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Abstract

Presynaptic NMDA receptors (preNMDARs) play pivotal roles in excitatory neurotransmission 

and synaptic plasticity. They facilitate presynaptic neurotransmitter release and modulate 

mechanisms controlling synaptic maturation and plasticity during formative periods of brain 

development. There is an increasing understanding of the roles of preNMDARs in experience-

dependent synaptic and circuit-specific computation. In this review, we summarize the latest 

understanding of compartment-specific expression and function of preNMDARs, and how they 

contribute to synapse-specific and circuit-level information processing.
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PreNMDARs influence synaptic transmission and short- and long-term 

plasticity

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors, 

critical for functions ranging from excitatory synaptic transmission and coincidence 

detection in Hebbian plasticity at a cellular level to the complexities of information 

processing, learning, and memory at a systems level in the mammalian central nervous 
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system [1–3]. NMDARs are traditionally thought to be located postsynaptically, and the 

existence and functional roles of such receptors on the presynaptic side of the synapse have 

been less well studied. However, anatomical and physiological evidence demonstrates the 

presence of presynaptic NMDARs (preNMDARs) that powerfully shape synaptic 

transmission and plasticity [4, 5]. While a role for preNMDARs in neurotransmitter release 

was first suggested more than 20 years ago [6, 7], important questions regarding the 

synapse-specific expression and functions of preNMDARs remain.

PreNMDARs can influence short-term plasticity and neurotransmitter release, and, like their 

postsynaptic counterparts, are critical in mediating certain forms of long-term synaptic 

plasticity. PreNMDARs are required for the induction of spike timing-dependent long-term 

depression (t-LTD) [8–12] and a novel form of presynaptic spike pattern-dependent LTD (p-

LTD) in sensory cortices [13], underscoring their potential importance in synaptic pruning 

and circuit homeostasis. PreNMDARs are also required for long-term potentiation (LTP) at 

cortical projections to the amygdala and striatum [14, 15], and may contribute to the 

presynaptic enhancement of glutamate release at CA3-to-CA1 synapses that occurs after 

LTP induction [16]. The general properties of preNMDARs and their discovery from a 

historical perspective have previously been reviewed [4, 5, 17, 18]. Here, we summarize the 

latest understanding of compartment-specific expression and function of preNMDARs and 

how they contribute to synapse-specific and circuit-level computations.

PreNMDARs have synapse-specific effects on neurotransmitter release and plasticity

Unlike postsynaptic NMDARs, which are found at most excitatory synapses in the brain, 

preNMDARs influence presynaptic release and plasticity only in certain brain regions and 

only at subsets of synapses [19–23]. Similar to many other presynaptic ionotropic and 

metabotropic receptors, preNMDARs have synapse-specific presynaptic expression in a 

number of brain regions including layer (L)4-L2/3 synapses of mouse [10, 24] and rat 

somatosensory cortex [8, 21], L4-L2/3 synapses of mouse visual cortex [9], thick-tufted L5 

neurons in rat visual cortex [11, 22], rat cerebellum [25, 26], mouse cortico-striatal synapses 

[15], rat spinal primary afferent terminals [27], and in the mouse amygdala [14]. This 

expression pattern suggests that preNMDARs are important in regulating synapse-type-

specific plasticity [28]. Input- and target-specific activation of preNMDARs presumably 

depolarizes synaptic terminals [29] and may influence presynaptic release and short-term 

plasticity, which may, in turn, adjust input coherence.

Consequences of synapse- and pathway-specific expression of preNMDARs have been 

dissected at excitatory L2/3 synapses in rat somatosensory cortex, where L4-L2/3 synapses, 

but not L2/3-L2/3 synapses, specifically express preNMDARs [19, 21]. In the developing 

neocortex, this synapse-specific expression of preNMDARs results in two mechanisms for t-

LTD induction at excitatory L2/3 synapses: preNMDAR-mediated t-LTD at L4 inputs and 

postsynaptic NMDAR-mediated t-LTD at L2/3 inputs [19, 20, 30, 31]. The difference in t-

LTD mechanism at these inputs results in distinct integration time windows, with 

preNMDAR-mediated t-LTD at L4-L2/3 synapses having a wider time window of delay 

between post-before-presynaptic activity for successful induction [8, 19]. Induction of t-

LTD at L4-L2/3 synapses requires preNMDARs during early life, but shifts with experience 

Banerjee et al. Page 2

Trends Neurosci. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



during development to require postsynaptic NMDARs instead [9, 20, 32]. The input-specific 

expression of preNMDARs may dictate the timing-requirements for t-LTD induction at L4-

L2/3 synapses in sensory cortices, and their presence might lengthen the integration time-

window for uncorrelated inputs to induce LTD and subsequent synapse elimination in 

immature circuits [19, 33].

