
Immunogenicity and efficacy of alphavirus-derived replicon 
vaccines for respiratory syncytial virus and human 
metapneumovirus in nonhuman primates

John T. Bates1, Jennifer A. Pickens1, Jennifer E. Schuster2, Monika Johnson2, Sharon J. 
Tollefson2, John V. Williams2,3, Nancy L. Davis5, Robert E. Johnston6, Nancy Schultz-
Darken7, James C. Slaughter1,4, Frances Smith-House1, and James E. Crowe Jr1,2,3,*

1The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, 
37232, USA

2Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, 
USA

3Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 
Nashville, Tennessee, 37232, USA

4Department of Biostatistics of Vanderbilt University Medical Center, Nashville, Tennessee, 
37232, USA

5Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel 
Hill, NC, 27599

6Global Vaccines, Research Triangle Park, NC, 27709, USA

7Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 
53715, USA

Abstract

Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are major causes 

of illness among children, the elderly, and the immunocompromised. No vaccine has been 

licensed for protection against either of these viruses. We tested the ability of two Venezuelan 

equine encephalitis virus-based viral replicon particle (VEE-VRP) vaccines that express the hRSV 

or hMPV fusion (F) protein to confer protection against hRSV or hMPV in African green 

monkeys. Animals immunized with VEE-VRP vaccines developed RSV or MPV F-specific 

antibodies and serum neutralizing activity. Compared to control animals, immunized animals were 

better able to control viral load in the respiratory mucosa following challenge and had lower levels 

of viral genome in nasopharyngeal and bronchoalveolar lavage fluids. The high level of 
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immunogenicity and protective efficacy induced by these vaccine candidates in nonhuman 

primates suggest that they hold promise for further development.

INTRODUCTION

Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are 

negative-sense RNA viruses and members of the family Paramyxoviridae [1]. Each virus is 

a significant cause of severe lower respiratory tract infection [2–5]. The very young, the 

elderly, and immunocompromised populations are particularly at risk, although symptomatic 

infection also occurs in the healthy adult population [6].

Infection with hRSV [7, 8] or hMPV does not confer sterilizing immunity, and an effective 

vaccine has not yet been licensed for either virus. Trials conducted in the 1960s of a 

formalin-inactivated RSV vaccine resulted in significantly enhanced respiratory disease 

among vaccinees [9–12] and in the death of two trial participants upon natural infection 

[10]. Similar effects of immunization with formalin-inactivated RSV have since been 

observed in animal studies [13, 14]. Preclinical studies with many non-replicating RSV 

vaccine candidates have stalled because of concerns about enhanced disease in animal 

models.

Immunization with live attenuated RSV strains or with other viruses that express RSV 

antigens does not result in enhanced disease in NHP [15], although in some instances, 

immunization of mice with chimeric viruses that express RSV antigens can result in 

enhanced disease [16]. However, no live vaccine has been approved for RSV or MPV. Two 

important differences between immunization with live vaccines and inactivated or subunit 

vaccines are the in vivo production of native antigen and the activation of the intracellular 

innate immune response by live virus infection. Notably, both of these differences are 

thought to contribute to the failure of the formalin-inactivated RSV vaccine. We have 

previously developed and tested virus replicon particle (VRP) vaccines against hMPV and 

hRSV in mice and cotton rats [17, 18]. Others have demonstrated the ability to elicit RSV-

neutralizing antibodies with VRP in macaques [19], but their protective efficacy has never 

been tested in nonhuman primates. Like live vaccines, the VRP vaccines activate innate 

immune pathways [20, 21] and elicit adaptive immune responses to glycoprotein antigens 

expressed in vivo [22]. Parenteral injection of VRP vaccines also stimulates a mucosal 

immune response [22, 23]. Here we extend our previous work in rodents and show that 

VRP-based RSV and MPV vaccines are also effective at stimulating protective mucosal 

immunity in non-human primates.

