
Plasticity of a critical antigenic determinant in the West Nile 
virus NY99 envelope protein domain III

Jessica A. Plantea,b, Maricela Torresc, Claire Y-H Huangd, and David W. C. Beasleyb,c,e

aDepartment of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA

bSealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 
77555, USA

cDepartment of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 
77555, USA

dArbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and 
Prevention, Fort Collins, CO 80521, USA

eInstitute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 
77555, USA

Abstract

West Nile virus (WNV) is a mosquito-borne flavivirus that causes febrile illness, encephalitis, and 

occasionally death in humans. The envelope protein is the main component of the WNV virion 

surface, and domain III of the envelope protein (EIII) is both a putative receptor binding domain 

and a target of highly specific, potently neutralizing antibodies. Envelope E-332 (E-332) is known 

to have naturally occurring variation and to be a key determinant of neutralization for anti-EIII 

antibodies. A panel of viruses containing all possible amino acid substitutions at E-332 was 

constructed. E-332 was found to be highly tolerant of mutation, and almost all of these changes 

had large impacts on antigenicity of EIII but only limited effects on growth or virulence 

phenotypes.
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INTRODUCTION

West Nile virus (WNV) is a member of the Japanese encephalitis serocomplex within the 

genus Flavivirus and family Flaviviridae. WNV is distributed worldwide and infection of 

humans results in outcomes ranging from asymptomatic infections or non-specific fever to 

neuroinvasive disease (meningitis and/or encephalitis), potentially resulting in polio-like 

flaccid paralysis and, in some cases, death.(Lindsey et al., 2010; Sejvar, 2007) Up to eight 

lineages of WNV have been proposed on the basis of molecular phylogenetic analyses, with 

lineages 1 and 2 being the most geographically widespread.(Vazquez et al., 2010) Lineage 1, 

which includes the strain introduced to North America in 1999, has traditionally been 

thought to be the main source of WNV-associated disease. More recently, however, 

outbreaks involving lineage 2 WNV strains have caused human disease and death in Greece, 

Italy, Romania, Russia, and, potentially, South Africa.(Barzon et al., 2015; McMullen et al., 

2013; Papa et al., 2011; Platonov et al., 2011; Sirbu et al., 2011; Venter and Swanepoel, 

2010; Zaayman and Venter, 2012)

The WNV envelope protein (E) is the main surface component of the mature WNV virion. 

The E ectodomain is composed of three structural domains (Figure 1): domain I (EI) is a 

central β-barrel connecting domain II (EII) and domain III (EIII) and contains the single 

glycosylation motif present in some WNV strains; EII contains the flavivirus-conserved 

fusion loop; and EIII is an Ig-like domain thought to play a significant role in receptor 

binding.(Kanai et al., 2006; Nybakken et al., 2006) EIII’s putative role in receptor binding is 

based on studies with several flaviviruses that have demonstrated direct attachment of 

recombinant EIII to target cells and potential receptors (Chu et al., 2005; Hung et al., 2004; 

Lee et al., 2006),attenuation of in vitro and in vivo replication associated with single amino 

acid substitutions (Erb et al., 2010; Hurrelbrink and McMinn, 2001; Zhang et al., 2010), and 

the potent pre-attachment neutralization of flaviviruses by some antibodies targeting EIII 

(Crill and Roehrig, 2001).

Although antibodies binding to EIII have been reported to make up only a small fraction of 

the overall antibody response in human flavivirus infections, they tend to be virus-specific 

and potently neutralizing.(Crill et al., 2009; Lin et al., 2012a; Throsby et al., 2006; Vratskikh 

et al., 2013), This, combined with the relative ease of expressing and purifying recombinant 

EIII protein, has led to several investigations into EIII-based subunit vaccines for WNV and 

other flaviviruses that have yielded promising results.(Alonso-Padilla et al., 2011; Chu et al., 

2007; Dunn et al., 2010; Martina et al., 2008; Spohn et al., 2010) In addition to the EIII-

based vaccines, antibody therapies targeting EIII have also been proposed. The monoclonal 

antibody (mAb) E16 was shown to be protective in mice pre- and post-challenge with WNV 

(Lai et al., 2010; Morrey et al., 2008; Oliphant et al., 2005; Smeraski et al., 2011). Phase I 

and II clinical trials (ClinicalTrials.gov - NCT00515385 and NCT00927953, respectively) of 

a humanized version of that antibody, under the product name MGAWN1, have been 

performed, although the phase II trial was terminated early due to low enrollment.