At synapses onto L2/3 pyramidal neurons, preNMDARs appear to most strongly influence 

neurotransmitter release at inter-laminar afferents from L4 neurons, but in other cortical 

layers preNMDARs also influence plasticity and neurotransmitter release at recurrent 

synapses within a cortical layer. In L5 neurons of the visual cortex, preNMDARs in 

presynaptic pyramidal neurons influence glutamate release within the same layer 

specifically onto other pyramidal cells and somatostatin-positive Martinotti cells, but not 

parvalbumin-positive basket cells [11, 22]. In contrast, whether preNMDARs typically 

influence glutamate release at L4-L4 excitatory synapses is unclear and may depend on the 

cortical area examined. In the somatosensory cortex, preNMDARs do not appear to affect 

evoked glutamate release evoked between L4-L4 excitatory synapses and preNMDARs do 

not enhance spontaneous release at these L4 neurons [21, 34]. However, at L4-L4 visual 

cortical synapses, brief bursts of action potentials elicited every 10 seconds produce 

preNMDAR-dependent LTD at these synapses in early development (called slow-wave 

LTD), and preNMDAR-dependent slow-wave LTP with the same protocol in later 

development [35]. Additionally, preNMDARs influence spontaneous glutamate release at 

these L4 visual cortical neurons [9]. This suggests that preNMDARs at L4-L4 synapses may 

only be expressed in specific sensory cortical areas or may only be activated by different 

stimuli than those that activate preNMDARs at L4-L2/3 synapses. Broadly, the synapse-

specific expression of preNMDARs indicates that these receptors have spatially and 

functionally restricted roles in controlling information flow in specific neocortical 

microcircuits.

Molecular mechanisms for preNMDAR-mediated regulation of neurotransmitter release

PreNMDARs impact spontaneous transmitter release and evoked neurotransmission, and 

influence both short- and long-term plasticity [4, 7]. PreNMDARs may regulate 

neurotransmitter release by causing Ca2+ influx to directly trigger vesicle exocytosis, by 

depolarizing terminals to activate voltage-gated Ca2+ channels and indirectly trigger 

transmitter release, or by modulating downstream intracellular signaling cascades, possibly 

through metabotropic effects that occur independent of ion flux [36]. Like postsynaptic 

NMDARs, the subunit composition of preNMDARs influences their intrinsic regulatory 

mechanisms and expression. Unique preNMDAR subunit compositions may influence the 

voltage-sensitive Mg2+ block of Ca2+ permeable NMDARs, the varied range of temporal 

activation/deactivation kinetics, and the association of preNMDARs with intracellular 

scaffolding proteins and signalling molecules [37]. Therefore, preNMDAR subunit 

composition is likely an important factor for regulating where and how preNMDARs 

influence neurotransmitter release.

PreNMDARs regulate spontaneous neurotransmitter release—Emerging 

evidence indicates that preNMDARs exert a tonic facilitatory effect on both spontaneous 
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glutamate [9, 11, 21] and GABA release [25, 38, 39] at subsets of synapses throughout the 

brain. Interestingly, preNMDARs appear to tonically facilitate spontaneous neurotransmitter 

release that occurs in the absence of action potential-driven depolarization [40], suggesting 

that they are activated by ambient glutamate and that relief of the Mg2+ block of the receptor 

may not always be necessary for preNMDAR activation [4]. Interestingly, in some 

instances, this may result from the incorporation of preNMDAR subunits with reduced 

Mg2+ sensitivity such as GluN2C, GluN2D, or GluN3A subunits [24, 41, 42]. Alternatively, 

preNMDARs may activate a signaling cascade that alters Ca2+ dynamics in the presynaptic 

terminal. For example, in cerebellar molecular layer interneurons, it has been reported that 

preNMDARs modulate Ca2+ release from ryanodine-sensitive intracellular stores, increasing 

spontaneous GABA release [39, 43]. In contrast, preNMDARs in the visual cortex influence 

spontaneous glutamate release through a distinct mechanism involving GluN3A subunit-

containing receptors and protein kinase C, without requiring activation of ryanodine-

sensitive intracellular stores [41, 44]. Interestingly, at these synapses preNMDARs also 

appear to promote Ca2+-independent spontaneous glutamate release [44]. While it is likely 

that preNMDARs predominantly influence presynaptic release through Ca2+-dependent 

mechanisms [45, 46], this finding suggests that preNMDARs may also regulate Ca2+-

independent spontaneous release. The contribution of preNMDARs to spontaneous release 

also requires activation of c-Jun N-terminal kinase (JNK) pathway [47], presumably through 

JNK2 interacting with the scaffold protein JIP1 [48]. Generally, since miniature synaptic 

events likely help regulate dendritic protein synthesis [49], the influence of preNMDARs on 

spontaneous release suggests that preNMDARs may play important roles in modulating 

protein synthesis and stabilizing nascent synapses.

PreNMDARs regulate evoked neurotransmitter release—In addition to modulating 

spontaneous neurotransmitter release, preNMDARs also regulate evoked action potential-

driven neurotransmitter release [11, 21, 43]. However, preNMDAR expression does not 

typically determine whether a synapse is facilitating or depressing [22], suggesting that 

preNMDARs influence the properties of evoked neurotransmission at a given synapse in 

concert with other factors. In contrast to their influence on spontaneous release, which by 

nature does not reflect repetitive neurotransmitter release events at the same synapse, 

preNMDARs appear to most strongly influence evoked neurotransmission at specific 

frequencies of presynaptic neuron firing. At hippocampal CA3-to-CA1 synapses, for 

example, preNMDARs seem tuned to specifically enhance glutamate release at theta (5 Hz) 

frequency stimulation [16]. In contrast, preNMDARs are activated most effectively at 

frequencies above 10 Hz in the visual cortex [11, 20] and at frequencies between 40 Hz and 

