by ensuring equal partitioning 

of HPV genomes to daughter cells upon cell division (20). E2 accomplishes this by tethering 

viral genomes to host mitotic chromosomes through chromatin adapter proteins (35). E6 and 

E7 also contribute to the stable maintenance of viral genomes by providing an environment 

conducive to viral replication (36). This is accomplished, at least in part, through E6’s 

ability to bind and degrade p53 (22, 37, 38), which inhibits cell cycle checkpoints and 

prevents host cell apoptosis. E7 deregulates cell cycle control through its ability to bind and 

promote the degradation of the tumor suppressor Rb, as well as the related pocket proteins 

p130 and p107, resulting in the constitutive activation of E2F transcription factors (21, 39, 

40). E6 and E7 both contribute to inactivation of innate immune response pathways to block 

the antiviral response and promote replication (41).

Productive phase

When an infected basal cell divides, one of the daughter cells remains in the actively 

dividing basal layer, while the other moves upward and begins the process of terminal 

differentiation. Differentiation activates the productive amplification of viral genomes to 

hundreds to thousands of copies per cell (2, 42). Differentiation also results in activation of 

the late promoter, located in the E7 ORF (43), which drives high levels of E1 and E2 to 

facilitate productive replication (44, 45), as well as E4 and E5 (45), which are also required 

for efficient viral DNA synthesis (24, 25). How E4 functions in productive replication is not 

well defined, but may contribute through affects on cell cycle progression (23). E5 helps 

maintain a proliferative environment upon differentiation (26, 46, 47). The capsid proteins 

L1 and L2 are also expressed from the late promoter, allowing for encapsidation of newly 

replicated genomes in the uppermost layers of the epithelium (18).
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Normally, epithelial cells committed to differentiation exit the cell cycle, however, HPV 

must keep differentiating cells active in the cell cycle to provide cellular factors for viral 

replication. E7’s ability to target Rb for degradation is critical to push post-mitotic cells back 

into the cell cycle, providing an environment conducive to viral replication in differentiating 

cells (48–50). As a result, cells supportive of productive replication express markers of 

differentiation, but also of cell cycle re-entry. Traditionally, E7-induced cell cycle re-entry 

has been thought to provide an S-phase environment that allows for amplification of viral 

genomes. However, recent studies indicate that productive replication occurs post-cellular 

DNA synthesis, as cells transition from S- to G2-phase (51), likely allowing HPV access to 

cellular factors without competing with cellular DNA synthesis. The mode of replication 

HPV uses to achieve rapid amplification of viral DNA upon differentiation is not clear. 

However, there is some evidence to suggest that there is a switch from the bi-directional 

(theta) replication used to stably maintain viral genomes in undifferentiated cells to a mode 

that utilizes rolling circle replication and/or recombination (52), which likely involves DNA 

repair factors, as discussed below. A seminal study from the Laimins lab demonstrated that 

highrisk HPV31 requires activation of DDR pathways for productive replication (9). Several 

studies since this initial observation offers further support that HPV productively replicates 

using DNA repair pathways, specifically through activation of the ATM and ATR DNA 

damage kinases (8, 10, 11, 53). Below, we first describe the ATM and ATR pathways then 

discuss how HPV has been shown to influence these DNA damage repair pathways 

throughout the viral life cycle.

DNA Damage Repair Pathways

Reliable maintenance of genomic integrity is an essential function of every cell. In order to 

ensure faithful replication and maintenance of chromosomes, several mechanisms exist to 

detect and repair damaged DNA. Depending on the type of damage that occurs, the cell has 

a variety of repair pathways at its disposal. As a group, these pathways are collectively 

known as the DNA damage response (DDR). The three major regulators of the DDR are the 

ATM, ATR and DNA-PK (DNA-dependent protein kinase) kinases, which belong to the PI 

3-Kinase (PIK) family of kinases (54). Double strand DNA breaks (DSBs) can be repaired 

by either high fidelity, homologous recombination (HR) that requires ATM activity, or by the 

more error prone non-homologous end joining (NHEJ) response, which is regulated by 

DNA-PK (54). Conversely, ATR is required for repair of single-strand DNA that can result 

from stalled replication forks or processing of DSBs. (55, 56). Numerous studies have 

demonstrated that HPV exploits both the ATM and ATR DDR pathways in order to 

successfully replicate its genome (8, 12, 57). In contrast, little is known regarding the 

importance of HPV’s interaction with the DNA-PK pathway for the viral life cycle. Through 

activation of the ATM and ATR pathways, HPV is able to recruit DNA repair factors 

necessary for viral genome replication, as well as provide cellular factors for viral 

replication, which appears to be especially important upon differentiation.