(MacroGenics, 2009, 2012) and a path forward to licensure of that product is currently 

unclear.
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Previous research using wild-type (WT) WNV strains or neutralization escape mutants has 

identified a small number of residues in EIII that can be altered to prevent antibody-

mediated neutralization with little or no effect on virus growth in cell cultures or virulence in 

animal models.(Beasley and Barrett, 2002; Choi et al., 2007; Li et al., 2005; Nybakken et al., 

2005; Oliphant et al., 2005; Volk et al., 2004) Residue 332 (E-332), in particular, appears to 

be a major antigenic determinant. The majority of WNV strains have a threonine atE-332, 

but naturally occurring variants - including substitutions to alanine, methionine, serine, and 

lysine - have been found in lineage 1 and 2 strains isolated from humans, equines, bats, and 

mosquitoes (e.g. GenBank accession nos. AF459403.3, AY688948.1, EU249803.1, 

GQ502394.1, GQ507480.1, HM051416.1, HM147822.1, HM147823.1, HM488220.1, 

JX015521.1, and KM052152.1). These sequence variations at E-332 have been shown to 

reduce neutralization by multiple monoclonal antibodies and by polyclonal antisera raised 

against EIII.(Li et al., 2005) In particular, 332K variants, including some lineage 2 WNV 

strains, are entirely resistant to neutralization in vitro and/or in vivo by MAbs such as 7H2, 

5H10, and the candidate therapeutic antibody E16/MGAWN1.(Beasley and Barrett, 2002; Li 

et al., 2005; Zhang et al., 2010) To define the tolerance of WNV for substitutions at this 

critical antigenic determinant and the effects on antibody binding and neutralization, a WNV 

NY99 infectious clone (NY99ic) was used to generate all possible amino acid variants at 

E-332. Viable variants were recovered and their growth characteristics were assessed in 

representative mammalian, mosquito and avian cell lines. Mouse virulence was also 

determined for all recovered variants, with several selected for LD50 determination. Finally, 

in vitro antibody binding and neutralization were determined for each variant using several 

monoclonal antibodies and polyclonal serum raised against EIII.

RESULTS

Recovery and Sequencing of Variants

All 20 possible amino acids at E-332 yielded viable virus. The NY99ic mutants T332E, 

T332F, T332L, T332N, T332P, T332Q, T332R, T332S, and T332W were recovered via 

plaque purification from electroporation of Vero cells with mixed in vitro-transcribed RNA 

pools (see Materials and Methods). All other mutants were recovered via electroporation of 

RNA prepared from single mutant plasmid preparations. Nucleotide sequence analysis 

revealed no additional mutations in the prM/E region for 18 of the 20 variants. However, 

both the NY99ic T332P and NY99ic T332W mutants contained an additional mutation from 

serine to arginine at E residue 66 (E-66). This S66R mutation was present in both the 

passage 2 plaque purification and passage 3 working stock preparations for each variant 

despite the fact NY99ic T332P and NY99ic T332W were obtained from separate pools, 

suggesting that S66R arose relatively rapidly and independently in each mutant during 

recovery. E-66 is a surface exposed residue in domain II (Figure 1), and it is approximately 

80 angstroms from E-332 within the context of a single E monomer. To determine whether 

the S66R mutation played any compensating role, individual NY99ic T332P, NY99ic 

T332W, and NY99ic S66R mutants were subsequently recovered via electroporation as 

passage 0 stocks.
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Plaque Morphology and Temperature Sensitivity

Previous studies have compared changes in WNV plaque morphology and apparent titer at 

37°C and 41°C (i.e. a “temperature sensitive” phenotype) as possible indicators of 

attenuation.(Andrade et al., 2011; Davis et al., 2007; Wicker et al., 2012; Wicker et al., 

2006) The temperature change had minimal impact on NY99ic WT titer (Table 1), consistent 

with previous reports, and plaques were approximately 0.5mm in diameter at 37°C and 3mm 

in diameter at 41°C when measured at 3 days post-infection (Figure 2). Almost all of the 

NY99ic E-332 mutants produced plaque morphologies comparable to NY99ic WT and had 

differences of ≤0.3log10 pfu/ml between titers at 37°C and 41°C. Of those, only the slight 

increases in titer at 41°C for the NY99ic T332I and T332Y mutants were statistically 

significant. The NY99ic T332P+S66R mutant was the most temperature sensitive, with a 

1.5log10 pfu/ml decrease in apparent titer at 41°C vs 37°C. Somewhat surprisingly, this 

relatively large decrease in apparent titer at 41°C was not observed for either the individual 

NY99ic S66R or the individual NY99ic T332P mutants (Table 1), although the NY99ic 

T332P mutant did display a small plaque phenotype at 41°C (Figure 2). The NY99ic T332R 

mutant also exhibited a small plaque phenotype at 41°C but, as with NY99ic T332P, this 

plaque morphology difference was not accompanied by a titer difference.