2. MATERIALS AND METHODS

2.1 VEE replicon constructs and generation of virus replicon particles (VRPs) containing 
genes encoding hRSV F or hMPV F

Venezuelan equine encephalitis VRPs encoding hRSV F (designated VRP-RSV.F) or hMPV 

F (VRP-MPV.F) proteins were produced, as previously described [22]. Briefly, the hRSV or 

hMPV F genes were inserted into a VEE-based replicon cDNA, pVR21, which was derived 

from mutagenesis of a cDNA clone of the Trinidad donkey strain of VEE. The heterologous 
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genes were cloned into pVR21 downstream of the subgenomic 26S promoter via a two-step 

PCR and ligation process. For generation of VRPs, capped RNA transcripts of pVR21 

containing hRSV or hMPV F genes were generated in vitro with the mMESSAGE 

mMACHINE T7 kit (Ambion, Austin, TX). Similarly, helper transcripts that encoded the 

VEE capsid and glycoproteins genes were generated in vitro. Baby hamster kidney (BHK) 

cells then were co-transfected by electroporation with the pVR21 and helper RNAs and 

culture supernatants were harvested at 30 hours after transfection. VRPs were partially 

purified and concentrated by pelleting through 20% (w/v) sucrose in phosphate-buffered 

saline (PBS), then re-suspended in endotoxin-free PBS.

2.2 VRP titration

Serial dilutions of VRP-RSV.F or VRP-MPV.F were used to inoculate BHK cells in eight-

chamber slides (Nunc) for 20 hours at 37 °C. Infected BHK cells were fixed and 

immunostained for VEE nonstructural proteins. Infectious units then were calculated from 

the number of stained cells per dilution and converted to infectious units (IU) per milliliter.

2.3 Vaccination and challenge of African green monkeys

African green monkeys aged 9 months to 2 years that tested seronegative for exposure to 

hRSV and hMPV were purchased from the Wake Forest Primate Facility (Winston-Salem, 

NC) and transferred to the Wisconsin National Primate Research Center (Madison, WI), 

where all experiments were conducted. Animals were segregated into groups as shown in 

Table 1. On day 0, animals were anesthetized and vaccinated intradermally in both arms 

with 108 infectious units (IU) of VRP-RSV.F or VRP-MPV.F. Animals were boosted with a 

second dose of the same vaccine and dose on day 28. Blood was drawn to provide samples 

for serology on days 0, 28, 36, 56 and 84. On day 56, animals were anesthetized and 

intubated before simultaneous inoculation by the intranasal and intratracheal routes with a 1 

mL inoculum per site containing 106 PFU of hMPV strain A2 or hRSV strain A2 in Opti-

MEM I medium (Invitrogen). Nasopharyngeal swabs and bronchoalveolar lavages were 

performed before challenge on day 56 and then every other day until day 68. Swabs and 

bronchoalveolar lavage fluids were frozen at stored at −80 °C until analyzed for viral titer. 

All experiments were conducted after receiving approval of the Wisconsin National Primate 

Research Center Institutional Animal Care and Use Committee.

2.4 ELISA of virus-specific serum IgG

Recombinant soluble trimeric forms of hRSV [24] or hMPVF [25, 26] proteins were 

produced in 293F cells and purified by FPLC as described previously. 384-well plates 

(Nunc) were coated with 2 μg/mL of recombinant hRSV F or hMPV F protein and incubated 

overnight at 4 °C. The plate was washed 3x, incubated with blocking buffer for 1 h at room 

temperature, and washed once more. Serum samples were diluted serially in blocking buffer 

and applied to the plate in triplicate. Following overnight incubation at 4 °C, the plate was 

washed 4x. A 1:4,000 dilution of alkaline phosphatase-conjugated anti-monkey IgG 

(Fitzgerald Industries, Acton, MA) was applied to the plate and incubated for one hour at 

room temperature. The plate was washed 4x and then incubated with 4-nitrophenyl 

phosphate disodium salt hexahydrate substrate solution (Sigma) for thirty minutes. 
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Absorbance was measured at 405 nm using a BioTek Power Wave HT plate reader. All 

washes were performed using a BioTek EL406 plate washer. Antigen-specific titer was 

determined by calculating the maximum inverse dilution that resulted in an absorbance of 

0.2 greater than pre-immunization sera at the same dilution.