1 kHz at cerebellar parallel fiber-to-Purkinje cell synapses [50]. Interestingly, at neocortical 

synapses, NMDAR antagonists reduce presynaptic release following the first action 

potential within a high frequency train [11, 20, 21, 41, 51], indicating that glutamate release 

and auto-activation of preNMDARs are not the sole mechanisms determining how 

preNMDARs influence evoked neurotransmission. These properties of preNMDARs enable 

them to help maintain reliable synaptic transmission during high-frequency presynaptic 

firing. Indeed, preNMDARs facilitate frequency-dependent di-synaptic inhibition at 

synapses between pyramidal neurons and GABAergic Martinotti cells during high-

frequency excitatory neuronal activity [22, 52].
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PreNMDARs regulate long-term synaptic plasticity—The mechanism by which 

preNMDARs influence long-term synaptic plasticity is only beginning to be understood. An 

influential study demonstrated that the expression of presynaptic t-LTD at L4-L2/3 synapses 

requires coincident activation of preNMDARs along with an additional requirement of 

voltage-sensitive calcium channels, group I metabotropic glutamate receptors (mGluRs), IP3 

receptors, and calcium release from intracellular stores [8]. This Ca2+-dependent signaling 

cascade results in retrograde endocannabinoid signaling functioning as a second coincidence 

detector [8] (Figure 1). These experiments and others suggest that t-LTD mediated by 

preNMDARs at L4-L2/3 and L5 cortical synapses also requires endocannabinoid signaling 

[8, 11, 12, 53]. However, subsequent studies of t-LTD and p-LTD at L4-L2/3 mouse barrel 

cortex synapses suggest that LTD mediated by preNMDARs does not always require 

endocannabinoid or retrograde signaling [13, 24, 54]. Therefore, the exact requisite 

conditions for the involvement of endocannabinoid signaling in t-LTD still remain to be 

elucidated. When endocannabinoid signaling is involved, however, even the cellular location 

of the relevant endocannabinoid CB1 receptors involved in t-LTD is debated. The CB1 

receptors involved in cortical t-LTD were first assumed to be located at glutamatergic 

presynaptic neurons [8], but a study using a C-terminal directed CB1 receptor antibody 

suggested that these receptors were exclusively localized to GABAergic terminals in the 

cortex, where they would be unlikely to be involved in glutamatergic plasticity such as t-

LTD [55]. This lack of CB1 receptor antibody labeling of excitatory boutons may be due to 

inhibition of antibody binding to the C-terminus of CB1 receptors when accessory proteins 

such as the excitatory synapse-specific accessory protein CRIP1a are bound to the C-

terminus of the CB1 receptor [56]. Alternatively, glutamatergic synapses may lack CB1 

receptor expression and the cannabinoid receptors relevant to t-LTD induction at L4-L2/3 

synapses may be located on astrocytes, as was recently suggested [53] (discussed below).

The precise subunit composition of preNMDARs often endows these receptors with reduced 

magnesium sensitivity and atypical kinetics, and such properties also influence the time-

course for coincidence detection by preNMDARs. While not causatively demonstrated, 

these kinetic properties of preNMDAR subunits may be important in determining timing 

windows for when coincident presynaptic activity results in synaptic plasticity. At cortical 

synapses, the NMDAR pore-blocking antagonist MK-801 blocks preNMDAR-mediated t-

LTD, suggesting that metabotropic preNMDAR action is not solely responsible for this form 

of plasticity and that ion flux through the receptor is required [10, 11, 13, 20]. The 

mechanisms for long-term reduction of presynaptic neurotransmitter release following 

preNMDAR activation following LTD induction are not known, but preNMDAR-mediated 

synaptic potentiation at cortical projections to lateral amygdala require protein kinase A 

(PKA) signaling, suggesting that some forms of preNMDAR-mediated plasticity may 

involve changes in PKA phosphorylation of RIM1α, which has been implicated in other 

forms of presynaptic LTP [57, 58], but see also [59]. Additionally, presynaptic burst spike-

induced p-LTD at cortical L4-L2/3 synapses in mouse barrel cortex requires the serine/

threonine-protein phosphatase calcineurin (CaN) presynaptically [13]. Calcineurin has been 

previously implicated in hippocampal presynaptic inhibitory plasticity [60] and is 

abundantly expressed in the central nervous system, including perhaps predominantly 

presynaptically in the cortex [61]. During p-LTD, Ca2+ influx following preNMDAR 
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activation may activate CaN to produce downstream changes in vesicle exocytosis and 

endocytosis through dephosphin signaling [62] or through inhibition of dynamin I activity 

[63].

Development and sensory experience regulate preNMDAR expression

PreNMDARs undergo significant changes in their expression and function during 

development [64]. These changes vary based on the synapse examined [4], but generally 

preNMDARs exert their greatest influence on neurotransmission and plasticity early in life. 

For example, in the hippocampus [42], cerebellum [25], as well as entorhinal [65], 

somatosensory [24], and visual cortices [9], preNMDARs control neurotransmitter release 

and plasticity most significantly during early postnatal development. This developmental 

regulation may be partially mediated by presynaptic α7 nicotinic acetylcholine receptor 

activation, which has been shown to increase expression of preNMDARs [66]. The 

relevance of this developmental regulation is unknown, but preNMDARs may be important 

in ensuring reliable neurotransmission during early synapse development while also 

promoting forms of plasticity that weaken synapses with uncoordinated pre- and 

postsynaptic activity [19].