Growth in mammalian, avian and mosquito cell lines

NY99ic WT and all of the T332 mutants were replication competent in Vero, duck embryo 

fibroblast (DEF), and Aedes albopictus C6/36 cells. In Vero cells, all viruses were in eclipse 

at 0.5 days post infection (DPI) and had begun robust amplification by 1 DPI, with peak 

titers were reached at 3 DPI (Figure 3A). Only the NY99ic T332P+S66R mutant had 

significantly different titer from NY99ic WT at 3 DPI. Despite similar early growth kinetics 

observed between 0 and 2 DPI, NY99ic T332P+S66R was 1.7log10 PFU/ml lower than 

NY99ic WT at 3 DPI and maintained that deficit at 4 DPI. No deficiency was noted for 

NY99ic T332P+S66R in either DEF or C6/36 cells.

Similar to replication in Vero cells, NY99ic WT and the T332 mutants were in eclipse in 

DEF cells at 0.5 DPI and had begun to amplify by 1 DPI (Figure 3B). Peak titers were 

observed between 1.5 and 2 DPI. Fifteen of the 19 NY99ic T332 mutants reached peak titers 

within ±0.5log10 PFU/ml of NY99ic WT and were statistically indistinguishable from 

NY99ic WT by Dunnett’s multiple comparisons test. The four NY99ic T332 mutants that 

did have significantly different peak titers than NY99ic WT were NY99ic T332D, which 

was 0.6log10 PFU/ml lower than NY99ic WT, and NY99ic T332K, T332 M, and T332R, 

which were 0.6–0.9log10 PFU/ml higher than NY99ic WT.

Replication in C6/36 cells resulted in an eclipse phase at 0.5 DPI similar to that observed in 

Vero and DEF cells, followed by robust amplification from 1 DPI onward (Figure 3C). 

However, unlike replication in the vertebrate cell lines that reached a peak titer that 

subsequently decreased, the titers produced by C6/36 cells increased throughout the duration 

of the experiment to an average peak of 1.4×107 PFU/mL at 5 DPI. Only six of the NY99ic 

T332 mutants were statistically indistinguishable from NY99ic WT at 5 DPI: NY99ic 

T332A, T332G, T332H, T332L, T332M, and T332V. These mutants were all within 

0.2log10 PFU/ml of NY99ic WT. Only one mutant, NY99ic T332D, had a higher titer than 
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NY99ic WT with an advantage of 0.4log10 PFU/ml at 5 DPI. Of the 12 remaining NY99ic 

T332 mutants, 10 were 0.2–0.8log10 PFU/ml lower than NY99ic WT at 5 DPI. The two 

strains with the greatest deficit at 5 DPI were both large aromatic substitutions; NY99ic 

T332Y had a deficit of 1.0log10 PFU/ml and NY99ic T332W+S66R had a deficit of 1.6log10 

PFU/ml.

Virulence in Swiss Webster mice following peripheral inoculation

The impact of the mutations at residue E-332 on virulence was initially assessed via 

intraperitoneal inoculation of 3–4 week old Swiss Webster mice with a 100PFU dose of each 

NY99ic mutant or the NY99ic WT parent. Consistent with previous studies, the NY99ic WT 

virus was highly lethal, with only 5% of mice surviving challenge (Table 1). Of the 22 

NY99ic mutants tested, 13 were comparably lethal, with survival rates of ≤10%. Five of the 

remaining 9 NY99ic mutants (T332I, T332L, T332M, T332R, and T332W+S66R) caused 

survival rates of 13–20%, and three NY99ic mutants (T332C, T332P, and T332W) had 

survival rates of 30–47%. The most strongly attenuated mutant was NY99ic T332P+S66R, 

with a survival rate of 87%. Those subjects that succumbed to infection from NY99ic T332P

+S66R also had significantly longer average survival times than was observed for NY99ic 

WT infection. Interestingly, this mutant appeared to be more attenuated than either the single 

NY99ic T332P mutant (47% survival) or the NY99ic S66R mutant (0% survival). No clear 

difference in the apparent level of attenuation was observed in the case of the combined 

NY99ic T332W+S66R mutant (20% survival) compared to the NY99ic T332W mutant 

(30% survival).

Following the 100 PFU virulence screen, NY99ic WT and a subset of mutants underwent 

LD50 determination as described elsewhere.(Beasley et al., 2002) The mutants were selected 

to include those with attenuated or intermediate phenotypes from the virulence screening, 

plus additional mutants that more closely mirrored the WT parent and reflected different 

categories of possible amino acid substitutions (acidic, basic, aromatic, etc.) (Table 1). 

