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Abstract

Cancer progression begins when malignant cells colonize adjacent sites, and it is characterized by 

increasing tumor heterogeneity, invasion and dissemination of cancer cells. Clinically, progression 

is the most relevant stage in the natural history of cancers. A given virus is usually regarded as 

oncogenic because of its ability to induce malignant transformation of cells. Nonetheless, 

oncogenic viruses may also be important for the progression of infection-associated cancers. 

Recently this hypothesis has been addressed because of studies on the contribution of the Epstein–

Barr virus (EBV) to the aggressiveness of nasopharyngeal carcinoma (NPC). Several EBV 

products modulate cancer progression phenomena, such as the epithelial–mesenchymal transition, 

cell motility, invasiveness, angiogenesis, and metastasis. In this regard, there are compelling data 

about the effects of EBV latent membrane proteins (LMPs) and EBV nuclear antigens (EBNAs), 

as well as nontranslated viral RNAs, such as the EBV-encoded small nonpolyadenylated RNAs 

(EBERs) and viral microRNAs, notably EBV miR-BARTs. The available data on the mechanisms 

and players involved in the contribution of EBV infection to the aggressiveness of NPC are 

discussed in this review. Overall, this conceptual framework may be valuable for the 

understanding of the contribution of some infectious agents in the progression of cancers.

Oncogenic Viruses

Worldwide, more than 50% of cancer cases are associated with preventable causes, 

including infections [1]. The population-attributable fraction for malignant neoplasms 

associated with infectious agents globally in 2008 was 16.1%, ranging from 3.3% in New 

Zealand to 32.7% in sub-Saharan Africa. About 2 million of all new malignant neoplasms 

reported in humans were associated with infections, and 1.6 million occurred in less 

developed regions. More than two-thirds of cancer cases (1.37 million) in 2008 were linked 

to well-known oncogenic viruses, namely, human T lymphotropic virus type 1 (HTLV-1), 

human hepatitis B and C viruses (HBV and HBC, respectively), human papillomavirus 

(HPV), Kaposi sarcoma-associated herpesvirus (KSHV), and EBV [2].
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The oncogenic properties of a given virus are usually defined based on its ability to induce 

malignant cell transformation, and carcinogenic viruses typically interfere with multiple 

homeo-static cellular processes. For instance, viruses associated with malignant tumors 

hijack intracellular and extracellular signaling, induce genomic instability, increase the life 

span of the infected cell (by inhibiting apoptosis), and subvert cell senescence, resulting in 

unrestricted cell proliferation. These are some of the biological phenomena previously 

categorized as cancer hallmarks [3], and they can be actively induced during the infection by 

known human DNA oncoviruses [4,5].

The knowledge generated under this classical approach to viral carcinogenesis was pivotal to 

defining the etiopathogenesis of several neoplasms, as well as clarifying cancer biology 

itself. Nonetheless, an intriguing question has emerged in the past two decades: do cancers 

caused by oncogenic viruses evolve during progression like cancers that originate from other 

carcinogenic insults? Accumulating data indicate that viruses may be instrumental in 

phenomena related to cancer progression, and these findings provides new insights on the 

impact of infection on the natural history of cancers. This review consolidates the available 

information on putative effects of EBV on the aggressive behavior of nasopharyngeal 

carcinoma, aiming to delineate a conceptual framework for the impact of viral infection in 

cancer progression.

General Properties of EBV

Formerly designated human herpesvirus type 4 (HHV-4), EBV is a γ-herpesvirus associated 

with human proliferative diseases involving mostly lymphoid or epithelial cells. The former 

group of diseases predominantly encompasses Burkitt lymphoma (BL) and classical 

Hodgkin lymphoma (HL). EBV is also causative in immunodeficiency-associated 

lymphoproliferative disorders, such as post-transplant lymphoproliferative disease (PTLD), 

and non-Hodgkin lymphomas (NHL) in HIV-infected patients, such as primary central 

nervous system lymphoma (PCNSL), primary effusion lymphoma (PEL), and the 

plasmablastic lymphoma of the oral cavity [6]. Conversely, epithelial cancers associated 

with EBV infection include NPC and a subset of gastric and lymphoepithelioma-like 

carcinomas. In all cases of endemic BL and NPC, early onset PTLD, and PCNSL, the virus 

is consistently found within the neoplastic cells; conversely, only subsets of classical HL, 

NHL, gastric and the lymphoepithelioma-like carcinomas show evidence of EBV infection.

The EBV genome is composed of double-stranded DNA of approximately 180 kb, encoding 

more than 80 viral products. It is enclosed in an icosahedral nucleocapsid, surrounded by the 

viral tegument and a nuclear membrane-derived lipid envelope. Major targets for EBV 

infection are B lymphocytes and epithelial cells, though a few other cell types are rarely 

reported to be infected as well [7]. Box 1 summarizes the main features of EBV infection in 

humans and the viral life cycle.

Cancer Biology: A Brief Overview

The assessment of possible effects of infection by a given agent in cancer progression is only 

possible with appropriate endpoints for analysis. Based on studies of chemically-induced 
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malignant tumors, the prevailing model for the natural history of cancer encompasses three 

consecutive stages: initiation, promotion, and progression [8]. Initiation is characterized by 

the earlier, nonlethal, genomic insult occurring in a given cell population. During promotion, 

initiated cells are chronically stimulated to proliferate, at the same time that they accumulate 

new genetic and epigenetic lesions. In this stochastic model, the accumulation of DNA 

lesions in a given cell lineage eventually gives rise to a transformed cell clone, which shows 

properties of malignant behavior. Cancer progression takes place when transformed cells 

colonize their original tissue site in vivo, and it is characterized by augmented tumor 

heterogeneity and biological aggressiveness, as evidenced by local invasion and distant 

dissemination [9,10].

The tissue microenvironment has a key role in all stages of carcinogenesis, and it is crucial 

for cancer progression because malignant colonization relies on trophic signals for the 

neoplastic cells to survive and proliferate – even though these cells generate some signaling 

themselves.

Malignant cells within a tumor are heterogeneous, and only a rare subset of cells of a given 

cancer can produce de novo tumors in vivo when inoculated into immunocompromised 

animals, such as NOD/SCID mice. Those cancer-initiating cells (CICs) – referred to as 

cancer stem cells (CSCs) in some circumstances – are well documented in hematologic 

malignancies, but remain to be conclusively characterized in spontaneous solid tumors [11–

13].

