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Purpose: We developed a statistical model to improve the detection of glaucomatous
visual field (VF) progression as defined by the consensus of expert clinicians.

Methods: We developed new methodology in the Bayesian setting to properly model
the progression status of a patient (as determined by a group of expert clinicians) as a
function of changes in spatially correlated sensitivities at each VF location jointly. We
used a spatial probit regression model that jointly incorporates all highly correlated VF
changes in a single framework while accounting for structural similarities between
neighboring VF regions.

Results: Our method had improved model fit and predictive ability compared to
competing models as indicated by the deviance information criterion (198.15 vs.
201.29–213.38), a posterior predictive model selection metric (130.08 vs. 142.08–
155.59), area under the receiver operating characteristic curve (0.80 vs. 0.59–0.72; all P
values , 0.018), and optimal sensitivity (0.92 vs. 0.28–0.82). Simulation study results
suggest that estimation (reduction of mean squared errors) and inference (correct
coverage of 95% credible intervals) for the model parameters are improved when
spatial modeling is incorporated.

Conclusions: We developed a statistical model for the detection of VF progression
defined by clinician expert consensus that accounts for spatially correlated changes in
visual sensitivity over time, and showed that it outperformed competing models in a
number of areas.

Translational Relevance: This model may easily be incorporated into routine clinical
practice and be useful for detecting glaucomatous VF progression defined by clinician
expert consensus.

Introduction

Glaucomatous vision loss is irreversible, making
early detection of the disease and, once detected,
prevention of its progression essential. The timely
detection of visual field (VF) progression is important
since reduction of intraocular pressure (IOP),
achieved with medical therapy, laser surgery, and/or
incisional surgery, slows the rate of further deterio-
ration.

Once a patient is diagnosed with glaucoma,
clinicians must balance the risks and expenses of
advancing levels of medical and surgical intervention
with the risk of vision loss due to disease progression.

The clinician must determine, at regular intervals,
whether the disease is stable or not. If the evidence for
progression is sufficiently strong and the apparent
rate of progression is such that the patient is at risk of
symptomatic vision loss in his or her lifetime, the
physician must more aggressively lower the IOP.
During most stages of the disease, assessment of the
VF is the most important factor that must be
considered in determining whether the disease process
is stable in an individual patient. As a result, much
effort has been devoted to determining if damage to
an individual’s VF is progressing over time at a rate
requiring treatment adjustment.

The majority of past studies either model each VF
location separately over time or aggregate over the
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entire VF at each time point when determining
progression status.1–3 Both methods are potentially
inefficient and neglect important spatial information
contained in the data. We hypothesized that jointly
considering changes in sensitivities at each VF
location over time when determining progression
and identifying regions across the VF where clinicians
place increased emphasis when judging progression
would preserve important spatial relationships, in-
creasing the explanatory and predictive capabilities of
the model. Such an approach increases the amount of
available information used in determining progression
and more closely resembles the decision-making
process used by clinicians who focus on changes
across the entire VF and patterns of change as
opposed to individual locations separately. The
purpose of this study was to develop, implement,
and validate a statistical model for detecting glauco-
ma progression, as defined by the consensus of expert
clinicians, and compare its performance to existing
approaches.

Our newly developed method for jointly incorpo-
rating highly spatially correlated predictors in the
modeling framework provides insight into how expert
clinicians determine the glaucoma progression status
based on observing VF measurements over time for
an individual and provides a framework for improved
prediction of the outcome for future patients.

Methods

Data Sources

Two VF datasets consisting of reliable VFs
(fixation loss rate less than 20% and false-positive
and false-negative response rates less than 15%)
obtained with the 24-2 Swedish Interactive Thresh-
olding Algorithm (SITA) of the Humphrey Visual
Field Analyzer (Carl Zeiss Meditec, Inc., Dublin, CA)
were used in this study.4,5 In the first dataset, each of
the VFs were obtained using the SITA standard
strategy and VF progression status was determined
based on the independent reviews of two expert
clinicians. In the case of disagreement, a third

clinician was consulted. Reviewers had access to an
event-based determination of progression, the Glau-
coma Progression Analysis output (GPA; Carl Zeiss
Meditec, Inc.), and the print versions of the VF tests
over time. Clinicians were instructed to define each
series of VF tests as definitely progressing or not.4

Table 1 displays the summary information from this
modeling dataset.

The second dataset contained approximately 1% of
VF tests performed with the full threshold strategy
and approximately 1% performed with the 30-2 test
pattern. It represents VF series and responses from an
independent validation group of glaucoma patients.
These data have been described previously.5 Progres-
sion status was once again determined based on
review of the VF series and GPA output for each
patient, this time by a different set of five expert
clinicians. The intraobserver and interobserver agree-
ments were good to excellent and moderate, respec-
tively.5 Table 1 displays the summary information
from this validation dataset.