Mutants encoding the S66R mutation were also included. NY99ic WT had a LD50 value of 

0.4 PFU, similar to previously reported results.(Beasley et al., 2005; Plante et al., 2014) 

Eight of the 13 NY99ic mutants tested had similar LD50 values of <1 PFU. This included 

T332C, which appeared moderately attenuated during the initial virulence screen but had an 

LD50 value of 0.9 PFU. Three of the NY99ic mutants (T332I, T332R, and T332W+S66R) 

had slightly increased LD50 values between 1–10 PFU. Only the NY99ic T332P mutants, 

with or without the presence of S66R, had LD50 values indicative of strong attenuation. 

Consistent with the different survival rates observed in the initial virulence screening for 

those two mutants, the LD50 for NY99ic T332P was 452 PFU, and the LD50 for NY99ic 

T332P+S66R was >1000PFU. Therefore, although the S66R mutation was not sufficient to 

appreciably attenuate NY99ic on its own, its presence did seem to increase attenuation of 

T332P compared to the individual mutant.

Effects of 332 mutations on EIII antigenicity

The impact of mutations at E-332 on neutralization of virus infection in Vero cells (Table 1; 

Figure 4) and on binding of selected anti-WNV mAbs and polyclonal anti-EIII serum in 

Western blots (Figure 5) was assessed. MAbs 5H10 and 7H2 were selected because they 
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have overlapping but distinct epitopes on WNV EIII and their binding and neutralization 

activities are known to be variably affected by previously studied T332A/K/M mutations.

(Beasley and Barrett, 2002; Li et al., 2005; Zhang et al., 2010). Following calculation of 

neutralization indices (NI), hierarchical clustering with k-means analysis defined four 

categories of neutralization: NI values ≥2.2 (designated as very strong neutralization); NI 

values between 1.2 and 1.9 (strong neutralization); NI values between 0.5 and 1.1 (moderate 

neutralization), and NI values ≤0.4 (weak neutralization). Almost all mutations caused large 

reductions in neutralizing activity of 5H10 and 7H2 antibodies compared with the NY99ic 

WT control (NI values of 2.5±0.0 and 3.3±0.3, respectively). Both of the acidic mutants 

(NY99ic T332D and T332E), two of the three basic mutants (NY99ic T332H and T332K), 

and two of the three aromatic mutants (NY99ic T332W+S66R and T332Y) were weakly 

neutralized by both 5H10 and 7H2. Only NY99ic T332A and T332S retained either a strong 

or very strong neutralization phenotype by both 5H10 and 7H2. Additionally, many changes 

to residue T332 resulted in large reductions to neutralization by polyclonal rabbit serum 

raised against recombinant WNV EIII protein. Only five of the 19 NY99ic T332 mutants 

(T332A, T332G, T332P+S66R, T332S, and T332V) retained either strong or extremely 

strong neutralization by the polyclonal serum. The remaining NY99ic T332 mutants were 

moderately neutralized, except for NY99ic T332H, T332L, T332W+S66R, and T332Y, 

which were weakly neutralized.

In general, binding by the monoclonal antibodies 5H10 and 7H2 to NY99ic WT and NY99ic 

T332 mutant cell lysates in Western blots corresponded well with the strength of 

neutralization (Figure 5). For 5H10, all NY99ic T332 mutants with neutralization indices of 

0.9 or less had very faint or non-visible bands in a Western blots except for NY99ic T332E,. 

For 7H2, NY99ic T332 mutants with neutralization indices between 1.7 and 1.0 (T332A, 

T332G, T332I, T332L, T332M, T332N, and T332P+S66R) there is variation between strong 

and weak/non-visible binding, but neutralization indices ≥1.8 corresponded to strong 

binding, similar to the NY99ic WT, and neutralization ≤0.7 corresponded to weak or 

undetectable binding.

Despite having a strong impact on neutralization by polyclonal anti-EIII serum, mutations at 

T332 had no impact on binding by the polyclonal anti-EIII serum in a Western blot. This is 

likely because inoculation with recombinant EIII elicits non-functional antibodies against 

epitopes that are not accessible in the context of an intact, infectious virion but are accessible 

in the context of an infected cell lysate.

DISCUSSION

The recovery of viable WNV NY99ic mutants encoding every possible amino acid at E-332 

is consistent with related observations regarding the ability of E-332 to tolerate substitution. 