The interface between neoplastic cells and the stromal components in carcinomas is a 

favorable niche for the epithelial–mesenchymal transition (EMT) phenomena, in which 

epithelial cells switch the expression of several surface proteins (e.g., E-cadherin to N-

cadherin), downregulate junctional complex components, and modify their cytoskeleton 

composition (e.g., vimentin becomes more abundant than cytokeratins). Cells under EMT 

are less attached to other cells and they have increased motility. Furthermore, signaling 

pathways that promote longer life span and extracellular matrix remodeling are activated 

during EMT, effects typically associated with induction of specific transcriptional factors, 

such as Snail, ZEB1, ZEB2, Slug, and Twist. Worth noting, the EMT and CSC phenotypes 

overlap in several key features [14].

Clinically, tumor progression is the most relevant phase in the natural history of cancer. Even 

when a cancer is limited to its primary site, its malignant cells already have a variable degree 

of genotypic and phenotypic heterogeneity, and local invasion might have occurred to some 

extent (except for in situ carcinomas, which are epithelial cancers in their very early stage of 

progression). Eventually, cancer cells seeded in the body are detected as distant metastasis, 

which arise as result of the successive events, as shown in Box 2.

EBV in Cancer Progression

NPCs are malignant tumors of the head and neck that are rare in most parts of the world, but 

are notoriously more common in the east, south, and south-central parts of Asia, as well as 

in northern Africa, though to a lesser degree. Overall, patients with NPC are mostly males, 
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with a peak around 40–60 years of age. Risk factors for this disease include genetics (e.g., 

susceptibility loci related to HLA and few non-HLA genes), and chronic exposure to 

environmental carcinogens, often associated with dietary and cultural practices 

(consumption of Chinese-style salted fish, for instance) [15]. NPC cases in endemic areas 

are invariably associated with EBV infection, which is clonal and is also found in 

premalignant and preinvasive nasopharyngeal lesions [16]. Even though NPC tumors 

typically show marked sensitivity to radiotherapy, and the disease's management has 

improved significantly lately, in biological terms this is a highly aggressive cancer, showing 

extensive local infiltration and early metastasis, especially to lymph nodes [17].

The current classification of head and neck tumors recognized by the World Health 

Organization [15] discriminates keratinized, nonkeratinized, and basaloid NPCs, the last 

being a quite unusual form. Keratinized tumors are equivalent to conventional squamous cell 

carcinomas arising in other sites, and nonkeratinized tumors are subdivided into 

differentiated and undifferentiated subtypes. NPC tumors usually show islands, trabeculae, 

or solid sheets of neoplastic cells within a stroma, with a variable degree of 

lymphoplasmacytic infiltrate. The commonest NPC presentations are undifferentiated 

tumors (WHO type 2b), which typically show large-sized malignant cells arranged in 

syncytium-like structures. These are high-grade carcinomas that may be remarkably rich in 

lymphoid cells (hence their alternative designations ‘lymphoepithelial carcinomas’ or 

‘lymphoepitheliomas’) and are invariably EBV-positive [15], showing a viral latency type II 

infection profile (Table 1) [18].

Studies on NPC pathogenesis and EBV biology frequently take advantage of cell lines 

established from nasopharyngeal tissues. Regrettably, authenticity/contamination issues 

were reported for some of these cells, including CNE1, CNE2, HONE1, Ad/AH, and NPC-

KT [19]. Results generated from these cells must therefore be interpreted with much 

caution; nonetheless, in some instances the published data are not entirely compromised 

because even though those cells cannot be regarded as reliable models for non-neoplastic or 

neoplastic cells of nasopharyngeal origin, some of their biological features might be 

considered, such as the epithelial phenotype and general behavior in vitro. Based on this 

premise, whenever a known compromised cell line and its derivatives are mentioned in this 

review, they will be marked (e.g., Ad/AH*, CNE1*, CNE2*, and HONE1*) in order to call 

the reader's attention to the reported issues.

The metastasis-prone behavior of EBV-positive NPC has been particularly associated with 

the expression of the EBV latent membrane protein 1 (LMP1). LMP1 is an integral viral 

protein that functionally resembles a constitutively active, ligand-independent, tumor 

necrosis factor (TNF) receptor (TNFR), such as the surface CD40 molecule. LMP1 is 

formed by a short N-terminal chain (24aa), six transmembrane domains, and three 

cytoplasmic domains in the C-terminal region, the C-terminal activation regions (CTAR) 1, 

3, and 2. Recruitment of TNFR-associated factors (TRAFs) to CTAR1 and CTAR2 triggers 

multiple signaling pathways, notably those regulated by nuclear factor-κB (NF-κB), 

mitogen-activated protein kinases (MAPKs), janus kinase (JAK), and phosphatidylinositol 3-

kinase (PI3K) [20]. Due to its interaction with Ucb9, a SUMO-conjugating enzyme [21], 

CTAR3 allows LMP1 to regulate sumoylation. Sumoylated proteins have their subcellular 
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accumulation, turnover, and ability to interact with DNA or other proteins modified. For 

instance, sumoylation of the interferon-regulating factor 7 (IRF7) limits its transcriptional 

activity, with putative effects on the modulation of innate immune responses during latent 

EBV infection [22].

In several human cell lines (HeLa, SCC12F, and Rhek-1), and in the MDCK canine 

epithelial cell line, the expression of EBV LMP1 causes activation of the MAPK/ERK 

pathway independently of Ras activity. LMP1-expressing MDCK cells exhibit increased 

haptotaxis and invasiveness, effects consistently associated with activation of MAPK/ERK 

and Akt signaling pathways [23]. Although it is reported that all CTARs play a role in 

LMP1-induced migration, only CTAR3 seems to do so via Ubc9 interaction; accordingly, 

inhibition of LMP1-Ubc9 impairs the migration of MDA-MB231-EBV+ and U20S cells in 
vitro [21]. Conversely, the increase in cell migration and invasiveness of B lymphocytes in 
vitro associated with LMP1 expression is mediated by CTAR2-activated NF-kB signaling, 

and it culminates with upregulation of fascin (encoded by the FSCN-1 gene in humans; 

NCBI's gene ID: 6624), an actin-bundling protein essential for cytoskeleton changes 

required for cell motility [24].