ATM DNA damage repair pathway

The ATM DDR pathway is typically activated in response to DNA DSBs and primarily 

repairs DNA through HR (Figure 3). In response to ionizing radiation, DSBs are recognized 
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by the MRN complex, which is composed of Mre11, Rad50, and NBS1 (54). Mre11 has 

endonuclease and exonuclease activities important for preparing broken DNA ends for HR 

repair (58, 59). Rad50 is a member of the structural maintenance of chromosomes (SMC) 

family of proteins and interacts with the broken ends of DNA in the DSB (54). NBS1 

directly binds and localizes ATM to sites of DNA damage (60, 61). ATM is activated by its 

recruitment to DSBs by NBS1, as well as acetylation by the TIP60 acetyltransferase (62–

65). Activated ATM coordinates repair of DSBs by phosphorylating numerous downstream 

targets, including proteins involved in HR repair, such as NBS1, BRCA1, and the 

endonuclease CtIP (66). Mre11, along with CtIP and BRCA1, mediate resection of the 

broken ends, resulting in ssDNA that is rapidly coated by the ssDNA binding protein 

complex RPA. RPA is then replaced by the Rad51 recombinase, which is recruited by the 

BRCA2/PALB2 complex (54, 67). Rad51 forms nucleofilaments on ssDNA that invade into 

a homologous template, most often the sister chromatid, resulting in repair through 

recombination. HR is restricted to the S and G2 phases due to the availability of the sister 

chromatid, as well as cell cycle-dependent regulation of DNA end resection, which 

generates the 3’ single-stranded DNA necessary for homology search (68). Extensive 

formation of ssDNA prevents the binding of the KU70/KU80 heterodimer, which recruits 

DNAPK for NHEJ, resulting in the inhibition of NHEJ and the commitment of DNA repair 

towards HR (68).

Other important targets of ATM include the histone variant H2AX, as well as Chk2, and p53 

(69–71). In response to DNA damage, ATM rapidly phosphorylates H2AX (referred to as 

γH2AX), which nucleates the assembly of DNA repair factors at sites of DNA damage in a 

highly ordered fashion (69). γH2AX recruits the scaffolding protein MDC1, which is also a 

substrate of ATM. pMDC1 recruits the ubiquitin ligases RNF8 and RNF168, which 

ubiquitylate H2A/H2AX, facilitating the recruitment of BRCA1, as well as 53BP1 (54, 72). 

Phosphorylation of Chk2 results in arrest in G2 phase through phosphorylation and 

inactivation of the CDC25 phosphatase and its downstream effector CDK1 (73). A 

temporary halt in the cell cycle allows time for the DNA to be repaired before continuation 

of the cell cycle. Activation of p53 also leads to cell cycle arrest, and in the case of 

unrepaired damage, cell death through apoptosis (71).

ATR DNA damage pathway

ATR is the central coordinator of the DDR relating to replication stress and replication fork 

stalling (55, 56). Replication stress occurs due to the slowing down or stalling of replication 

fork progression and/or DNA synthesis and results in large regions of RPA-coated ssDNA 

(Figure 4). ATRIP, the regulatory partner of ATR, directly binds RPA, allowing ATR/ATRIP 

to recognize ssDNA at sites of DNA damage or stalled replication forks (74). In addition, 

RPA-ssDNA recruits the Rad17/RFC complex, which loads the 9-1-1 complex (RAD9-

HUS1-RAD1) on to DNA. Rad9 interacts with the topoisomerase IIbinding protein 1 

(TopBP1), which binds and stimulates the kinase activity of ATR. Activated ATR then 

phosphorylates its downstream effector Chk1 through the mediator protein claspin (54, 55, 

75–78). ATR/Chk1 activity is critical for cells to cope with intrinsic cellular stresses. The 

ATR/Chk1 pathway protects the genome against DNA damage and replication stress by 

regulating and coordinating multiple cellular processes including fork stabilization and 
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restart, inhibition of replication origin firing, while preventing progression through the cell 

cycle while replication is completed (56). Recent studies have shown that the activity of 

ATR/Chk1 is particularly important for the survival of cancer cells, which typically exhibit 

high levels of replication stress (79–81).