The extreme plasticity of WNV E-332 has been suggested by both its naturally occurring 

variation and by the previously reported recovery of neutralization escape mutants that retain 

a wild-type virulence phenotype.(Armstrong et al., 2011; Beasley et al., 2002; Bernardin, 

2010; Li et al., 2005; McMullen et al., 2013; Pybus et al., 2012; Sapkal et al., 2011; Zhang 

et al., 2010) In addition, a panel of packaged replicon reporters (described by Lee et al. as 

reporter virus particles, or RVPs) was generated that captured the range of possible variation 
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at E-332 and a pool of infectious clone-derived viruses with variation at E-332 was used to 

examine the selective pressure of neutralizing antibodies.(Lee et al., 2013)

In general, changes to NY99ic T332 had only modest impacts on replication kinetics in 

mammalian, avian, and mosquito cells, and on virulence in mice. The few significant 

differences that were observed in cell culture were variable between cell types. For instance, 

only the NY99ic T332P+S66R mutant appeared significantly impaired for growth in Vero 

cells, but it was more comparable to NY99ic WT in both C6/36 and DEF cells. Similarly, 

both NY99ic T332W+S66R and T332Y had titers ≥1log10 PFU/ml lower than NY99ic WT 

in C6/36 cells on 5 DPI, but replicated similarly to WT in Vero an DEF cells. It has been 

reported that changes to residues in the surface loop residues of EIII in multiple flaviviruses 

can have differential impacts on replication in mosquito and mammalian cells.(Erb et al., 

2010; Huang et al., 2014; Hung et al., 2004) and this also appears to be the case for WNV 

E-332. It is worth noting that the substitutions which resulted in cell-type-dependent deficits 

in peak titer all involved the introduction of either large aromatic rings (T332W+S66R and 

T332Y) or a cyclic structure (T332P+S66R), raising the possibility that the deficit was not a 

direct consequence of changing E-332 but of the resulting disruption of neighboring 

residues. Consistent with the extreme plasticity of E-332 in cell culture, the majority of 

NY99ic T332 mutants retained a highly virulent phenotype in mice. In fact, all but three 

mutants caused ≤30% survival following peripheral infection in Swiss Webster mice. Very 

strong attenuation was only observed with the NY99ic T332P and T332P+S66R mutants. 

Thus, the detrimental impact of the proline at E-332 observed in Vero cell culture appeared 

to have a similarly negative effect in vivo. While it cannot be entirely ruled out that some of 

the observed changes in growth and/or virulence might be influenced by suboptimal codon 

usage associated with the introduced mutations, the especially strong phenotype of the 

T332P and T332P+S66R mutants is consistent with the disruptive nature of introducing this 

cyclic amino acid. Furthermore, although codon usage bias can cause demonstrable impacts 

on flavivirus replication and virulence, those effects have typically been in the context of 

changes to large segments of the genome, not single codon substitutions.(de Fabritus et al., 

2015; Shen et al., 2015)

The independent acquisition of a S66R mutation by both the NY99ic T332P and T332W 

mutants was an unexpected finding. Similar acquisitions of a positive charge at a surface 

exposed E residue has previously been associated with tissue culture adaptation in other 

encephalitic flaviviruses.(Lee et al., 2004; Lee and Lobigs, 2000) A follow-up comparison 

of NY99ic WT to the individual NY99ic S66R, T332P, T332P+S66R, T332W, and T332W

+S66R mutants revealed that S66R had no detectable impact on amplification and peak titer 

in Vero cells following a low MOI infection (Supplementary Figure S1). However, although 

the NY99ic S66R mutant was not attenuated in mice, the presence of S66R did appear to 

exacerbate the attenuation of NY99ic T332P, and also to increase the LD50 of NY99ic 

T332W (Table 1) although neither T332W nor T332W+S66R were strongly attenuated. 

These observed effects of the S66R mutation are consistent with attenuating effects of other 

tissue culture associated charge changing mutations. More work is required to characterize 

the role of the S66R mutation and its direct or indirect interaction with mutations at E-332.
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In contrast to the limited impact of mutations at E-332 on NY99ic replication and virulence, 

changes to E-332 had a profound impact on antigenicity. None of the nineteen possible 

NY99ic T332 mutants retained the very strong neutralization phenotype of NY99ic WT with 

7H2, and only the NY99ic T332S mutant retained the very strong neutralization phenotype 

with 5H10. In fact, nine of the 19 possible NY99ic T332 mutants were weakly neutralized 

by one or both of the EIII mAbs tested. These results are consistent with those previously 

reported for the anti-WNV EIII mAbs E33 and E16, which largely failed to neutralize a 

panel of WNV RVPs with basic, acidic, or aromatic substitutions at E-332.(Lee et al., 2013) 

All nine mutations that resulted in weak neutralization (NI values <0.4) by 5H10 and/or 7H2 

also resulted in moderate (NI values 0.5–1.1) or weak neutralization by the polyclonal anti-