In the majority of NPC tissues evaluated by Ho and colleagues [25], the expression of decoy 

receptor 3 (DcR3, a soluble protein from the TNFR superfamily) was detected at higher 

levels in metastatic NPC compared with primary tumors. DcR3 is induced by LMP1 in both 

lymphoid and epithelial cells via NF-κB and PI3K signaling, resulting in increased cell 

migration and invasiveness in vitro [25]. In another series of NPC cases, tumors of later 

stage at diagnosis and metastatic cases were more frequently associated with elevated levels 

of special AT-rich sequence-binding protein 1, encoded by the SATB1 gene (NCBI's gene 

ID: 6304), and LMP1-positive NPC cases in this series had significantly higher levels of 

SATB1 compared with LMP1-negative controls. Ectopic expression of LMP1 in NP-69 cells 

induced a robust increase in SATB1 levels; moreover, cell lines that overexpress SATB1 
showed increased proliferation and migration rates compared to cells with low SATB1 
expression [26].

The metastatic behavior of different human cancers is modulated by the intracellular 

signaling triggered by the interaction between the chemokine C–X–C motif receptor 4 

(CXCR4) and its ligand CXCL12, also known as SDF-1α [27]. CXCR4 is sulfated by the 

TPST-1 enzyme, which can be induced by viral LMP1 in metastatic EBV-positive NPC 5–

8F cells. In HNE2 cells (supposedly from NPC, but lacking EBV genome and proteins), the 

LMP1 induction of TPST-1 has increased cell motility towards CXCL12 and cell 

invasiveness. Nonmetastatic NPC 6-10B cells had low expression of EBV LMP1 and 

TPST-1, along with a low level of CXCR4 sulfation. It is worth noting that the 

immunodetection of TPSP-1 and LMP1 in 46 NPC tissues showed direct mutual association, 

as well as association with lymph node metastasis [28]. Overall, these results indicate that 

the metastatic behavior of these epithelial cells is directly linked to the expression of EBV 

LMP1, which upregulates endogenous proteins with distinct activity that converge to a 

similar phenotype of increased cell motility and invasion.
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EBV products other than LMP1 may also enhance the metastatic behavior of neoplastic 

cells. BALF1, for instance, is an EBV homolog for the antiapoptotic cellular bcl-2 protein. It 

is required for transformation of resting B cells [29], and BALF1 is frequently expressed in 

EBV-positive NPC tissues and BL cell lines [30]. NIH3T3 and 293 cells stably expressing 

BALF1 showed increased motility in vitro, they were more tumorigenic, and they produced 

more numerous and larger distant tumors in BALB/c nude mice compared with mock-

transfected control cells [31].

EBNA1 is the only viral protein expressed in all EBV latency types (Table 1). It enables the 

replication and segregation of EBV genomes in proliferating infected cells, resulting in viral 

persistence. The tumorigenic and metastatic potential of EBV EBNAs 1 and 3C were 

evaluated in an orthotopic model of murine breast carcinoma using MDA-MB-231T cells, 

with and without coexpression of nonmetastatic protein 23 (nm23-H1, a nucleoside 

diphosphate kinase and putative metastasis suppressor) [32]. It should be noted that the use 

of breast cancer cell lines does not address the disputed hypothesis on the role EBV 

infection in the etiopathogenesis of human breast cancers; as a matter of fact, some studies 

use cells that are not recognized targets for EBV infection due to their cell migration/

invasion capabilities in vitro and/or metastatic potential in mouse models. That said, both 

EBV EBNAs 1 and 3C interact with nm23-H1 and accumulate in the cell nucleus [33,34]. 

Furthermore, they increase cell migration in vitro, reversing the negative effect of nm23-H1 

and its effect in metastasis suppression. Cancer cells expressing these EBNAs show 

enhanced tumorigenesis in vivo and accelerated tumor development, irrespectively of 

coexpression of nm23-H1. Of note, expression of EBNA3C and EBNA1 was associated with 

14- and 2-fold more micrometastasis in lung than in the control group, respectively, and the 

EBNA3C/nm23-H1 complexes upregulate matrix metalloproteinase-9 (MMP-9) via 

recruitment of the transcription factors Ap1, Sp1, and NF-κB [35].

A possible concern on results implicating EBNA3C expression in epithelial cells is that it is 

significantly expressed only in lymphoid cells with EBV latency type III; this makes its 

contribution to the aggressiveness of EBV-associated carcinomas questionable. Nevertheless, 

non-neo-plastic EBV-positive EBNA3C-expressing lymphoid cells within the tumor may 

affect the tumor microenvironment (for instance, inducing extracellular matrix remodeling 

due to increased synthesis of MMPs [36]). Thus, EBNA3C expression by EBV-positive 

tumor infiltrating lymphoid cells perhaps modulates the invasiveness and metastatic 

potential of the much more abundant EBV-positive carcinoma cells. As far as we could 

verify, this hypothesis has not been evaluated so far, but it deserves careful investigation.

In time, the metastatic behavior of cells expressing EBV products can be further enhanced 

by inhibition of antigen presentation in the context of MHC-I, as in the case of inhibition of 

tapasin by EBNA1 [37]. Furthermore, strategies of immune subversion, implicating viral 

proteins such as EBNA1 [38], can also have a role in modifying the progression of EBV-

associated cancers. Nonetheless, this matter also remains to be adequately elucidated.
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EBV Infection Sets up a Permissive Microenvironment for Invasion and 

Metastasis

Epithelial cells transformed by EBV may degrade extracellular collagens and become more 

able to invade the basement membrane due to increased expression of MMP-1, -3, or -9, 

directly induced by viral LMPs [39–41], EBNA-3C [35], and the viral lytic transactivator 

Zta [42]. The expression of MMP-1 is enhanced by an insertional polymorphism 

characterized by two guanines at positions -1607/-1608 (rs1799750, 1G->2G) in the MMP-1 

gene promoter, which creates a binding site for Ets transcription factors. LMP1 induces 

MMP-1 via increased activity of the transcription factor AP1, and cells showing the 2G/2G 

genotype also have MMP-1 induction due to further Ets-mediated intracellular signaling. 

Not only do tumor cells in NPC patients have a higher frequency of the 2G/2G genotype for 

rs1799750 [39], Ets activation by LMP1 is also a putative mechanism for the expression of 

the hepatocyte growth factor receptor (HGFR; c-Met), which has been positively correlated 

with the presence of lymph node metastasis in NPC patients [43].