Statistical Model

In our model, the probability that an eye is
determined to be progressing based on the clinician
expert consensus is a function of the rates of change in
sensitivities across time at each VF location, where
the contribution of a particular location is related to
the contributions at nearby spatially-related locations
through the use of a spatially referenced prior
distribution. We model the underlying probability
associated with the binary clinician expert consensus
on glaucoma progression status (yes/no) for a patient/
eye as a function of VF sensitivity changes over time
at each location on the VF, such that Yi j b,h ~
Bernoulli{pi(b,h)}, i ¼ 1,. . .,n and

U�1 piðb; hÞf g ¼ b0 þ b1di þRm

j¼1hðsjÞziðsjÞ ð1Þ

where Yi is the progression status of patient/eye i, n is
the total number of unique patient/eye combinations
included in the study (see Table 1), pi(b,h) is the
probability that patient/eye i is diagnosed as pro-
gressing, U�1(�) is the inverse cumulative distribution

Table 1. Data Summaries from the Modeling and Validation Datasets

Dataset Patients (Eyes) % Progressing (n)

Number of Tests Follow-Up, y

Mean Min/Max Mean Min/Max

Modeling 97 (191) 26.18 (50) 7.42 (2, 21) 2.55 (0.23, 9.38)
Validation 83 (100) 60.00 (60) 5.00 (5, 5) 4.34 (0.04, 9.67)
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function of the standard normal distribution, di is the
length of time in years that patient/eye i has been
followed in the study, b¼ (b0,b1)

T, b1 is the parameter
describing the association between follow-up time and
the probability of being diagnosed as progressing by
the clinician expert consensus, b0 is the intercept
parameter, h ¼ {h(s1),. . .,h(sm)}

T, and m ¼ 52 is the
number of VF locations (after removing the two
locations within the physiologic blind spot; see Fig.
1). We note that progression often occurs at different
rates in different eyes of the same individual and that
the clinicians assessed progression for each eye
individually. Therefore, we chose to model each eye
independently.

The zi(sj) term is defined as the estimated slope
from a simple linear regression analysis of VF
sensitivities at VF location sj for person/eye i.
Increasingly negative values of this metric indicate
deterioration in vision at a given location while values
near zero indicate little change over time. The sum,
Rm

j¼1hðsjÞziðsjÞ, represents the total impact of changes
in the VF over time at each of the individual VF
locations on the probability of patient/eye i being
diagnosed as progressing by the clinician expert
consensus.

The main parameters of interest in the study are
represented by h(sj), j ¼ 1,. . .,m. These spatially
varying regression parameters describe the association
between a change in VF sensitivities over time at each
location and the probability of interest. Including a
separate parameter for each VF location allows for
increased modeling flexibility and for the possibility
that deterioration in the VF at different locations is

more (or less) informative with respect to being
diagnosed as progressing by the clinician expert
consensus. A priori we assume a constant association
between sensitivity changes at each location and the
probability of interest along with location-specific
deviations such that h(sj) ¼ h0 þ g(sj), where h0
represents the constant mean of the spatial process
and g(sj) is the slope deviation specific to VF location
sj. The constant prior mean reflects our initial beliefs
that changes in sensitivities over time at any location
should have a similar impact on progression diagnosis
by the clinician expert consensus, with the possibility
that certain locations are more (or less) meaningful to
clinicians being represented by the spatial deviations.
The g(sj) parameters allow for location-specific slopes
for each VF location, potentially leading to a model
that better describes the process used by clinicians to
diagnose glaucoma progression. We allow these
parameters to be spatially correlated as detailed in
the Prior Specification Subsection so that estimation
of their values will depend on the parameter values in
surrounding VF locations if necessary. Equation 3
describes how these parameters are related to each
other a priori in more detail. Therefore, the probit
regression model in Equation 1 can be rewritten as:

U�1 piðb; h0; gÞf g ¼ b0 þ b1di þRm

j¼1 h0 þ gðsjÞ
� �

ziðsjÞ
¼ b0 þ b1di þ h0R

m

j¼1ziðsjÞ
þRm

j¼1gðsjÞziðsjÞ;
ð2Þ

where Rm

j¼1ziðsjÞ represents a measure of the total
level of deterioration across the entire VF over time

Figure 1. Visual field regions (A) mapped to the optic disc (B). The numbers represent the spatial locations associated with the g(sj)
parameters. BS, blind spot.
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and h0 describes the relationship between this measure
and the probability of interests.