EIII rabbit serum, confirming that E-332 is a critical antigenic determinant even in the 

context of a polyclonal population of antibodies against EIII

The ability of NY99ic to tolerate changes at E-332 that ablate or greatly reduce 

neutralization by monoclonal and polyclonal antibodies while having little to no impact on 

replication and virulence phenotypes raises an important consideration for the potential use 

of EIII-based vaccines or therapeutics against WNV. There are six possible amino acid 

substitutions that require only a single nucleotide change from the predominant WNV 332 

codon of ACG: T332A, T332K, T332M, T332P, T332R, and T332S (Figure 4). Of these six 

possibilities, our data suggest that T332P is significantly impaired and unlikely to persist in 

nature but four other mutations (T332A, T332K, T332M, and T332S) are already known to 

exist in naturally occurring WNV strains. These strains with variation at E-332 were 

collected over a span of decades (1953–2007) from mosquitoes, a bird, a fruit bat, viremic 

human blood donors, and febrile human patients.(Armstrong et al., 2011; Beasley et al., 

2002; Bernardin, 2010; McMullen et al., 2013; Pybus et al., 2012; Sapkal et al., 2011) Of 

these mutations, only T332K is associated with large reductions or loss of neutralizing 

activity by anti-EIII MAbs or polyclonal antiserum. However, alternative amino acids with 

antigenic and virulence characteristics comparable to T332K, particularly T332D, T332E, 

and T332H are within a single nucleotide substitution of the other known 332 variants. It is 

worth noting that single residue EIII mutations in naturally occurring WNV strains that 

strongly reduce neutralization by polyclonal anti-EIII serum or monoclonal antibodies do 

not significantly impact neutralization by polyclonal sera raised against whole WNV virions.

(Li et al., 2005)

Previous work has shown that the proposed therapeutic mAb E16 exerts sufficient selective 

pressure on a pool of infectious clone-derived E-332 mutants in vitro to generate a 

population composed exclusively of T332K and T332R mutants within a single post-

transfection passage(Lin et al., 2012b) .Additionally, in vivo experiments have demonstrated 

that pre-treating mice with the mAb E16 and administering a high but biologically relevant 

dose of WT WNV can select for neutralization-resistant variants at E-332 which are lethal to 

the infected animals.(Zhang et al., 2009) Data reported here suggest that WNV could 

likewise escape from a polyclonal response targeted against EIII. Combined with the 

previous recovery of 332 variant strains from humans, it seems possible that the 

administration of an EIII-based subunit vaccine or antibody therapy may potentially select 

for a resistant population within an infected individual. Such a resistant population would be 
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unlikely to take hold in the wild because humans are dead-end hosts, but could complicate 

treatment and endanger the individual infected.

MATERIALS AND METHODS

Generation of WNV T332 Variants

WNV variants encoding amino acid substitutions were generated via targeted mutagenesis of 

the pWN-AB/pWN-CG NY99ic using the QuikChange Multi Site-Directed Mutagenesis Kit 

(Stratagene, Cedar Creek, TX) as previously described (Beasley et al., 2005). Initially, four 

variant plasmid pools were generated using degenerate oligonucleotide primers as described 

previously (Zhang et al 2010). The four pools collectively included all 19 possible amino 

acid substitutions at residue T332 (primer sequences available upon request). Following 

electroporation of in vitro-transcribed RNA into Vero cells, culture supernatants were 

harvested at 3–5 days and plaque titrated on Vero cell monolayers in 6 well plates. 

Individual variants were recovered via plaque purification from those plates and amplified in 

T-25 flasks of Vero cells. When visible CPE was noted (3 days post infection for most 

variants), multiple aliquots of each viable variant were frozen down and their identities 

determined via sequencing. Working stocks of recovered variants representing each of the 

viable amino acid substitutions were then prepared in Vero cells for subsequent experiments. 

Each variant recovered via this strategy received three additional Vero cell passages 

following the passage 0 electroporation. In addition, several variants were recovered directly 

from individual variant pWN-AB plasmids that were generated using the QuikChange Multi 

kit with specific mutagenesis primers according to previously described methods.(Zhang et 

al., 2010)

Nucleotide Sequencing of WNV T332 Variants

Viral RNA was purified from tissue culture supernatants using the QIAamp Viral RNA kit 

(Qiagen, Germantown, MD) according to the manufacturer’s protocol. The prM/E coding 

region was amplified using the Titan One-Step RT-PCR kit (Roche, Mannheim, Germany) 

with the WN401 and WN2504A primers.(Beasley et al., 2003) The resulting PCR products 

were visualized on an agarose gel and the appropriately sized band excised and purified 

using the QIAquick Gel Extraction kit (Qiagen, Germantown, MD). Traditional Sanger 

sequencing was performed by the Molecular Genomics Core at the University of Texas 