Genes encoding MMP-9, -10, and -14 were among the top hits of TNFα-induced genes in 

NPC tissues compared with adjacent normal tissues [44]. Moreover, overexpression of the 

gene for TNFα-induced protein 2 (TNFαIP2, also called B94 or M-sec) was also identified, 

among others. Although the biological properties of the TNF/IP2 protein are largely 

unknown, higher levels of the TNFAIP2 gene (NCBI's gene ID: 7127) transcripts were 

detected in 39% of NPC tissues evaluated, and it was associated with increased tumor 

angiogenesis and reduced distant metastasis-free survival. Nasopharyngeal HK1 cells 

expressing TNFAIP2 show increased migration and invasiveness that was disrupted by 

siRNA-based knockdown [44]. TNFAIP2 is induced by EBV LMP1 in several NPC cell 

lines via NF-κB activation, even more than the TNFα treatment. The role of TNFαIP2 in 

cell migration and invasion was related to modulation of actin-based filaments organization 

within cellular protrusions due to actin binding, and it can be disrupted upon depletion of 

Cdc42, a Rho-GTPase modeling protein [45]. These results are also in line with the 

increased migration reported for epithelial cells in vitro due to the activation of Cdc2 by 

LMP1 [46].

A cDNA microarray analysis of RHEK-1 cells (a nonmalignant cell line from normal human 

foreskin keratinocytes) transfected with a LMP1-encoding Tet-On vector (RHEK/Tet-

LMP1) revealed 60 genes differentially expressed by fourfold or more, notably, in 

doxycycline-treated LMP1-expressing cells, the genes encoding endocan-1 (ESM1; NCBI's 

Gene ID: 11082) and MMP-9. By RT-PCR, ESM1 overexpression driven by LMP1 was 

verified in RHEK/Tet-LMP1 and two other human cell lines of epithelial cancers, NPC-

TW04 (NPC) and H1299 (large-cell lung carcinoma). Endocan-1 is implicated in the 

angiogenic switch of cancers, and its expression was found to be mediated by LMP1 via 

activation of the NF-κB, MEK–ERK, and JNK signaling pathways. Expression of LMP1 

and endocan-1 was directly correlated in 42 consecutive human NPC tissues by 

immunohistochemistry (endocan-1 was mostly detected in neoplastic cells and endothelial 

cells adjacent to tumor); moreover, endocan-positive patients have a shorter survival 

compared with endocan-negative cases [47].
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LMP1 also provides angiogenic stimuli by inducing the secretion of proangiogenic 

cytokines, such as the vascular endothelial growth factor (VEGF) [48] and the 18 kDa 

isoform of the fibroblast growth factor 2 (FGF2, also known as bFGF) [49]. Remarkably, 

FGF2 is released with LMP1 in exosomes [49], membrane-limited nanovesicles (usually 40–

100 nm in diameter) of endosomal origin. Exosomes participate in intercellular 

communication, in addition to communication via close cell contact (juxtacrine signaling) or 

by soluble mediators (autocrine, paracrine, and endocrine signaling). Malignant cells 

constitutively release high numbers of cancer-derived exosomes, also known as tumor-

derived microvesicles (TMV), which play key roles in cancer biology (reviewed in [50]). For 

instance, exosomal products boost the subversion of immunosurveillance and contribute to 

shape a suitable microenvironment for tumor development and progression due to cancer-

associated inflammation, tumoral angiogenesis, and formation of premetastatic niches 

(reviewed in [51]).

Exosomes produced by neoplastic cells infected by EBV provide a variety of cellular and 

viral molecules that can manipulate the tumor microenvironment. LMP1 accumulated in 

exosomes plays a role in immune evasion of cells latently infected by EBV, including 

malignant ones [52]. By contrast, expression of LMP1 in Ad/AH* epithelial cells 

redistributes the usually diffuse FGF2 and causes colocalization of both proteins in 

perinuclear and peripheral late endosomal structures. Moreover, isolated LMP1-positive 

exosomes induce proliferation of human umbilical vein endothelial cells (HUVECs), an 

effect abrogated by the anti-FGF2 antibody [49]. These data suggest a role for exosomes 

produced by EBV in latently infected cancer cells in the induction of angiogenesis in the 

tumor microenvironment.

Nasopharyngeal NP69 cells expressing LMP1 secrete exosomes with higher levels of HIF-1-

α – a key transcription factor for angiogenesis response – compared with the LMP1-

negative counterparts; furthermore, transient transfection of Ad/AH* cells also increases the 

exosomal levels of HIF-1- α. After exposure to LMP1-positive exosomes, recipient LMP1-

negative cells exhibit a dose–response increase in functionally active HIF-1-α along with 

increased expression of N-cadherin, suppression of E-cadherin, and morphological changes 

suggestive of EMT change, and motility and invasiveness in vitro were substantially 

increased in NP69 and Ad/AH* cells exposed to LMP1-positive exosomes. Therefore, cell-

to-cell exosomal transfer of active HIF-1-α was correlated with EMT-associated features in 

the recipient cells [53]. Indeed, as discussed in the next section, EMT is a key cancer 

progression phenomenon also targeted by EBV proteins, notably LMPs.

EBV Induces EMT and the Cancer Cell State

The undifferentiated nature of EBV-associated NPC has been attributable to EMT, and NPC 

cells can be successfully induced to a mesenchymal-like state in vitro when they express the 

EBV oncoproteins LMP1 [54,55] or LMP2A [56], as well as several EBV microRNAs, as 

will be discussed later. The maintenance of the EMT state in NPC cells was associated with 

the activity of the polycomb group protein Bmi [57]. Furthermore, knocking-down 

expression of the SATB1 protein – which was previously mentioned to be induced by LMP1 

in NPC cells – increases the expression of E-cadherin and suppresses vimentin, suggesting 
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the reversion of the EMT phenotype [26]. In NPC tissues, immunodetection of LMP-1 and 

Twist-related protein 1 (encoded by TWIST1 gene, a positive regulator of EMT; NCBI's 

gene ID: 7291) were higher in cases with lymph node metastasis (n = 26) compared with 

negative cases (n = 11) [54].

One of the major functions of LMP1 is the constitutive activation of the NF-κB, which has 

an important role in activating the EMT program in epithelial cells (reviewed in [58]). 

Indeed, the NF-κB signaling pathway is efficiently hijacked both by EBV and KSHV 

(reviewed in [59]). LMP1 induces key transcription factors associated with the EMT 

signature [54,55]. In this regard, ectopic expression of LMP-1 in Ad/AH* (EBV-negative) 

and the immortalized nonmalignant nasopharyngeal epithelial cells NP69SV40T 

upregulated the EMT-associated transcription factor Snail in a dose-dependent manner. Not 

only did NP69SV40T cells expressing LMP1 show EMT morphological hallmarks, they also 

acquired increased mobility and invasiveness capabilities in vitro. The EMT-like features 

acquired by NP69SV40T expressing LMP1 rely on Snail, as Twist is not upregulated [55]. 