HPV manipulation of the DNA damage response pathways

Utilization of the ATM pathway during the viral life cycle

The observation by the Laimins lab that high-risk HPV31 positive cells exhibit constitutive 

activation of an ATM-dependent DDR was the first indication that HPVs may manipulate 

DNA repair pathways for viral replication (9). ATM signaling is observed in undifferentiated 

and differentiated high-risk HPV31 positive cells, and is characterized by phosphorylation of 

the downstream effector Chk2, as well as NBS1 and BRCA1. Activation of the ATM-

dependent DDR has since been extended to the high-risk types HPV16 and HPV18 (82). 

Despite markers of ATM activation throughout the viral life cycle, inhibition of ATM kinase 

activity has no detectable effect on episomal maintenance, but completely blocks productive 

replication (9). Although these results suggest that ATM activity is only required for 

replication in differentiating cells, it is important to note that knocking down ATM 

expression using siRNAs results in a 70% decrease in HPV16 copy number (14). The ATM 

effector Chk2 is also required for productive replication (9). ATM-driven Chk2 activity is 

necessary for activation of caspase-7, whose activity is required for cleavage of the E1 

helicase and productive replication (9, 83). Inhibition of Chk2 activity also results in 

decreased phosphorylated Cdc25c levels in HPV31 positive cells (9), suggesting that HPV 

may utilize ATM signaling, at least in part, to provide the G2 arrested environment required 

for amplification of viral genomes. In addition, HPV utilizes ATM to activate the p38/MK2 

pathway, which is also required for productive viral replication and acts in parallel to Chk2 

and Chk1 to elicit DNA repair (53, 84).

Understanding how, as well as why HPV activates the ATM response for viral replication 

has been an area of intense interest. Interestingly, ATM activation seems to occur in an 

MRN-independent manner in HPV positive keratinocytes (10), suggesting a non-canonical 

mechanism of ATM DDR activation (85), which has also recently been suggested for 

Adenovirus infection (86). Both E1 and E7 proteins are sufficient when expressed alone to 

induce ATM activity. In undifferentiated cells, expression of E1 induces ATM activation in a 

manner likely dependent on its ability to non-specifically bind and unwind cellular DNA, 

leading to DSB formation (82, 87). When co-expressed with E2 however, E1 and E2 form 

nuclear viral replication foci that recruit numerous DNA repair factors, including 

phosphorylated ATM (pATM), pChk2, pNBS1, BRCA1 and Rad51, as well as pChk1 and 

TopBP1, two components of the ATR response (13, 82, 88). In organotypic raft cultures 

derived from either HPV18 positive or HPV18 E7-expressing keratinocytes, Banerjee et al 

demonstrated that activation of ATM, Chk2 and Chk1 occurs in differentiating cells of the 

stratified epithelium (89), indicating a role for E7 in eliciting the ATM activity required for 

productive viral replication. Similar results were observed in HPV31 organotypic raft 

cultures (9). Interestingly, HPV31 E7 binds to the phosphorylated form of ATM (9), but 
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whether this interaction influences the activation of downstream effectors, or directs ATM to 

distinct targets is currently unclear.

Recent studies have shown that the Rb binding domain of HPV31 E7 is required to maintain 

high levels of total and phosphorylated ATM, Chk2 and Chk1, the MRN complex, as well as 

the HR factors Rad51 and BRCA1 in infected cells (90). Interestingly, E7 does not increase 

levels of DNA repair factors strictly through transcription, as one would expect given that 

targeted degradation of Rb results in the constitutive activation of E2F factors. Rather, the 

Rb binding domain of E7 allows for HPV to broadly increase the half-life of DNA repair 

factors (90). Although the mechanism is currently unclear, E7 may influence protein 

stability through binding to DNA repair factors and has been shown to interact with NBS1 

(10), BRCA1 (91) and Rad50 (10), in addition to pATM (9). Alternatively, E7-dependent 

activation of ATM may lead to increased protein stability of its downstream targets. E7 has 

also been shown to regulate the activation of ATM through the immune regulator STAT-5, 

whose activity is also required for productive viral replication (92). STAT-5 may regulate 

ATM activation in HPV positive cells by increasing the activity of the TIP60 

acetyltransferase, which is required for productive replication and must acetylate ATM to 

allow for its full activation (65, 93). These studies provide a link between the innate immune 

response and DNA damage signaling in HPV positive cells. How E7 leads to STAT-5 

activation is currently unclear, but is postulated to require E7’s Rb binding domain (92).