Medical Branch using an Applied Biosystems 3130XL instrument using the amplifying 

primers plus additional internal primers.(Beasley et al., 2003)

Plaque and Temperature Sensitivity Assays

Titers for each virus stock were determined by plaque assays in Vero cells. Briefly, serial 10-

fold dilutions of each variant were made in sterile phosphate buffered saline (PBS) and 

100μl was used to infect monolayers of Vero cells in 12-well plates. After one hour at room 

temperature, the plates were washed with PBS and overlaid with a 2ml of a 50:50 mixture of 

2XMEM (Gibco, Grand Island, NY) containing 4% bovine growth serum (BGS) (Hyclone, 

Logan, UT) and 2% agar (Sigma, Portugal). For standard plaque assays, plates were placed 

at 37°C with 5% CO2. At 2 days post-infection, 1ml of overlay containing 2% neutral red 

(Sigma, Irvine, UK) was added to each well, and the plates were wrapped in foil and 
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returned to the incubator. Plaques were read with the aid of a light box on days 3 and 4 post-

infection. For the temperature sensitivity assays, infected 6-well plates were overlaid with 

4ml of media:agar and placed in either a 37°C or a 41°C incubator with 5% CO2. On day 3 

post-infection the plates were fixed with formalin and stained with crystal violet. Differences 

in titer and plaque morphology at 37°C and 41°C were recorded. Assays were performed in 

duplicate.

In vitro Growth Kinetics

Vero, C6/36, and duck embryo fibroblast (DEF) cells were infected in duplicate at an MOI 

of 0.01 for one hour at room temperature, then washed three times with PBS. Cells were 

maintained in 6ml MEM supplemented with 2% BGS (Vero) or 2%FBS (C6/36 and DEF). 

Vero and DEF cells were kept at 37°C with 5% CO2. C6/36 cells were kept at 28°C in an 

ungassed incubator. For assays in Vero and DEF cells, two 250μL samples were collected at 

0, 0.5, 1, 1.5, 2, 3, and 4 days post-infection and stored at −70°C for subsequent titration. 

C6/36 cell assays were performed similarly, except that an additional sample was collected 

at 5 days post-infection. Following sample collection fresh media was added to each sample 

to maintain a constant volume. All samples were titered via plaque assay on Vero cells

Mouse Neuroinvasiveness and LD50 Determination

For assessment of virulence, cohorts of 10–20 3–4-week-old female Swiss Webster mice 

(Harlan Laboratories, Houston, TX) were injected with WNV variants in 100µL volumes via 

the intraperitoneal (i.p.) route. During the initial screening involving all 20 variants, a single 

100 pfu dose of virus was used. During subsequent LD50 determination for a subset of 

viruses, serial 10-fold dilutions ranging from 103–10−1pfu were used with cohorts of five 

mice per dose. Following inoculation, mice were observed for 21 days. Mice exhibiting 

paralysis or signs of severe illness were humanely euthanized and counted as deceased for 

that day.

Neutralization by MAbs and polyclonal anti-EIII serum

Neutralization of parental and 332 mutant viruses by commercially-available mAbs and 

polyclonal anti-EIII sera was assessed by determination of neutralization indices, as 

described previously.(Beasley and Barrett, 2002; Li et al., 2005) The two MAbs used - anti-

WNV 5H10 and 7H2 (Bioreliance Corporation, Rockville, MD) - were previously shown to 

recognize distinct but overlapping EIII epitopes that include E-332.(Beasley and Barrett, 

2002) The rabbit anti-WNV antiserum has been described elsewhere.(Beasley et al., 2004) 

Briefly, serial 10-fold dilutions of all 20 variants were combined with a constant 

concentration of monoclonal antibody (2.5ng/μL) or polyclonal antiserum (final 

concentration of 1:50) diluted in MEM/2% BGS and incubated at room temperature 

(approximately 22°C) for one hour. A “medium only” control was also included for each 

virus. The virus:antibody mixtures were then used to infect monolayers of Vero cells in 12-

well plates for one hour at room temperature. Cells were overlaid with 2ml/well of 2XMEM/

agar and placed in a 37°C incubator with 5% CO2. After two days, 1ml of a second overlay 

containing 2% neutral red was added. Plaques were visualized with a light box on days 3 

and 4 post-infection. NI values were calculated as the log10 reduction in apparent titer in the 
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presence of each antibody/antiserum compared to the no antibody control. Assays were 

performed in duplicate.