2.5 Neutralization of hRSV by antibodies in serum

The RSV neutralizing activity of antibodies in sera harvested from animals immunized with 

VRP was measured by a plaque reduction assay using HEp-2 cell culture and the wild-type 

hRSV strain A2. Diluted RSV strain A2 suspended to yield 50 plaques per well was mixed 

with 1:4 dilutions of sera, and incubated at 37 °C for 1 hr. Cell monolayers in 24-well tissue 

culture plates at 80–90% confluency were inoculated in duplicate by replacing the medium 

in each well with 75 μL of virus-serum mixture. After incubation at 37 °C for 1 hr, virus 

solution was aspirated from the wells, and cell monolayers then were overlaid with 0.75% 

methylcellulose in Opti-MEM I (Invitrogen) supplemented with 2% FBS, 320 μg/mL l-

glutamine, 2.7 μg/mL amphotericin B, and 45 μg/mL gentamicin. Cultures were incubated 

for 4 days at 37 °C in 5% CO2, after which the overlay was removed and the monolayers 

were fixed in 80% cold methanol. Plaques were stained and quantified by an 

immunoperoxidase staining procedure, as described [14]. Plaques for each sera dilution were 

counted, duplicate values averaged, and sera dilution versus plaque number plotted. The 

activity of serum was calculated as the inverse dilution that resulted in 60% reduction in the 

number of plaques. The 60% plaque reduction neutralizing activity was determined by 

regression curve analysis.

2.6 Neutralization of hMPV by antibodies in serum

MPV neutralization was performed as previously described [18, 27]. Briefly, a suspension of 

live hMPV was diluted to yield 50 plaques per well and mixed with 1:1 with dilutions of 

sera, and incubated at room temperature for one hour. Virus-serum mixtures or mock treated 

control virus were inoculated onto LLC-MK2 cell culture monolayers, adsorbed for 1 hour 

at room temperature, overlaid with 0.75% methylcellulose in Opti-MEM I medium with 5 

μg/mL trypsin-EDTA, and incubated at 37°C with 5% CO2 for 4 days. Cell culture 

monolayers were fixed and stained by immunoperoxidase using hMPV-specific antibodies 

to identify plaques. Calculation of the serum neutralizing activity for hMPV was the same as 

described above for RSV.

2.7 RSV titer in the respiratory tract following live virus challenge

RSV titer in lavage fluid and fluid recovered from nasal swabs was measured by directly 

plating on HEp-2 cell monolayer cultures. Clindamycin and levofloxacin were added to the 

overlay to prevent bacterial contamination of the culture by flora in the respiratory tract 

samples. HEp-2 cell cultures were grown and developed, and plaques were stained and 

quantified as described above.

2.8 RT-PCR assay to quantitate hRSV or hMPV titer in respiratory tract samples

Samples were thawed and RNA was extracted using the MagMax-96 Viral Isolation kit 

(Applied Biosystems) and stored at −80 °C until further use. Real-time RT-PCR was 
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performed in 25 μL reaction mixtures containing 5 μL of extracted RNA on an ABI 

StepOnePlus Real-Time PCR System (Life Technologies/Applied Biosystems) using the 

AgPath-ID One-Step RT-PCR kit (Applied Biosystems/Ambion). Primers and probe 

targeting the hRSV matrix (M) gene [28] or hMPV N gene [29] were used, as previously 

described. Cycling conditions were 50 °C for 30 min, followed by an activation step at 95 

°C for 10 min and then 45 cycles of 15 sec at 95 °C and 30 sec at 60 °C. Samples with cycle 

threshold (Ct) values less than 40 were considered positive.

RESULTS

3.1 Serum RSV F- and MPV F-specific IgG

We have shown previously that immunization of mice and cotton rats with VRP-RSV.F and 

VRP-MPV.F vaccine constructs results in a protective immune response against hRSV and 

hMPV [17, 18]. To determine if similar levels of protection could be achieved in non-human 

primates, we immunized 16 African green monkeys with VRP encoding hRSV F (Table 1) 

or hMPV F (Table 2) and measured F-specific antibodies at four time points following 

immunization. Immunization with VRP-RSV.F resulted in significant levels of RSV F 

binding antibodies by day 28 following immunization, prior to boost. The titer in serum 

from each animal in the VRP-RSV.F group increased slightly in the eight days following 

boost, but titers on day 45 were not significantly different from titers on day 28. Sera from 

animals immunized with VRP-MPV.F or with media did not contain detectable levels of 

RSV F-specific IgG on day 28. Serum collected on day 36 (eight days following boost) 

contained low levels of RSV F-specific antibodies, though the titer in these animals waned 

by day 45. Control animals that were not immunized with VRP-RSV.F seroconverted 

following challenge on day 56.