Multiple ATM effectors localize to sites of replication in HPV positive cells, including 

pATM, γH2AX, pChk2, γH2AX, 53BP1, RPA, the MRN complex, and the HR proteins 

Rad51 and BRCA1 (10, 82, 94, 95). Gillespie at al demonstrated that γH2AX is bound to 

HPV genomes (94), which may be important in facilitating the recruitment of downstream 

DDR factors to HPV genomes (96). The finding that Rad51 and BRCA1 localize to sites of 

viral DNA synthesis suggests that HPV may utilize ATM activity to drive productive 

replication in a recombination-dependent manner. Indeed, productively replicating viral 

genomes exhibit branched structures consistent with strand invasion and unidirectional or 

rolling circle replication, which are not observed during maintenance replication (52). 

Importantly, Rad51 and BRCA1, as well as the MRN complex are required for productive 

viral replication, but not for episomal maintenance (10, 11). Disruption of the MRN complex 

through knockdown of NBS1 expression prevents the localization of Mre11 and Rad50, as 

well as Rad51 to viral genomes upon differentiation (10), suggesting that MRN-dependent 

resection may be required for Rad51 loading onto viral DNA. In support of this, inhibition 

of Mre11’s nuclease activity blocks productive viral replication (10). The binding of Rad51, 

as well as NBS1 to HPV DNA is dependent on the deacetylase Sirtuin 1 (SIRT1), which is 

upregulated in HPV positive cells and required for productive viral replication (97, 98). 

SIRT1, as well as TIP60 both influence the DSB repair pathway of choice to HR through 

modification of cellular chromatin (99, 100), and may provide a similar role in HPV positive 

cells through effects on viral chromatin (96). As mentioned previously, BRCA1 also 

influences repair pathway choice to HR by promoting end resection (68). Given the 

requirement of Rad51, BRCA1, the MRN complex, SIRT1 and TIP60 in productive 

replication, HPV may utilize ATM activity to direct the recruitment of HR factors to viral 

genomes rather than NHEJ factors, as recently been shown for SV40 (101). How HR plays a 

role in the productive replication of HPV is currently unclear. Productive replication may 
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result in DSBs and/or stalled replication forks that require HR for repair or fork restart, 

respectively. Additionally, if HPV switches to a rolling circle replication mechanism upon 

differentiation, HR may be used to resolve concatemers into individual viral genomes 

suitable for packaging. As HR is considered a relatively error-free process, HPV may 

preferentially use this method of repair to achieve high fidelity amplification of viral 

genomes. Furthermore, productive replication is thought to take place in a G2/M arrested 

environment, when HR is most active.

Utilization of the ATR pathway during the HPV life cycle

While manipulation of the ATM DDR pathway by HPV for viral replication has become 

well established, less is known about HPV’s engagement of the ATR DDR. However, recent 

studies have shown that high-risk HPVs activate the ATR/Chk1 pathway and may require its 

activity for all three phases of replication (8, 9, 13, 82). Examining the impact of the DDR 

on establishment replication has largely been achieved through transient transfection of viral 

DNA, as producing large amounts of virus for de novo infection is cumbersome. Using a 

U20S-based model system, Reinson et al. demonstrated that transient transfection of HPV18 

genomes induces the activation of ATR and the accumulation of ATR components (γH2AX, 

ATRIP, and TopBP1) at viral replication centers in an E1-dependent manner (13). These 

results suggest that initial amplification of viral genomes may result in replication stress that 

activates the ATR pathway. In addition, 2D gel analysis of transiently replicating viral 

genomes revealed structures consistent with bi-directional theta replication, as well as 

unidirectional replication, which may involve recombination and suggests that the initial 

round of viral replication may occur through two distinct mechanisms (13). Upon initial 

infection, ATR may engage recombination/repair factors at viral replication sites that are 

important for the establishment of viral genomes. Though specific DNA repair factors have 

not been identified that are necessary for establishment replication, these studies indicate 

that recombination may be important for both the initial amplification of viral genomes, as 

well as for productive replication upon differentiation.