Additionally, LMP1-negative epithelial cells exposed to LMP1-positive exosomes showed 

E-cadherin downregulation, increase in N-cadherin, and increased motility and invasiveness. 

Therefore, LMP1 can modulate the EMT features and the metastatic behavior of malignant 

cells of EBV-associated cancers via prometastatic factors present in exosomes released in the 

tumor microenvironment [53].

Self-renewal capabilities and CD44high/CD24low expression were found in LMP1-expressing 

epithelial cells [60], consistent with the overlap between the EMT and CICs phenotypes 

[14]. The Hedgehog (HH) signaling pathway, which is implicated in the maintenance of 

stemness, was found to be activated in epithelial cells by EBNA1, and LMPs 1 and 2A via 

an autocrine loop involving the SHH ligand. HH activation was required for tumor-sphere 

formation by the NPC cell line C666.1, constitutively EBV-positive, as well as the EBV-

negative A549 (derived from lung adenocarcinoma) and CNE2* cell lines that were infected 

in vitro by EBV. Furthermore, the same study showed that the LMPs evaluated, but not 

EBNA1, induced the expression of CD44v6 and CD271/NGFR (induced by LMP1), or 

CD133 and CXCR4 (induced by LMP2A), all stemness-associated markers [61]. Also, 

immortalized or malignant lung epithelial cells (HPL1D and A549, respectively) are more 

sensitive to TGF-β1-induced EMT when they express EBV LMP1. Compared with exposure 

to TGF-β1 alone, cells exposed to both TGF-β1 and LMP1 had a reduced transcriptional 

level of E-cadherin and a significant increase of N-cadherin, vimentin, and MMP9. 

Remarkably, while cell migration in vitro was increased by 2- and 3-fold by TGF-β1 and 

LMP1, respectively, it was increased by 9-fold when cells were exposed to both proteins 

combined [62].

EBV LMP2A interferes with multiple intracellular signaling pathways in both B cells and 

epithelial cells, including PI3K/AKT, NF-κB, Wnt/beta-catenin, and Jak/STAT. In B cells, 

LMP2A simulates the active B cell receptor, providing constitutive cell survival signals. 

Nontransformed, immortalized mouse embryonic NIH3T3 fibroblasts expressing LMP2A 

are tumorigenic when inoculated in nude mice. In vitro, they grow in soft agar more 

abundantly than do cells carrying the vector control, an effect linked to activation of Stat3, 

PI3K/AKT, and MEK/ERK signaling. It is worth noting that cells expressing LMP2A are 
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enriched for cells excreting the Hoechst 33342 dye, a feature associated with cell stemness 

[63]. LMP2A contributes to the migration of latently infected B cells to lymphoid tissues 

[64]; furthermore, it was reported that LMP2A enhanced the migration and invasion of 

TW03 EBV-negative cells due to Syk hijacking, which causes displacement and surface 

redistribution of the ITAM-like motif of integrin β4 (ITGβ4), which result in changes in cell 

adhesion and cytoskeleton reorganization [65].

Based on these data, it would not be unexpected that LMP2A might also be relevant for the 

invasiveness of malignant cells when expressed in EBV-associated cancers. In fact, LMP2A 

immunodetection was exclusively found in neoplastic cells in 19/33 (57.6%) NPC cases 

evaluated, notably at the invasive edges of the tumor. In vitro, ectopic expression of LMP2A 

in SUNE1 NPC cells and CNE2* downregulated E-cadherin and α-catenin, simultaneously 

inducing fibronectin and Snail. In EBV-positive NPC cells C666, suppression of LMP2A 

caused E-cadherin upregulation and downregulation of vimentin; maintenance of EMT-like 

features requires LMP2A in constitutively EBV-infected cells. Both in vitro and in NPC 

tissues the detection of the stem cell markers ABCG2 and Bmi-1 positively correlated with 

the expression of LMP2A [56]. Furthermore, LMP2A increases the number of tumor-

initiating cells and enhances tumorigenesis in nude mice [56]. Remarkably, primary tonsil 

epithelial cells showed increased cell migration and invasiveness in vitro upon expression of 

LMP2A, an effect mediated by upregulation of the integrin-α6 gene (ITGAG; NCBI's gene 

ID: 3655) [64]. ITGAG encodes a component of the laminin receptor, and it is consistently 

implicated in the metastatic behavior of human carcinomas (reviewed in [66]). Finally, 

LMP2 expression in NPC does seem to have a prognostic value, as supported by findings 

that the expression of this EBV oncoprotein was inversely correlated with survival for 15 

NPC patients evaluated [64].

An increase in the mRNA levels for the key EMT regulators Snail, ZEB1, and Slug was 

reported in human breast carcinoma MDA-MB-231T cells transfected with vectors encoding 

EBV EBNA1 or EBNA3C. Accordingly, these cells showed an upregulation of vimentin 

transcripts, along with suppression of mRNAs for E-cadherin and the zona occludens protein 

1 (ZO-1), typically expressed in normal epithelial cells; overall, these results were also 

confirmed at the protein level. It is worth noting that nude mice had an increase in metastatic 

foci in lungs when inoculated with cancer cells expressing EBNAs 1 or 3C compared with 

controls (3- and 12-fold, respectively); besides, primary tumors and lung metastasis derived 

from EBNAs-expressing cancer cells showed EMT features more often, compared with cells 

lacking these viral proteins [67].

In summary, EMT can be effectively induced in epithelial cells due to the expression of 

several EBV proteins. This can be critical to the aggressiveness of EBV-associated NPC 

because EMT encompasses many biological features pivotal for cancer progression, such as 

cell proliferation, survival, and cell motility, as well as invasiveness and ultimately increased 

metastatic behavior. Furthermore, besides the most studied EBV oncoproteins, other viral 

products may have an important role modulating the aggressiveness of NPC, as discussed in 

the following section.
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EBV in Cancer Progression: LMPs and EBNAs Are Not the Whole Story

EBV latently infected cells and tissues copiously express EBV-encoded small 

nonpolyadenylated RNAs (EBERs), irrespective of the viral latency program. Besides their 

activity on the regulation of cytokines and growth factor synthesis in infected cells, EBV 

noncoding RNAs putatively contribute to several features of malignant transformation. For 

instance, Akata cells (from BL) transfected with a vector allowing low expression levels of 

EBERs (EK plasmid) had scant numbers of colonies in soft agar compared with cells 

transfected with a vector allowing a high expression of EBERs (EKS10 plasmid) or EBV-

reinfected cell clones. In addition, in sharp contrast with EK-transfected cells, EKS10-

transfected cells and EBV-reinfected cells were tumorigenic [68]. AGS gastric carcinoma 

cells stably expressing EBERs have increased migration and invasion capabilities, effects 

associated with FAK and PAK1 phosphorylation [69]. Remarkably, EBERs were identified 

in exosomes from EBV-infected malignant cell lines [70]. Therefore, the contribution of 

these small viral transcripts in EBV-induced carcinogenesis, and even cancer progression, 

might be much more relevant than initially suspected.