In some instances, developmental alterations in preNMDAR function occur due to changes 

in NMDAR subunit expression. In the visual cortex and barrel cortex, preNMDAR-mediated 

t-LTD is developmentally downregulated following postnatal day 20 [9, 24]. In the visual 

cortex, this coincides with a reduction in the expression of GluN3A and a nearly 50% 

reduction in axonally-expressed NMDARs [41]. These changes in subunit expression likely 

underlie changes in preNMDAR function because loss or overexpression of GluN3A is 

capable of modifying the developmental period in which preNMDARs modulate glutamate 

release at this synapse. At L4-L2/3 synapses in the barrel cortex, t-LTD likely requires 

GluN2C or GluN2D subunits and it is similarly developmentally regulated [24]. The 

mechanism underlying this developmental regulation is unknown, but might also involve a 

change in NMDAR subunit composition.

In concert with genetically-programmed developmental changes, sensory experience also 

critically regulates the expression and function of preNMDARs at L4-L2/3 synapses. In the 

barrel cortex, removal of all but a single row of whiskers results in an increase in glutamate 

release at L4-L2/3 synapses within the barrel column corresponding to the spared whisker 

[51]. This coincides with an increased contribution of preNMDARs to short-term plasticity, 

suggesting that augmented sensory stimulation enhances glutamate release via an increased 

contribution of preNMDARs. Similarly, in the visual cortex, binocular visual deprivation 

either during development or in early adulthood (P26–30) enhances glutamate release 

evoked at frequencies above 5 Hz at L4-L2/3 synapses [20]. Like in the barrel cortex, this 

involves an increase in the contribution of preNMDARs to both spontaneous and action 

potential-driven glutamate release [18]. Additionally, whereas normally-reared mice lack 

preNMDAR-mediated t-LTD at L4-L2/3 synapses in adulthood, dark-reared mice exhibit t-

LTD in adulthood [18].

Sensory experience modulates the function of NMDARs at recurrent cortical synapses as 

well. At L4-L4 visual cortical synapses, the same protocol that produces slow-wave LTD at 
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these synapses in two-to-three week old mice elicits LTP at 4 weeks of age [35]. 

Interestingly, and in contrast to other synapses in which preNMDARs typically enhance 

release in early development, preNMDARs enhance evoked glutamate release at these L4-

L4 synapses only at the later developmental time point. These developmental changes likely 

depend on sensory experience because monocular deprivation reverses this age-dependent 

transition from slow-wave LTD to LTP in slices from the hemisphere with visual input 

contralateral to the deprived eye [67]. Collectively, these results demonstrate that 

preNMDARs adaptively modulate synaptic properties in response to changes in activity and 

the sensory environment.

Axonal Expression of PreNMDARs

In a variety of brain areas, NMDARs subunits have been localized to axons using both 

electron microscopy and fluorescence-based microscopy [16, 25, 41, 68, 69] (Box 1). In 

early cortical development, functional NMDARs are localized to axon growth cones and are 

important for regulating early synapse formation [68, 70]. Given these findings and the 

observation that NMDAR agonists and antagonists influence neurotransmission in isolated 

synaptosomes [71, 72] and in a manner consistent with presynaptic changes in vesicular 

release [4, 11], it has long been assumed that preNMDARs are located at axonal membranes 

(Figure 2). However, recent functional studies have called the axonal localization of 

preNMDARs into question and suggested that, at least in certain anatomical regions, 

preNMDARs may actually be located in the somatodendritic compartment of presynaptic 

neurons and be entirely absent from the axon [73]. Many functional studies have come to 

opposing conclusions regarding the localization of preNMDARs to axons.

As discussed above, preNMDARs influence glutamate release at a subset of synapses from 

L5 visual cortical pyramidal neurons onto neighboring pyramidal neurons and Martinotti 

interneurons [22]. However, iontophoresis of the NMDAR agonist aspartate onto L5 

pyramidal cell axons failed to alter the probability of observing antidromically-initiated 

action potentials, failed to depolarize axons measured from patches of severed axonal blebs, 

and did not result in increases in axonal Ca2+ measured from line scans across small axonal 

regions [74]. Additionally, NMDAR antagonists failed to alter axonal Ca2+ responses 

produced from somatically-evoked 20–30 Hz action potential responses [74]. The lack of 

detectable depolarization or Ca2+ influx via axonal NMDARs suggests that NMDARs are 

excluded from the axon of L5 pyramidal cells. Similarly, NMDARs also enhance 

GABAergic transmission at cerebellar synapses from stellate and basket molecular layer 

interneurons onto postsynaptic Purkinje cells ([25, 43], but see also [75, 76]). And similar to 

the results obtained in L5 visual cortical neurons, iontophoresis of aspartate to stellate or 

basket cell axons failed to evoke axonal Ca2+ responses, suggesting an absence of axonal 

NMDARs in these cells [76, 77]. In contrast to L5 neurons, aspartate application to stellate 

cell dendrites was sufficient to open voltage-sensitive Ca2+ channels in axons [77]. This 

suggests that in these cells, dendritic preNMDARs produce subthreshold depolarizations that 

spread into axons to modulate GABA release.