The response to immunization was similar among animals immunized with VRP-MPV.F. 

All animals immunized with VRP-MPV.F had significant levels of MPV F-specific serum 

IgG 28 days following primary immunization and prior to boost. The boost immunization 

stimulated an increase in MPV F-specific IgG, and challenge with MPV stimulated a further 

increase. MPV F-specific antibodies were not detected in serum from control animals until 

after challenge on day 56.

3.2 Serum RSV and MPV neutralizing activity

Virus-neutralizing antibodies in serum have been identified as an important correlate of 

protection against acute LRI by RSV [30–32]. To determine if immunization with VRP-

RSV.F stimulated the production of virus neutralizing antibodies, we measured the RSV 

virus neutralizing activity of serum from AGM immediately prior to immunization and at 

several time points following immunization (Table 3). Sera collected immediately prior to 

immunization did not contain detectable virus neutralizing activity. However, 28 days 

following immunization, sera from three of four animals immunized with VRP-RSV.F 

contained RSV-neutralizing activity. Following boost, neutralizing titers increased in all 

four animals. Challenge with RSV on day 56 resulted in a further increase in serum 

neutralizing antibodies by day 84 in three of four animals in the VRP-RSV.F group.
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Immunization with VRP-MPV.F stimulated the production of serum MPV-neutralizing 

antibodies by 28 days following the primary immunization (Table 4). The boost 

immunization and challenge with virus stimulated increases in the level of MPV-

neutralizing activity in serum in all animals in the VRP-MPV.F group. Virus neutralizing 

activity was not detected in serum from the control groups from either arm of the study until 

after challenge with virus.

3.3 Challenge RSV titer in BAL and nostril

On day 56 following primary immunization, animals were challenged via intranasal and 

intratracheal routes with a 1 mL inoculum per site containing 106 PFU of hMPV strain A2 

or hRSV strain A2 in Opti-MEM I medium. BAL fluid and nostril swab samples were 

collected on day 58 before challenge and every other day until day 68. The numbers of RSV 

PFU in samples from the RSV arm of the study were measured by direct plaque assay of 

samples on HEp-2 monolayers. RSV plaques were developed by immunoperoxidase 

staining. Immunization with VRP-RSV.F was effective in limiting RSV levels in BAL and 

nasal samples (Fig 1A). The levels of RSV detected in the VRP-RSV.F group were lower 

than levels in the control groups and were cleared sooner. RSV PFU/ml for all data points 

when RSV was detected in the VRP-RSV.F samples ranged from five to 65. One animal in 

the VRP-RSV.F group did not have detectable RSV in BAL at any time point following 

challenge. All animals in the negative control groups had detectable virus in BAL following 

challenge, and the number of PFU/mL ranged from 20 to 7850 PFU for all data points when 

virus was detected. RSV in the BAL from animals in the negative control groups persisted 

past the time point when virus was no longer detectable in the any animal from the VRP-

RSV.F group.

Animals immunized with VRP-RSV.F were also better able to control RSV in upper 

respiratory track (Fig 1B). RSV was detected in a nostril swab sample at only one time point 

from one animal in the VRP-RSV.F group. RSV was detected in three out of four of the 

animals in the two negative control groups at three time points.

3.4 RT-PCR detection of virus

In addition to measuring live virus in BAL fluid and nostril swab samples, we also measured 

viral genome in the samples using RT-PCR. In this assay, detection of PCR product at a low 

cycle number indicates relatively more viral genome than detection of PCR product at a 

higher cycle number. Detection of product below 40 cycles is considered positive, and 

failure to detect product by 45 cycles is considered negative. Cycle thresholds between 40 

and 45 cycles are ambiguous.