EBV also produces miRNAs, which are encoded within two regions of the viral genome: in 

the BHRF (at the 3′UTR of BamHI fragment H rightward ORF1) and BART (BamHI A 

region rightward transcript, respectively) clusters [71]. BHRF and BART encode 4 and 40 

viral miRNAs, respectively. The genome of EBV prototype strain B95-8 shows a 12 kb 

deletion in BARTs, compromising 17 of their pre-miRNAs. Recently, Kanda and colleagues 

generated vectors encoding the wild-type EBV B95 (wt-EBV-BAC) and one derivative in 

which the deleted BART segment was orthotopically restored (BART(+)-EBV-BAC) [72]. 

Downregulation of the NDRG1 gene (NCBI's gene ID: 10397), which encodes a well-

studied metastasis suppressor protein, was reported in HEK293 and Ad/AH* epithelial cells 

stably transfected with BART(+)-EBV-BAC compared to cells transfected with wild-type, 

BART-deleted vector, and this effect was mostly associated with the activity of EBV miR-

BART22. Considering that the NDRG1 protein was reported to be consistently expressed in 

epithelium-derived cell lines (Ad/AH*, HBEC1, Caco-2, PC3, PrEC, and C666-1), but 

barely detected in the B cells from BL (Akata, P3HR-1, and Daudi) or lymphoblastoid cell 

lines, a role for NDRG1 in epithelial differentiation was postulated [72], in line with the 

effect of this gene in inhibiting the dissemination of carcinoma cells.

Different studies reported upregulation of several EBV miR-BARTs in NPC [73–77]. 

Strikingly, among 24 upregulated miRNAs differently expressed between NPC and 

nonmalignant nasopharyngeal samples, Cai and coworkers found that EBV miR-BARTs 

were more than twice the number of endogenous human miRNAs (62.5% vs 29.2%, 

respectively) [76]. The upregulation of BART miRNAs was also reported in mice xenograft 

tumors produced from EBV-positive carcinoma cells C666-1 (nasopharyngeal) and AGS-

BX1 (gastric), as well as the EBV-positive BL36 (Burkitt Lymphoma) [77]. In this study, 

expression of BART miRNAs in EBV-negative AGSBX1 cells resulted in increased tumor 

growth in vivo and poorer survival when inoculated heterotopically in the nasopharynx of 

NOD scid gamma (NSG) mice. Interestingly, the expression of BART miRNAs along with 

EBNA1 in AGS cells showed no significant effect in the rates of in vitro cell invasion and in 
vivo metastasis, and the EBV BART miRNAs levels were not significantly different in 
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metastatic versus matched primary tumors. Unfortunately, no comparative data regarding 

nasopharyngeal carcinoma cells (C666-1, for instance) were provided in this study [77]; that 

would have been useful in addressing the hypothesis of histogenetic specificity of BART 

miRNAs in carcinoma progression.

Combined detection of EBV miRs-BART 7 and 13 in the blood achieved 90% predictive 

value for NPC, and a higher expression of these viral miRs was predominantly found in 

advanced disease [78]. Accordingly, in a series of 102 radiotherapy-refractory NPC cases, 

the expression of EBV miR-BART7 in surgical margins of resected tumors was inversely 

associated with recurrence, even though no difference in cancer progression or free survival 

was verified [79]. In another series, elevated levels of EBV miR-BART1 were associated 

with advanced clinical stages of NPC. Nude mice with xenograft tumors overexpressing 

EBV-miR-BART1 generated from the EBV-negative 5-8F NPC cell line had an increase in 

the frequency of metastasis in the liver and lymph node (86%) or lung (43%), compared to 

controls (14% for each site), as well as a higher number of lesions (45 versus 5 nodules, 

respectively). The enhanced aggressiveness of EBVmiR-BART1 in this model was 

convincingly associated with post-transcriptional inhibition of the PTEN tumor suppressor 

gene (NCBI's gene ID: 5728) [76].

In both EBV-positive NPC tissues and cultured cells, miR-BART9 is expressed at levels 

higher than miR-21, an endogenous microRNA with known oncogenic activities (oncomiR). 

The depletion of miR-BART9 suppresses migration and invasion of NPC cells in vitro, an 

effect not associated with changes in the levels of LMP1, LMP2A, or EBNA1. The ectopic 

expression of mature miR-BART9 in EBV-negative BM1, TW04, and HK1 NPC cells 

significantly enhanced cell migration and invasion capabilities in vitro, and both effects are 

inhibited when miR-BART9 is suppressed. BM1 cells expressing miR-BART9 inoculated 

into nude mice produced tumors with an increased rate of metastasis to lymph nodes, lung, 

and liver. Putative targets for miR-BART9 include several transcripts implicated in motility-

related pathways, including E-cadherin, which have a binding site for miR-BART9 within its 

3′ UTR. Further experiments showed that the increase in cell motility and invasiveness by 

EBV miR-BART9 was indeed associated with several mesenchymal EMT properties, 

namely, E-cadherin downregulation, induction of β-catenin signaling, expression of 

vimentin and MMPs, and spindle-cell morphology [80]. Essentially the same properties 

reported for EBV miR-BART9 were found for viral miR-BART10-3p, which expression was 

directly associated with patient poor survival in a series of 106 NPCs [81].

In conclusion, the expression of several EBV oncoproteins or noncoding RNAs contributes 

to the aggressive behavior of NPC. Key reported effects of these viral products in tumor 

growth and metastasis are summarized in Figure 1. These data strengthen the concept that 

cancers associated with infection by oncogenic viruses might have particular biological 

features in terms of their progression capabilities. Moreover, some EBV products are quite 

promising in terms of their putative value as biomarkers for either NPC diagnosis or disease 

monitoring, such as viral miR-BARTs, whose expression can be readily assessed using 

current molecular biology techniques.
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Concluding Remarks

Although there are convincing data suggesting that EBV contributes to the aggressiveness of 

NPC, the effects of viral infection in cancer progression is conceivably context-dependent. A 

glimpse of this matter can be taken when considering the EBV-associated gastric carcinoma, 

which represents about 10% of all epithelial cancers in the stomach worldwide [82,83]. 