Activation of the ATR/Chk1 pathway is also required for the stable maintenance of viral 

episomes (8, 12, 14), and recent studies have found that ATR/Chk1 activation is also 

required for productive viral replication (8, 12). Both E7 and E1 can independently activate 

the ATR/Chk1 pathway (8, 82, 87). E7 induces ATR/Chk1 activation through a STAT5-

mediated increase in TopBP1 expression (8). The mechanism by which E1 induces ATR/

Chk1 activity is currently unclear, though may occur through replication stress or DSBs at 

viral replication centers, or from non-specific binding and unwinding of cellular DNA. The 

ATR pathway is constitutively active in HPV positive cells (8, 9), suggesting that virally 

infected cells are constantly under replication stress. The expression of high-risk E6 and E7 

proteins induces replication stress through unscheduled entry into the cell cycle, promoting 

cellular DNA synthesis in the absence of a sufficient supply of nucleotides (102, 103). 

Activation of the ATR/Chk1 pathway in response to replication stress induces a re-wiring of 

E2F signaling, resulting in increased expression of genes involved in DNA repair and 

replication to prevent DNA damage and allow for survival (104). Recent studies from our 

lab have shown that HPV31 uses the ATR/Chk1 pathway to increase expression of the small 

subunit of the ribonucleotide reductase complex, RRM2, in an E7- and E2F1-dependent 
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manner (12). RRM2 is required for the de novo synthesis of dNTPs and is necessary for the 

maintenance of nucleotide pools for productive replication in differentiating HPV31 positive 

cells (12, 105). These results suggest that E7-induced cell cycle re-entry upon differentiation 

results in replication stress and ATR/Chk1/E2F1 activation that HPV hijacks to maintain 

E2F signaling, in turn providing an environment supportive of productive viral replication.

HPV, DNA Damage and Genomic Instability

Although HPV must activate DNA repair pathways for replication, HPV-immortalized cells 

and HPV-associated cancers exhibit genomic instability (2, 106), which is critical for 

carcinogenesis and suggests that DNA repair is attenuated during progression to malignancy. 

High-risk E6 and E7 proteins can independently induce DNA damage, resulting in 

numerical and chromosomal structural instability (107). Furthermore, high-risk E7 drives 

proliferation in the presence of DNA damage by inhibiting the DNA damage checkpoint 

response through proteolytic degradation of claspin (108). As shown by Bester et al, high-

risk E6 and E7 expression results in replication stress and DNA damage that results in 

genomic instability (102). In HPV-associated cancers, the viral genome is frequently found 

integrated into the host cell genome, resulting in deregulated expression of E6 and E7 that 

can further fuel genomic instability (109, 110). Integration is random, but often occurs near 

common fragile sites (111), which are particularly prone to replication stress and DNA 

damage (112). E2, along with cellular Brd4 are thought to nucleate viral replication foci near 

fragile sites, providing a convenient supply of DNA repair factors for viral DNA synthesis 

(113). As such, replication of high-risk HPV types near cellular areas prone to DNA 

breakage may in turn facilitate viral integration, which subsequently drives cancer 

development (113). Although E6 and E7 are considered the main contributors to genomic 

instability (114), expression of E1 and E2 from viral episomes can lead to replication from 

integrated HPV origins, resulting in the amplification of viral DNA sequences and structural 

alterations in the flanking cellular sequences (115). DNA structures resulting from this 

“onion skin” type of replication results in the activation of ATM and the recruitment of both 

HR and NHEJ machinery (115), the latter of which can promote mutations and 

translocations through error-prone repair (54). These results suggest that the co-existence of 

viral episomes with integrated copies of HPV can result in genomic instability that 

contributes to carcinogenesis.

Conclusions

In this review, we have described how HPV manipulates the ATM and ATR DNA repair 

pathways for viral replication (Figure 5). HPV activates ATM mainly through E7 and E1 and 

its activity seems to be primarily required upon differentiation to drive productive replication 

in a recombination-dependent manner. Indeed, several other viruses also exhibit a 

dependence on the DDR and replication-associated recombination for replication, including 

SV40 (116), HSV (117–119), KSHV (120), and EBV (121, 122). The activation of the ATR/

Chk1 pathway in response to replication stress in HPV positive cells may ensure the 

presence of cellular factors required for viral DNA synthesis through maintenance of E2F 

signaling. This may be particularly important upon differentiation and re-entry into the cell 

cycle. Numerous repair factors localize to sites of HPV replication and are likely important 
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for viral replication during the establishment, maintenance, as well as productive phases of 

the viral life cycle. Understanding how these DNA repair factors contribute to HPV 

replication is an important area of future research. The development of more selective 

inhibitors of DDR components (e.g. ATM, ATR, Chk1, Chk2) has generated intense interest 

in targeting the DNA repair pathways for cancer treatment (123, 124). Further understanding 

of how HPV induces DNA damage and activation of repair pathways for viral replication, 

and in turn how HPV negatively impacts the repair of cellular DNA, may identify DDR 

targets that can be exploited therapeutically to treat HPV-associated diseases (124).
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Highlights