The protective effects of immunization with VRP-RSV.F as measured by levels viral 

genome were generally similar to the outcome based on levels of live virus. The average 

cycle threshold for BAL samples from the VRP-RSV.F group was 31.6 for all time points 

when virus was detected compared with an average cycle threshold 28.6 for samples from 

the negative control groups (Fig 2A). Additionally, animals in the VRP-RSV.F group had 

detectable viral genome on an average of three days following challenge compared with an 

average of six days for animals in the negative control groups. Results from nostril swab 
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samples were similar. The average cycle threshold of all time points at which virus was 

detected in samples from the VRP-RSV.F group was 34.3 compared with 30.0 for samples 

from the negative control groups. VRP-RSV.F immunized animals had detectable viral 

genome in nostril swab samples on average of two days compared with an average of four 

days for samples from animals in the negative control groups (Fig 2B).

MPV genome was present at lower levels in BAL fluid and nostril swab samples from VRP-

MPV.F immunized animals than in samples from negative control animals. The average 

cycle threshold in BAL samples from VRP-MPV.F immunized animals was 28.5 and viral 

genome in those samples was detected on three days, compared with an average cycle 

threshold of 26.4 and presence of genome on six days for samples from animals in the 

control groups (Fig 3A). MPV genome was similarly reduced in nostril swab samples (Fig 

3B). Samples from VRP-MPV.F animals had an average cycle threshold of 28.7 for all time 

points at which viral genome was detected compared with an average cycle threshold of 25.4 

for nostril swab samples from control groups. Viral genome was detected in nostril swab 

samples from animals in the VRP-MPV.F group on an average of five days compared with 

an average of six days for samples from animals in the negative control groups.

DISCUSSION

We showed here that VEE VRP vaccines that encode hRSV or hMPV F proteins can elicit 

neutralizing antibodies and limit the magnitude and duration of virus shedding in infected 

nonhuman primates. VRP-based vaccines have been shown to be effective at stimulating a 

potent adaptive immune response in other experimental systems [21, 22, 33].

We observed that animals immunized with VRP-RSV.F produced low levels of MPV F-

specific serum following immunization (Table 1). Monoclonal antibodies that recognize 

conserved epitopes on hRSV and hMPV have been reported [27, 34], suggesting there is 

some minimal antigenic similarity in the F proteins. Epitopes that are capable of eliciting 

cross-reactive, neutralizing antibody responses are particularly attractive candidates for 

vaccine antigens. Recent advances in the computational design of antigens have 

demonstrated that neutralizing antibodies can be elicited in NHP following immunization 

with de novo designed antigen [35]. While epitopes that can elicit responses specific for 

multiple pathogens are of great interest to computational scientists, our observation of MPV 

F-specific antibodies following immunization with VRP-RSV.F raises the possibility that 

immunization with native antigen in the right context also might elicit cross-reactive, 

neutralizing antibodies.

The elicitation of cross-reactive neutralzing antibodies as a vaccine design goal is desirable, 

but the relevance of cross reactive, non-neutralizing antibodies is less certain. Altered ratios 

of RSV binding and neutralizing antibodies have been noted in previous studies of 

inactivated RSV vaccines, and indeed some antibodies of this non-neutralziing type enhance 

disease following certain viral infections [36, 37]. We observed the highest levels of RSV 

virus in BAL in animals that were immunized with the VRP-MPV.F vaccine. The small 

group sizes in this study did not allow for a high level of statistical power to detect 

significant differences, so we cannot confidently say if this difference is significant. These 
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animals cleared the virus and did not exhibit any obvious clinical differences compared to 

other control animals. Nevertheless, the possibility of antibody-enhanced disease in animals 

immunized with VRP-MPV.F should not be overlooked.

Generation of neutralizing antibodies is an accepted correlate of immunity for the many viral 

infections [38], although other immune mechanisms could contribute to protection. The 

protective effect of palivizumab, an RSV-neutralizing humanized murine monoclonal 

antibody administered to at-risk infants, demonstrates that neutralizing antibodies are 

sufficient to mediate at least partial protection against RSV disease [39]. Furthermore, 

antibody-mediated neutralization of RSV correlates with the association rate of the antibody 

[40, 41]. VRPs have been demonstrated previously to induce serum neutralizing antibodies 

to RSV [19], but here we also show that they induce protection against challenge with live 

virus and they do so for either RSV or MPV. Interestingly, animals immunized with VRP-

RSV.F had lower viral titers in BAL and nostril and lower titers of serum neutralizing 

antibodies. This observation is consistent with T cell mediated control of RSV or with the 

occurrence of virus-specific sIgA that could limit the infection. The VRP vaccine platform 

has been shown previously to stimulate a virus specific CD8+ T cell response and virus-

specific IgA in the respiratory mucosa of rodents [17]. These effector mechanisms also 

likely contribute to viral control in NHPs.