However, in contrast to the conclusions of the studies mentioned above, other recent studies 

have detected axonal Ca2+ influxes following NMDAR agonist application both in the 
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cerebellum and at L5 axons in the visual cortex. For example, Buchanan et al. observed that 

uncaging of MNI-NMDA resulted in the enhancement of Ca2+ responses evoked by 30 Hz 

action potential firing at a subset of visual cortical L5 boutons [22]. Similarly, Rossi et al. 

observed axonal Ca2+ responses following glutamate uncaging at ~28% of molecular layer 

interneuron axon sites, which were capable of propagating to neighboring synaptic sites [39, 

78]. While seemingly contradictory, these findings can be somewhat reconciled by recent 

findings (detailed above) that preNMDARs are expressed only at a subset of synapses. Since 

aspartate iontophoresis experiments largely surveyed axonal Ca2+ responses only at small 

axonal regions, they may not have detected the limited subset of boutons that express 

preNMDARs. Additionally, slower frame scans performed of larger axonal regions during 

bath application of NMDAR antagonist may have missed atypically fast or densensitizing 

axonal NMDAR responses. Why axonal aspartate iontophoresis did not alter axonal or 

somatic excitability at L5 axons is unclear, but presently little is known regarding properties 

of the L5 NMDARs that influence neurotransmitter release, making it difficult to estimate 

their influence on excitability. Additionally, preNMDARs might influence presynaptic 

release both through Ca2+ ion influx and via metabotropic action [36]. This suggests that the 

absence of NMDAR-mediated depolarization or Ca2+ influx may not always be sufficient to 

conclude the absence of axonal NMDAR expression. Axonal expression of preNMDARs 

has been further supported by the use of a caged version of use-dependent NMDAR 

antagonist MK-801 specifically loaded in individual presynaptic L4 neurons in synaptically-

connected L4-L2/3 pairs in mouse barrel cortex [79]. Compartment-specific uncaging of 

MK-801 showed that axonal, but not somatodendritic, preNMDARs are required for the 

induction of t-LTD [50].

A shortcoming of studies failing to observe the functional expression of axonal NMDARs is 

that they rely on the assumption that an axonal NMDAR will function similarly or 

identically to a dendritic NMDAR. Synapse-specific expression, the incorporation of 

atypical NMDAR subunits, and their developmental regulation demonstrate that 

preNMDARs are distinct from their postsynaptic counterparts. Presynaptic somatodendritic 

NMDARs cannot always account for the effects of preNMDARs on neurotransmitter release 

because their activation does not always activate axonal Ca2+ conductances enough to 

influence presynaptic release [74], because preNMDARs are required for forms of plasticity 

even when the somatodendritic compartment has been severed from the preparation [15], 

and because NMDAR antagonists acting on axonal NMDARs block plasticity mediated by 

preNMDARs [79]. Therefore, while dendritic preNMDARs may contribute to plasticity and 

neurotransmitter release in limited instances, the majority of evidence supports the primary 

localization of preNMDARs to subsets of the axonal compartment. As the unique properties 

of preNMDARs are further elucidated, the subcellular localization of the preNMDARs at 

high resolution should further advance our understanding of their roles in circuit-specific 

processes.

Astrocytic regulation of preNMDAR-mediated plasticity and neurotransmission

The contribution of astrocytes in regulating synaptic transmission and plasticity is currently 

under intense investigation, and whether these glial cells release gliotransmitters onto 

presynaptic receptors is debated [80–83]. However, in many instances, it appears that 
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synaptic responses activate astrocytic receptors, which, in turn, could result in 

gliotransmitter release onto preNMDARs in a paracrine fashion (Figure 3). For example, 

glutamate exocytosis from astrocytes has been reported to enhance synaptic strength at 

excitatory synapses between hippocampal presynaptic perforant path afferents and 

postsynaptic granule cells [69]. This occurs through activation of astrocytic TNFα and 

purinergic P2Y1 receptors that trigger glutamate gliotransmission onto GluN2B subunit-

containing preNMDARs on perforant path axons and results in increases of transmitter 

release at the synapse [84]. Astrocyte-released glutamate has also been shown to control 

presynaptic vagal afferent excitability by activating preNMDARs that communicate directly 

with postsynaptic neurons in the rat nucleus of the solitary tract [85]. Interestingly, these 

findings suggest that, in some instances, preNMDARs may be activated by glutamate from 

adjacent astrocytes rather than glutamate from previous neuronal activity or from other 

ambient sources [86]. However, it is important to note that the exocytosis of glutamate from 

astrocytes is often inferred from experiments demonstrating that broadly blocking astrocytic 

vesicular release reduces the activation of preNMDARs. Since the identity of the relevant 

vesicular signaling molecule is not always known in these instances, it is possible that a 

gliotransmitter other than glutamate indirectly influences the activation of preNMDARs.

Astrocytes also appear to regulate activation of preNMDARs at the co-agonist ‘glycine’ 

binding site, which is activated by the endogenous NMDAR co-agonists glycine and D-serine 

[87]. In the cortex, this co-agonist site on preNMDARs typically appears to be saturated, 

allowing for preNMDAR tonic activity [87–90]. In the entorhinal cortex, astrocytes release 

D-serine onto preNMDARs, resulting in the saturation of the co-agonist site [87]. D-serine 

preferentially influences GluN2A subunits [91] and may desensitize or antagonize GluN3A 

subunit-containing NMDARs [92, 93], suggesting that NMDA receptor co-agonists may 

strongly influence preNMDAR activity [41]. However, it is unclear whether the 

predominant source of D-serine that activates preNMDARs is from astrocytes, because serine 

racemase predominantly localizes to cortical glutamatergic neurons and D-serine levels are 

unaffected in astrocyte-specific serine racemase conditional knock out mice [94].