Western blotting

Individual T-25 flasks of Vero cells were infected with viable 332 variants. When early CPE 

was visible (typically 2 days post-infection), the media was removed and the flask was 

stored at −70°C overnight. The monolayer was then thawed and lysed in 1ml of 10% SDS 

for 10 minutes at room temperature. The lysate was then incubated for 30 minutes at 56°C 

prior to transfer to BSL2. Equal volumes of the resulting cell lysates were then subjected to 

electrophoresis on 12% SDS polyacrylamide gels under non-reducing conditions. Gels were 

stained with Coomassie blue for assessment of total protein or transferred to a nitrocellulose 

membrane for Western blotting. Nitrocellulose membranes were blocked with 3% BSA in 

TBS, washed, then incubated with primary antibody for one hour at room temperature. 

Primary antibodies included anti-whole WNV mouse immune ascitic fluid (MIAF) at 1:500, 

rabbit anti-WNV EIII serum at 1:500, 5H10 at 0.5ng/μL, and 7H2 at 0.25ng/μL. After the 

primary antibody, the membrane was washed and incubated with the appropriate horseradish 

peroxidase (HRP)-conjugated secondary antibody (anti-mouse IgG or anti-rabbit Ig; Sigma, 

St. Louis, MO) for one hour at room temperature. After additional washing, the membrane 

was developed with the ECL Western blotting detection reagents (GE Healthcare, 

Buckinghamshire, UK) and exposed to ECL Hyperfilm (GE Healthcare, Buckinghamshire, 

UK) for visualization.

Statistical Analysis

Differences in apparent titer at 37°C vs 41°C were compared for NY99ic wild-type (wt) and 

each T332 mutant using unpaired, two-tailed Student’s T-tests. Variation of log10 pfu/ml titer 

values for each measured time point in the replication curves, survival times, and 

neutralization indices were assessed by one-way ANOVA. Individual strains that varied from 

the NY99ic wt control were identified by post-hoc Dunnett’s multiple comparisons test. 

Survival rates were compared using the Kaplan Meier log-rank test. LD50 values were 

calculated using the Spearman Karber method. To assign neutralization indices to a 

particular group, the appropriate number of clusters was determined using k-means analysis 

of a pooled dataset of all virus:antibody NI values and NI values were then assigned to a 

particular cluster using the average method of hierarchical clustering. The significance 

threshold for all tests was 0.05. Statistical analysis was performed using GraphPad Prism 

version 6.05 for Windows (GraphPad Software, La Jolla, CA) and R 3.0.2 (R Foundation for 

Statistical Computing, Vienna, Austria).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Residue 332 in domain III of West Nile virus NY99 strain envelope 

protein is highly mutable.

• Mutations at residue 332 had significant effects on antigenicity of 

WNV domain III but relatively minor effects on growth in cell cultures 

or mouse virulence.

• Use of monoclonal antibody therapies or subunit vaccines targeted 

against domain III could potentially select for variants that retain 

virulence equivalent to the wild-type virus.
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Figure 1. 
Location of E-66 and E-332 in the WNV E monomer. EI = red, EII = yellow, and EIII = 

blue. E-66 is highlighted in green and E-332 is highlighted in magenta. E monomer is shown 

in both a side (A) and overhead (B) view. Image generated using the 2HG0 crystal structure 

of the WNV envelope protein aligned to the 3J0B cryo-EM structure of the WNV virion in 

the PyMol Graphics System, Version 1.7.0.5, Schrödinger, LLC.
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Figure 2. 
Plaque morphology of NY99ic WT, T332R, and T332P+S66R at 37°C and 41°C.
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Figure 3. 
Replication kinetics of WNV NY99ic WT and T332 mutants in (A) Vero, (B) DEF, and (C) 

C6/36 cells with an initial multiplicity of infection of 0.01. * = Statistically significant 

variation between all strains at the indicated timepoint as determined by one-way ANOVA 

(p<0.05)
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Figure 4. 
Heat maps of neutralization phenotypes of NY99ic T332 mutants, arranged by amino acid 

codon Neutralization indices of NY99ic T332 mutants by 5H10, 7H2, and polyclonal rabbit 

serum against EIII. Dark green = very strongly neutralized (NI≥2.2), light green = strongly 

neutralized (NI 1.2–1.9), yellow = moderately neutralized (NI 0.5–1.1), red = weakly 

neutralized (NI≤0.4).
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Figure 5. 
Binding of monoclonal and polyclonal antibodies to NY99ic WT and T332 mutants

Binding of WNV MIAF, WNV EIII, 5H10, and 7H2 to NY99ic WT and T332 mutants 

infected cell lysates in Western blots. Bands shown are from the ~50kD region of the gel, 

corresponding to the size of intact E protein. Coomassie staining and blotting with WNV 

MIAF are included to confirm the loading of approximately equivalent amounts of protein.
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