Unlike many pathogens, infection with hRSV [7, 8] or hMPV does not confer durable, 

protective immunity against recurrent infection. Consequently, the immune response to a 

successful hRSV or hMPV vaccine likely will differ significantly from the response to 

natural infection. Human RSV and hMPV have evolved mechanisms to suppress key 

components of the innate immune response. RSV has been shown to inhibit activation of 

interferon pathways [42–47], STAT pathways [47], SOCS pathways [43], and activation of 

NF-κB [44]. Although less well-studied, hMPV also has been shown to inhibit activation of 

Type I interferon signaling pathways [48, 49]. These mechanisms of immune evasion 

prevent maturation and activation of pulmonary dendritic cells [50, 51] and are likely factors 

in the ability of hRSV and hMPV to infect without stimulating a protective immune 

response.

Numerous live attenuated hRSV and hMPV vaccine candidates have been tested. 

Historically these vaccines have been developed by cold passaging the virus and 

subsequently identifying attenuating mutations by sequencing, although more recently 

reverse genetic techniques have enabled a greater degree of rational design [52, 53]. 

Recently Meng and colleagues generated a hRSV live vaccine candidate in which the NS1 

and NS2 genes were codon-deoptimized [54]. Codon-deoptimization of these genes resulted 

in significantly lower levels of protein translation and consequently reduced immune 

evasion and enhanced neutralizing antibody titer in mice. Similarly, the efficacy of the VEE-

VRP likely rests on the ability of these vectors to present the native F antigens in a context 

that differs from the immune evasion milieu stimulated by wild-type pneumovirus infection. 

The presentation of structurally correct viral antigen to the immune system in combination 

with activation of Type I interferon pathways [55, 56] and DC maturation [57] by the VEE-

VRP vaccine platform appear to induce an immune response that is superior to that elicited 

by inactivated virus and possibly conventional live attenuated viruses. The level of efficacy 
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that we observed following immunization with VRP vaccines might be increased by 

inserting genes for additional adjuvant components into the replicon particle.

The existence of pre- and post-fusion forms of RSV F has complicated the development of 

an RSV F based subunit vaccine for RSV. Recent advances in understanding the structural 

biology of RSV F [58, 59] and the computational design of a scaffold antigen that elicits 

RSV neutralizing antibodies [35] have increased the potential for success with RSV subunit 

vaccines. However, any successful subunit vaccine will need to include an effective 

adjuvant. Currently alum is the only adjuvant that is approved for widespread use in the 

United States. Additionally, subunit vaccines are typically inefficient at stimulating MHC 

Class I-restricted CD8+ T cell responses. The intrinsic adjuvant activity of VRP particles 

and their ability to stimulate a potent CD8+ T cell response [60, 61] are significant strengths 

of the VRP-platform and likely contribute to their effectiveness in stimulating an effective 

immune response in NHPs against hRSV and hMPV.
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Figure 1. 
Detection of hRSV in BAL (A) or nostril (B) following challenge. The level of viable RSV 

was measured in each compartment by direct plaque assay of samples on HEp-2 cell 

monolayer cultures. Plaques were visualized by immunoperoxidase staining.
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Figure 2. 
Detection of RSV genome in BAL (A) or nostril (B) following challenge. Primers and probe 

targeting the hRSV matrix (M) gene were used to detect hRSV genome. Samples with a 

cycle threshold value less than 40 were considered positive.
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Figure 3. 
Detection of hMPV genome in BAL (A) or nostril (B) following challenge. Primers and 

probe targeting the hMPV N gene were used to detect hMPV genome. Samples with a cycle 

threshold value less than 40 were considered positive.
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