Astrocytes could also contribute to t-LTD at cortical synapses by releasing a gliotransmitter 

to activate preNMDARs [53]. In this instance, release of endocannabinoids from 

postsynaptic L2/3 neurons activates CB1 receptors on astrocytes, resulting in the release of 

(presumably) glutamate onto preNMDARs. In this situation, coincident detection of pre- and 

postsynaptic activity during t-LTD is not performed directly by the preNMDAR. 

Interestingly, astrocytes control distinct forms of preNMDAR-mediated plasticity at the 

same synapse, such as p-LTD and t-LTD that occlude each other [9]. This suggests that 

these diverse processes mechanistically converge on preNMDARs through astrocytic 

activation and subsequent gliotransmission or modulation of extracellular glutamate by 

astrocytic transporters [7].

Conclusion

Overall, this review contextualizes the importance of the spatial and temporal dynamics of 

preNMDARs and how this affects synaptic communication, plasticity, and network function. 

We have highlighted the unique properties of preNMDARs that make them distinct from 
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postsynaptic NMDARs. Generally, the findings we summarize here suggest that the 

canonical properties of postsynaptic NMDARs may not always be relevant to preNMDARs 

expression and function. There are still many unanswered questions regarding preNMDARs 

relating to their expression and regulation (Box 2), and future studies will likely reveal other 

ways that preNMDARs uniquely influence neurotransmission and plasticity.

Generally, the role of preNMDARs in neurological and psychiatric disease has been mostly 

overlooked, however, preNMDAR dysfunction may be particularly relevant to pathological 

brain states. The enhanced expression or sensitivity of preNMDARs has been reported in 

studies examining the pathological plasticity associated with epilepsy [65] and cortical 

reorganization following laser-induced lesions [95]. A role for preNMDARs in mouse 

models of developmental dyslexia was suggested at L4-L4 somatosensory cortical synapses. 

Genetic mutations in the doublecortin domain containing 2 (DCDC2) protein are known to 

increase the risk of dyslexia and loss of this protein in mice alters learning and sensory 

processing [34]. However, mice lacking expression of DCDC2 have increased evoked and 

spontaneous glutamatergic synaptic transmission at L4-L4 synapses which results from the 

misexpression of preNMDARs at this synapse, which does not typically express 

preNMDARs (discussed in [34]). While correlative, this suggests that DCDC2 may be 

important in regulating the expression of preNMDARs and, more generally, that the 

misexpression of preNMDARs may contribute to learning disabilities. These findings 

highlight that, like their postsynaptic counterparts, the contribution of preNMDARs to 

pathological brain states and neurological disorders needs to be more carefully investigated.

Currently, NMDAR pharmacology is assumed to target postsynaptic NMDARs, but likely 

also affects preNMDARs. For example, the use-dependent NMDAR antagonist ketamine 

produces rapid antidepressant effects in humans that last for weeks following administration 

[96]. Therefore, ketamine has been suggested to function as a novel therapeutic for the 

treatment of major depressive disorder and treatment-resistant depression. While it is 

generally assumed that the majority of ketamine’s therapeutic properties result from actions 

at postsynaptic NMDARs [97], ketamine and other NMDAR-based therapeutics may also 

affect preNMDARs. For example, ketamine administered at antidepressant doses reduces 

evoked glutamate release in vivo measured in the subiculum and prelimbic area of the 

prefrontal cortex, and, while not directly demonstrated, these effects have been proposed to 

be mediated by preNMDARs [98]. Therefore, future studies are warranted to disambiguate 

how NMDAR-based therapeutics affect preNMDARs. The possibility of selective 

pharmacological targeting of preNMDARs promises new opportunities for understanding 

preNMDAR biology in the normal brain and treating neurological disorders [90, 99, 100].
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Glossary

N-methyl-D-aspartate 
(NMDA) receptors

Glutamate-gated ionotropic receptors that additionally require 

binding of the co-agonist D-serine or glycine to be functionally 

active. NMDARs are hetero-tetrameric receptors that are 

composed of two obligatory GluN1 subunits and two glutamate-

binding GluN2 subunits and/or glycine-binding GluN3 subunits 

[1]. The subunit composition of NMDARs strongly influences 

their Ca2+ permeability, Mg2+ block, activation/deactivation 

kinetics, intracellular binding partners, regional expression, and 

developmental regulation.

PreNMDARs Presynaptic N-methyl-D-aspartate (NMDA)-type glutamate 

receptors. PreNMDARs are localized to the dendrite, soma, or 

axon of the presynaptic neuron where they influence 

neurotransmitter release and presynaptic forms of plasticity.

Short-term plasticity Depression or facilitation of synaptic efficacy that lasts in the 

order of seconds to minutes [107].

Hebbian plasticity Plasticity that occurs when the activity of the presynaptic neuron 

causes the firing of the postsynaptic cell and subsequently results 

in an increase in synaptic efficacy between two neurons [108]. 

The most extensively studied form of Hebbian plasticity is 

hippocampal long-term potentiation [109].