Analogous to NPC, EBV-associated gastric carcinoma is a peculiar clinicopathological 

entity. For instance, patients affected are predominantly male and Caucasian, and overall 

they are younger than patients with the more common EBV-negative gastric carcinomas. The 

EBV-associated gastric cancers more often arise in the cardia or body of the stomach, and 

they are more often either diffuse or lymphoepithelioma type. Despite these features, EBV-

associated gastric carcinomas do not seem to be more aggressive: for instance, they are not 

more likely to be associated with deep tissue invasion, higher clinical stage, or metastasis, 

and data are conflicting regarding the differences in patient survival compared with EBV-

negative cases [83]. For Hodgkin lymphoma, another EBV-associated human cancer, a 

recent meta-analysis encompassing 13 045 subjects from 119 published studies indicated 

that EBV infection does not have an impact on the lymphoma's prognosis [84].

It seems that not much can be expected in terms of EBV influencing the aggressiveness of a 

group of the cancers recognized as associated with viral infection. Moreover, even 

considering that EBV products may enhance the migratory and invasive capabilities of 

infected malignant cells for some cancers, the overall impact of these effects on prognosis 

cannot be anticipated. For instance, it is generally accepted that patients with nonkeratinized 

EBV-associated NPC have a better prognosis compared with keratinized EBV-negative NPC 

cases [85]. Though this might be taken as contradictory considering the results discussed in 

this review, we must recall that cancer survival data do not reflect exclusively the natural 

history of the disease, since it has some bias owing to responses to the treatment protocols 

available to date. This is not different for NPC, in the sense that patients' outcomes result 

from an interplay among the disease's biological, clinical, and therapeutic parameters.

In conclusion, EBV infection not only has an impact on malignant cell transformation, it 

may also contribute to the biological aggressiveness of some of the cancers associated with 

the viral infection, at least for NPC. EBV products modulate critical cancer progression 

phenomena (e.g., cell motility, cell invasion, and metastasis) due to either direct or indirect 

effects. Only recently has this topic received more attention, so that there are plenty of 

intriguing questions remaining to be addressed (see Outstanding Questions). As the 

knowledge on how EBV participates in cancer progression becomes clearer, we anticipate 

that new exciting data on the role of other oncogenic viruses in the behavior of cancers 

associated with viral infection will emerge. Indeed, it is plausible that, perhaps once again, 

the field of viral carcinogenesis will become key for understanding the biology of cancers.
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Box 1

Epstein–Barr virus (EBV) Infection and Life Cycle

The first contact with EBV usually occurs early in childhood, and infection lasts for life. 

The virus replicates initially in epithelial cells of the oropharynx and infects naïve B cells 

in the tonsils. Infection of B cells by EBV requires interaction of the viral gp350/220, the 

most abundant viral glycoprotein in the EBV envelope, with complement receptor 2 

(CR2, also known as CD21) in target cells [86]. CD21-negative B cells can also be 

infected via EBV binding to the complement receptor 1 (CR1, or CD35), which is highly 

expressed in B lymphocytes (earlier than CD21 in B cell ontogeny), as well as follicular 

dendritic cells [87]. EBV entry in B cells relies on gp42 in complex with viral 

glycoproteins gH and gL. By contrast, infection of epithelial cells does not require 

gp350/220 and CD21. Since epithelial cells do not express significant levels of CD21, 

other cell receptors (yet to be characterized) are necessary for EBV infection. Moreover, 

EBV entry into epithelial cells is inhibited by an excess of viral gp42, but it is greatly 

dependent on gH alone or gHgL [88], and it can be enhanced with antibodies against 

gp350/gp220 [89]. These data indicate that the viral tropism for infection of B 

lymphocytes versus epithelial cells is finely controlled by a biological switch requiring 

the expression of proper viral and cellular surface proteins. Of note, carcinomas are much 

more common cancers overall, notably in adults (http://training.seer.cancer.gov/ disease/

categories/classification.html). Thus, the biological basis of EBV cell tropism can be 

relevant to address the issue of whether viral strains with different cell tropisms might 

have distinct biological features regarding cell transformation and cancer progression.

The EBV life cycle is conventionally divided into latent and lytic (productive) phases. 

EBV's latency state is an evolutionary advantage that allows the virus to suspend lytic 

replication until a more favorable environment is sensed by the infectious agent. Viral 

products expressed during latency are either poorly immunogenic or subvert the immune 

responses, allowing viral persistence in latently infected cells [90]. During latency, the 

viral genome is maintained as a nuclear episome in chromatin, and viral expression is 

limited to few genes [91]. According to the set of viral products detected during the latent 

phase, three major latency programs are commonly described (see Table 1 in main text). 

They range from latency type III (found in EBV-infected naïve B cells and activated B 

lymphoblasts), with expression of all latent viral genes, to latency type I (observed in 

post-germinal center memory or dividing B cells), in which EBV nuclear antigen 1 

(EBNA1) – which is essential for the maintenance of the viral episome – is the only viral 

protein expressed. Most neoplastic cells in EBV-associated malignancies show a gene 

expression profile resembling that found in their non-neoplastic counterparts infected by 

EBV [92]. By contrast, the viral lytic phase takes place when infected B lymphocytes 

differentiate towards plasma cells. During this phase, the viral genome become linear, is 

replicated, and new viral particles are assembled and released, ultimately causing the 

death of the infected cell due to cytopathic effects.
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Box 2

The Cancer Metastasis Cascade

Cancer metastasis is a complex multistep process, comprehensively reviewed elsewhere 

[93]. Metastasis initially requires an initial phase of tumor growth at the primary site. 