The life cycle of HPV is dependent on the differentiation of stratified epithelium

HPV requires the ATM and ATR DNA damage response pathways for viral replication

HPV replication requires the recruitment of DNA repair factors to viral genomes

HPV uses ATM activity to productively replicate in a recombination-dependent manner

ATR activity provides cellular factors for viral replication upon differentiation
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Figure 1. Genomic organization of high-risk HPV16
The open reading frames (ORF) are designated by the colored blocks. The Long Control 

Region (LCR) contains sequences for transcriptional regulation, as well as the origin of 

replication. The early promoter (p97 for HPV16) is located upstream of the E6 ORF and the 

late promoter (p670 for HPV16) is located in the E7 ORF.
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Figure 2. The HPV life cycle
HPV infects basal keratinocytes of the stratified epithelium through a microwound. HPV-

infected epithelium is diagrammed on the right, while uninfected epithelium is diagrammed 

on the left. Upon infection, HPV undergoes establishment replication to 50–100 episomal 

genome copies per cell and early viral genes are expressed. Viral genomes are stably 

maintained in the basal layer of the epithelium by replicating in Sphase with cellular DNA. 

Upon cell division, one daughter cell migrates away from the basal layer and begins to 

undergo differentiation. Differentiation triggers the productive phase of the viral life cycle, 

which results in late gene expression and viral genome amplification. Ongoing expression of 

E6 and E7 deregulates cell cycle control, pushing a subset of post-mitotic differentiating 

cells back into S-phase, providing cellular DNA synthesis machinery for productive viral 

replication. Expression of L1 and L2 in the uppermost layers of the epithelium results in the 

encapsidation of viral genomes and the release of infectious virions as the epithelium is 

shed.
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Figure 3. Schematic of the ATM DNA Damage Pathway
ATM is activated in response to DSBs and repairs damaged DNA through homologous 

recombination (HR). DSBs breaks are sensed by the MRN (Mre11, Rad50, and Nbs1) 

complex, which recruits and activates ATM through direct interaction with NBS1. Activated 

ATM in turn phosphorylates numerous downstream targets (p), including H2AX (γ), in turn 

providing a docking site for the binding of MDC1. MDC1 recruits the ubiquitin ligases 

RNF8/RNF168, which ubiquitylate (u) H2A/H2AX and promotes the recruitment of other 

DNA repair factors, including 53BP1 and BRCA1. ATM signaling to Chk2, p53 and the 
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p38/MK2 kinase complex facilitates cell cycle arrest and DNA repair, or apoptosis of the 

damage is too extensive.
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Figure 4. Schematic representation of the ATR DNA damage response pathway
ATR is activated in response to single-stranded DNA generated by replication stress (stalled 

replication forks) or resected DSBs. Single-stranded DNA (ssDNA) is coated by the 

tripartite replication protein A (RPA) complex, which recruits the ATR regulator ATRIP. 

ssDNA-RPA also recruits the Rad17/RFC complex to the replication fork, which loads the 

9-1-1 complex (RAD9-HUS1-RAD1). Rad9 then interacts with TopBP1, which plays a 

critical role in activating ATR. Claspin recruitment to the complex allows ATR to 

phosphorylate Chk1 (p) and other downstream effectors, which mediate cell cycle arrest to 

allow for DNA damage repair.
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Figure 5. Model for HPV regulation of the ATM and ATR DNA repair pathways
HPV engages both the ATM and ATR DDR pathways in order to recruit host factors and 

promote viral genome replication. E7 and E1 can independently induce ATM and ATR 

activation. Activation of ATM is crucial for DNA repair through HR and may serve to direct 

HR repair machinery to viral genomes (MRN, BRCA1, Rad51), which is required for 

productive replication. ATM-mediated Chk2 activity is required for productive replication 

and may contribute through activation of a G2/M arrest. Replication stress in HPV positive 

cells likely leads to activation of the ATR response, leading to the phosphorylation of Chk1, 

which results in elevated E2F1 protein levels. In turn, E2F1 upregulates RRM2 expression, 
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allowing for the increased production of dNTPs required for productive viral replication. See 

text for additional detail.
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