Long-term 
depression (LTD)

A long-lasting reduction in the synaptic efficacy that results 

from specific neuronal activity pattern in either the presynaptic 

or postsynaptic neuron or both. Following LTD, the ability of 

presynaptic neurons to influence postsynaptic neuronal firing is 

reduced.

Long-term 
potentiation (LTP)

A long-lasting strengthening of synaptic efficacy resulting from 

specific activity pattern in either the presynaptic or postsynaptic 

neuron or both. Following LTP, the ability of presynaptic 

neurons to influence postsynaptic neuronal firing is increased.

Spike timing-
dependent plasticity 
(STDP)

Bidirectional synaptic plasticity whose sign and magnitude is 

causally linked to the order and timing of pre- and postsynaptic 

activity within a critical temporal window [110]. This form of 

plasticity has attractive computational properties [111].

Spike pattern-
dependent LTD (p-
LTD)

A preNMDAR-dependent form of LTD at L4-L2/3 synapses in 

mouse barrel cortex, and possibly other pathways, that solely 

depends on the temporal activity pattern in the presynaptic 

neuron, independent of postsynaptic neuronal activity [13].

Sensory cortices The visual, auditory, somatosensory, olfactory and gustatory 

cortices. Within this review, sensory cortices generally refer to 

the visual and somatosensory cortex. Synaptic plasticity 
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mediated by preNMDARs is a strong candidate mechanism for 

dynamic changes in sensory cortical maps.

Spontaneous 
neurotransmitter 
release

Release of neurotransmitter resulting from spontaneous vesicle 

fusion at presynaptic terminals. Spontaneous release occurs 

independent of action potential firing in the presynaptic neuron 

and may or may not be associated with changes in presynaptic 

Ca2+ [40, 112].

Evoked 
neurotransmitter 
release

Neurotransmitter release resulting from action potential firing in 

the presynaptic neuron.
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Box 1

Ultrastructural localization of preNMDARs: at the right place, at the right 
time

NMDA receptor subunits have been ultrastructurally localized to axons in a wide variety 

of brain areas and in spinal cord [4, 16]. If functional studies implicating preNMDAR 

involvement in synaptic transmission predominantly measure contributions from 

axonally-expressed preNMDARs, then several correlative predictions can be made about 

their anatomical axonal expression. First, preNMDAR subunits should be 

ultrastructurally localized to axons in the same anatomical regions where they contribute 

to synaptic transmission. Axonal GluN2A [50], GluN2B [101], and GluN3A [41] have 

been found to be axonally expressed in areas where these subunits are required for the 

contribution of preNMDARs to synaptic transmission. Interestingly, at cerebellar 

molecular layer interneuron axons where axonal preNMDAR expression is debated [76], 

GluN2A and GluN2B are not ultrastructurally found at these axons [75]. A second 

prediction is that, because preNMDAR expression is often synapse-specific, 

preNMDARs are expected to be expressed only at specific axons onto postsynaptic 

neurons and perhaps less predominantly in axon terminals than at glutamatergic 

postsynaptic densities. Consistent with this prediction, in ultrastructural studies using 

antibodies against the obligatory NMDAR subunit GluN1 coupled with an 

immunoperoxidase reaction, axonal NMDAR labeling has been sparser than postsynaptic 

dendrite labeling [9, 102, 103], but see also [41]. A third prediction is that, in anatomical 

regions where preNMDARs influence synaptic transmission and undergo an activity-

dependent or developmental change in expression, a correlative change in axonal 

expression should also be observed. In agreement with this, the developmental 

downregulation in the contribution of preNMDARs to t-LTD and glutamate release at 

L4-L2/3 visual cortex synapses coincides with a reduction in the axonal localization of 

the obligatory subunit GluN1 [9] and GluN3A [41, 104, 105].

These findings suggest that preNMDARs may be axonal in the instances described. 

Additionally, future ultrastructural studies localizing the proximity of preNMDARs to 

presynaptic release proteins and vesicles may suggest mechanisms by which these 

receptors influence neurotransmission. However, the axonal expression of preNMDARs 

alone is not sufficient to demonstrate that the axonal population of preNMDARs is the 

relevant preNMDAR population contributing to synaptic transmission. Simultaneous 

measurements of both preNMDAR function and localization are still needed to 

definitively subcellularly localize preNMDARs.
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Trends box

▪ PreNMDARs regulate synapse-specific neurotransmitter release and synaptic 

plasticity

▪ PreNMDARs often enhance neurotransmission at specific rates of 

presynaptic neuron firing

▪ The expression of preNMDARs is developmentally regulated and influenced 

by sensory experience

▪ PreNMDARs are predominantly localized at presynaptic boutons

▪ The NMDAR subunits and downstream signaling cascades associated with 

preNMDARs are often distinct from postsynaptic NMDARs

▪ Astrocytes regulate preNMDAR-mediated plasticity and neurotransmission

▪ PreNMDAR function is disrupted in several neurological disorders and 

promises to be an important therapeutic target
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Outstanding questions

- When do preNMDARs act as coincidence detectors to mediate plasticity? It 

has been suggested that coincidence detection for plasticity occurs 

independent of preNMDARs and may occur at postsynaptic neurons or 

astrocytes [53, 106].