Occasionally biological features developed during malignant transformation also enable 

the neoplastic cells to acquire metastatic behavior; thus, in some cases the cancer 

metastasizes very early, without significant growth. Nevertheless, in general, the risk for 

metastasis correlates directly with tumor size and the level of tumor angiogenesis. The 

properties of malignant cells and their microenvironment (e.g., tumor hypoxia and other 

signals provided by stromal cells) synergize to stimulate cell motility and extracellular 

matrix remodeling in tumors, both essential for tissue invasion. For carcinomas, these 

features are often found at the interface between neoplastic cells and the stroma (the 

invasive front), where malignant cells lose cell-to-cell adhesion and apical–basal polarity, 

along with other mesenchymal traits related to the EMT program. Once migrating 

malignant cells reach blood or lymphatic vessels they enter the circulation (intravasation) 

and travel to distant sites. Neoplastic emboli may form in the bloodstream, and the 

interaction with platelets and activation of hemostatic responses increase the odds for 

malignant cells to survive during transport within the bloodstream [94]. The neoplastic 

emboli can be trapped in the vasculature, or individual malignant cells may reach the 

endothelial wall at some point (for instance, due to low flow and/or chemoattractant 

stimuli). Upon interaction with the endothelium, malignant cells can exit the vessels and 

move into the interstitium (extravasation). This culminates in the last and rate-limiting 

step in cancer metastasis: the colonization of the foreign environment and formation of 

micrometastasis, initially, and the clinically detectable macrometastases, afterwards. 

Based on experimental models, it is estimated that only 1 out of 5 million intravenously 

implanted tumor cells will accomplish the invasion–metastasis cascade to form 

micrometastases at distant sites [93]. Although extremely inefficient biologically, 

metastasis is the most devastating pathological process in hosts harboring cancers. Figure 

I illustrates the invasion–metastasis cascade and indicates key molecules and phenomena 

in different steps of the process.
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Outstanding Questions

Does EBV contribute to the progression of epithelial cancers only, or does this virus also 

have a role in other malignant neoplasms, such as EBV-associated lymphomas?

Could the activity of products of oncogenic viruses within the infected cell and in the 

tumor microenvironment inhibit the progression of cancers? If they do, what are the 

molecular mechanisms?

Could we extend this new viral carcinogenesis paradigm to other infective agents 

consistently linked to human cancers, such as KSHV, the hepatitis viruses HBV and 

HCV, HPVs, or even nonviral oncogenic microorganisms, such as Helicobacter pylori?

How can we use knowledge about the modulation of cancer progression by oncoviruses 

to improve outcomes for cancer patients?
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Trends

The Epstein–Barr virus (EBV) is implicated in many neoplastic diseases, notably 

lymphomas and epithelial cancers.

Nasopharyngeal carcinoma (NPC) is strongly associated with EBV infection, and EBV 

products partially contribute to the aggressiveness of this cancer.

Several EBV products enhance cell motility and invasiveness, and they can also modulate 

the epithelial–mesenchymal transition.

Challenges in the manipulation of EBV genomes hampered the assessment of the extent 

of cancer addiction to viral products. New genetic editing tools (e.g., CRISPR/Cas9) will 

be valuable to create new informative models to address this issue.

Accumulated data on the role of EBV in the biological features of NPC makes it 

conceivable that some oncoviruses contribute to malignant transformation and have a role 

in the aggressiveness of the associated cancers due to effects on tumor progression 

phenomena.
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Figure 1. Reported Effects of Epstein–Barr Virus (EBV) Products That May Contribute to the 
Progression of EBV-Associated Cancers
This matter has been mostly studied by considering the natural history of the EBV-

associated nasopharyngeal carcinoma. Both EBV proteins – such as latent viral proteins 

(LMPs), EBV nuclear antigens (EBNAs), and the apoptosis regulator BALF1 – and 

nontranslated viral RNAs, notably EBV-encoded small nonpolyadenylated RNAs (EBERs) 

and BamHI A region rightward transcripts (BARTs), interfere with different phenomena that 

may account for increased tumor aggressiveness, favoring the dissemination of malignant 

cells and ultimately causing cancer metastasis. Tumors expressing some EBV viral products 

have accelerated growth, as accessed in different animal models. Mechanistically, the EBV 

products indicated in the figure may induce an epithelial–mesenchymal transition, which is 

associated with a higher rate of metastasis for epithelial cancers due to increased cell 

motility and degradation of the extracellular matrix (e.g., due to the synthesis of 

metalloproteinases), and consequently higher invasive behavior of malignant cells. 

Furthermore, tumor angiogenesis is induced by cells expressing viral products, notably 

LMP1 and EBNAs. This can be due to either upregulation of some cytokines in EBV-

infected neoplastic cells (e.g., VEGF) or stimulation of adjacent cells by proangiogenic 

factors (e.g., HIF-1-α and FGF2) inside LMP1-positive exosomes released by EBV-infected 

cells. Abbreviation: Zta, the viral lytic transactivator.
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Figure I. Overview of the Metastatic Cascade
Cancer metastasis is a complex and multifactorial process that relies on successful interplay 

among a large repertoire of molecules that contribute to a propitious phenotype of the cancer 

cells, along with a permissible tissue microenvironment for tumor development, both locally 

and at distant sites. The term ‘metastatic cascade’ refers to a theoretical attempt to organize 

chronologically recognized key phenomena for successful establishment of malignant cells 

discontinuous to the primary tumor. Molecules indicated in the figure were selected among 

those that are known players in the metastatic cascade and can be modulated during EBV 

infection or are induced by one or more viral products (see Figure 1 in main text).
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Table 1
Viral Products Expressed and Disease Associated with Distinct Programs during Epstein–
Barr Virus (EBV) Latent Infection

Latency Main Viral Genes Expresseda EBV Infection Context

Type I (EBNA1-only) EBERs, BARF0, EBNA1, 
(LMP2A)

• Proliferating memory B cells and BL cells in vivo

• EBV-associated gastric carcinomab

Type II (Default program) EBERs, BARFs, EBERs, EBNA1, 
LMPs 1, 2A, and 2B

• Germinal center B cells

• Neoplastic cells from NPC and EBV-positive classical HL

Type III (Growth program) EBERs, BARFs, EBNAs (1, 2, 3A, 
3B, 3C, and LP), LMPs (1, 2A, 
and 2B)

• Naïve B cells and lymphoblastoid cell lines

• Cells from lymphoproliferative diseases arising in 
immunosuppressed hosts (e.g., PTLD and immunoblastic 
NHL of the central nervous system)

a
In all programs, expression of a variable set of viral microRNAs is also observed.

b
Some cases of EBV-associated gastric carcinoma show also LMP2A expression.

Abbreviations: EBER, small nonpolyadenylated RNAs (EBERs 1 and 2); BARF, transcripts from the BamHI A region (BARF0 and/or BARF1); 
EBNA, EBV nuclear antigen; LMP, latent membrane protein; BL, Burkitt lymphoma; HL, Hodgkin lymphoma; NHL, non-Hodgkin lymphoma; 
NPC, nasopharyngeal carcinoma; PTLD, post-transplant lymphoproliferative disease.
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