- Which downstream intracellular signaling cascades are activated following 

preNMDAR activation during t-LTD and LTP to produce long-lasting 

changes in glutamate release?

- What allows preNMDARs to influence low-frequency spontaneous release 

but also act as high-pass filters to influence high-frequency evoked release 

[11, 20]?

- Do preNMDARs ever influence presynaptic release via metabotropic 

mechanisms independent of ion flux through the receptor [36]?

- Do dendritic preNMDARs influence presynaptic release, or are the relevant 

populations of preNMDARs to plasticity and neurotransmission primarily 

axonal? What may account for failure to detect axonal preNMDARs in some 

studies [74, 76, 77]?

- PreNMDARs undergo a developmental reduction in their axonal expression 

and contribution to plasticity and presynaptic release [24, 41], but in some 

instances approximately 50% of preNMDARs originally detected at the axon 

remain expressed into adulthood. What is the function, if any, of these axonal 

preNMDARs, and under what circumstances are they activated?

- What is the precise subunit composition of preNMDARs and do they 

typically undergo a developmental change in subunit composition?

- Do distinct trans-synaptic signalling cascades regulate preNMDAR signaling 

and synapse-specific expression differently at excitatory and inhibitory 

synapses?
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Figure 1. Roles of preNMDARs in synaptic transmission and plasticity
Action potential (AP) arrival at the presynaptic bouton triggers presynaptic release of 

glutamate that binds to postsynaptic AMPA receptors (AMPAR), NMDA receptors 

(postNMDARs) and metabotropic glutamate receptors (mGluRs), as well as presynaptic 

NMDA receptors (preNMDARs). During timing-dependent LTD induction, presynaptically 

released glutamate activates mGluRs and postsynaptic action potentials enhance Ca2+ influx 

through voltage-gated calcium channels (VGCCs), leading to synthesis of endocannabinoids 

(eCBs) which diffuse in a retrograde manner and bind to presynaptic and/or astrocytic CB1 
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receptors. Co-activation of presynaptic CB1 receptors and presynaptic NMDA receptors 

causes synaptic depression. Alternatively, activation of astrocytic CB1Rs results in 

astrocytic release of glutamate or D-serine, which activates preNMDARs (see [54]), although 

in some instances CB1 receptor activation might not be required. Ca2+ influx through 

preNMDAR activates presynaptic calcineurin (CaN), which may play a role in regulating 

signalling pathways involved in synaptic depression. PreNMDARs can also be activated by 

glutamate released from the presynaptic terminal causing synaptic self-depression. 

Glutamate transporters (Glt-1) in astrocytes regulate basal levels of glutamate and may 

therefore influence tonic preNMDAR activation.
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Figure 2. Evidence for the axonal expression of preNMDARs
(a) PreNMDARs are localized to presynaptic boutons as demonstrated by immunogold 

labelling of the obligatory NMDAR subunit GluN1 in L2/3 of the visual cortex (adapted 

from [42], scale bar indicates 200 nm). (b) In cultured cortical neurons, the NMDAR subunit 

GluN1 (NR1) colocalizes with the axonal marker tau-1 (adapted from [67]). (c) In 

recordings from GABAergic terminals of cultured cerebellar neurons, application of NMDA 

elicits inward currents that are blocked by the NMDAR antagonist CPP, suggesting these 

terminals express preNMDARs (adapted from [34]). (d) Pairing action potential firing at 30 
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Hz with the uncaging of MNI-NMDA near presynaptic boutons produces supralinear 

calcium responses in a subset of boutons of L5 visual cortical pyramidal neurons (adapted 

from [23]). This result suggests that a subset of presynaptic boutons express preNMDARs 

that influence axonal calcium levels and presumably neurotransmitter release. (e) t-LTD at 

L4-L2/3 synapses requires axonal preNMDARs. Uncaging of the caged NMDAR antagonist 

cMK-801 over presynaptic axons (but not presynaptic soma or dendrites) prior to the t-LTD 

induction protocol blocks this form of plasticity (adapted from [78]).
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Figure 3. Astrocytic involvement in preNMDAR signalling
(a) During t-LTD induction (pairing), astrocytic calcium transients increase. (b) Blocking 

this increase in astrocytic calcium signalling by “clamping” astrocyte (green cell) calcium 

levels during the induction protocol blocks t-LTD induction at neighboring L4-L2/3 cortical 

synapses (a-b adapted from [54]). (c) In the absence of the GluN2B-selective antagonist 

ifenprodil, electrical stimulation of astrocytes (AST) increases spontaneous glutamate 

release onto hippocampal dentate granule cells (washout, right panel). Ifenprodil blocks this 

increase, suggesting astrocytes influence excitatory neurotransmission at these synapses 

through interaction with GluN2B subunit-containing preNMDARs (adapted from [68]). (d) 

In recordings from L5 neurons in the entorhinal cortex, application of the NMDAR co-

agonist D-serine does not increase the mEPSC frequency, suggesting preNMDARs in this 

brain area are saturated with this co-agonist. However, pre-incubation with the glia-specific 

metabolic inhibitor NFAc reduces baseline mEPSC frequency and allows the application of 

D-serine to increase mEPSC frequency. Indirectly, this suggests that glial release of the 

endogenous NMDAR co-agonist D-serine results in the saturation of the preNMDAR co-

agonist binding site at L5 entorhinal cortical synapses (adapted from [86]).
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