Prior Specification

We assigned prior distributions to the introduced
model parameters to complete the model specifica-
tion. A spatially referenced prior distribution was
required for the introduced location specific devia-
tions, g(sj). Providing spatial structure in this context
helped to control the effect of multicollinearity which
often can inflate standard errors and change the sign
of parameter estimates. We included a separate
predictor at each of the 52 VF locations for a
patient/eye with the understanding that sensitivities
in similar VF locations are likely positively correlated.
Conditional on the spatial proximity matrix, W,
which describes the spatial relationship between each
of the 52 VF locations, the g(sj) parameters were
jointly assigned a prior distribution that allowed
neighboring parameters to share information spatial-
ly, if appropriate. We specified an intrinsic condi-
tional autoregressive (ICAR) prior model such that
gjr2

g~ICARðr2
gÞ and

gðsiÞjgð�siÞ~N Rm

j¼1

wij

wiþ
gðsjÞ;

r2
g

wiþ

 !
ð3Þ

w h e r e g ¼ { g( s 1 ) , . . ., g( s m ) } T , g(�s i ) ¼
{g(s1),. . .,g(si�1),g(siþ1),. . .,g(sm)}

T, r2
g is the variance

parameter for the spatial process, wij is the row i,
column j entry of W describing the proximity between
VF locations si and sj, and wiþ represents the row i
sum of W.6

For spatial data on a grid, the neighborhood
definition for W is typically specified as wij ¼ 1 if si
and sj share a common border and wij¼ 0 otherwise.
Locations are not considered to be neighbors of
themselves, resulting in wii¼ 0 for all i. However, the
spatial structure across the VF is more complex due to
each location’s structural relationship with the optic
disc. We, therefore, used a similar proximity matrix to
that previously introduced.4 In Figure 1, we display
the optic disc regions (Fig. 1B) and their spatial
association with each location of the VF (Fig. 1A).7

Based on this structural mapping, we definedW(d) as:

wijðdÞ ¼
1; if si and sj share a common border and are in the same optic disc region;
d; if si and sj share a common border and are in adjacent optic disc regions;
0; otherwise

8<
:
with wij(d)¼ 0 for all i. The d parameter describes the
strength of spatial association between neighboring

VF locations in adjacent optic disc regions. A number
of past studies also have investigated the use of a
partially unknown proximity matrix while working in
different settings.8–10

We selected weakly informative prior distribu-
tions for the hyperparameters to allow the data to
drive the inference rather than our prior beliefs. The
three nonspatial regression parameters were given
independent, vague yet proper prior distributions,
such that b0,b1,h0 ~ N(0,1010). The variance
parameter for the ICARðr2

gÞ process was given a
vague yet proper uniform prior distribution, such
that r2

g~Unifð10�100; 104Þ. The neighborhood prox-
imity matrix parameter was given a uniform prior
distribution such that d ~ Unif(0,1).

Computing

Posterior inference is based on 990,000 samples
from the posterior distribution of interest after
discarding the first 10,000 draws as a burn-in period.
The number of samples to obtain was determined
based on the calculation of batch means Monte Carlo
(MC) standard errors.11 Summaries of the MC
standard errors for presented posterior mean esti-
mates are displayed in Table 2 and Figure 2. In
Supplementary Figure S1, we present trace plots for
all nonspatial parameters and randomly selected
spatial deviations (g(si)). We noted that these plots
are representative of the remaining parameters not
displayed. All analyses were done using R Statistical
Software and the model fitting details are presented in
the Supplementary Material.12

Model Comparisons

The benefits of the newly developed model,
referred to as ‘‘Model 1’’ hereafter, are most apparent
when results are compared with competing models.
We considered the following models in this study:

� Model 1: The newly developed probit regression
model for spatially correlated predictors with
spatially varying VF parameters modeled using
the ICARðr2

gÞ prior distribution and partially
unknown spatial proximity matrix.

� Model 2: A probit regression model with separate
parameters for VF location that are modeled using
exchangeable and independent normally distributed
prior distributions.

� Model 3: A probit regression model including only
a single spatially aggregated predictor without
considering location.

� Models P1 to P4: A probit regression model using
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the first (Model P1), second (Model P2), third
(Model P3), and fourth (Model P4) smallest P
values from simple pointwise linear regressions
(PLRs), fit separately at each location on the VF,
as a single predictor.

� Models PS1 to Model PS4: A probit regression
model using the first (Model PS1), second (Model
PS2), third (Model PS3), and fourth (Model PS4)
smallest estimated slopes that are associated with a
P value less than or equal to 0.01 from simple
PLRs, fit separately at each location in the VF, as a
single predictor.

All of the introduced models were fit in the
Bayesian setting for comparison purposes. Model 1
represents the newly introduced spatial model previ-
ously described. Model 2 uses the same probit
regression model form as Model 1 (see Equation 1)
while ignoring the spatial structure of the individual

parameters. Instead, exchangeable normally distrib-
uted prior distributions with common variance were
assigned to the parameters. We expected this model to
perform poorly due to the lack of sharing of
information between the introduced parameters,
relatively small sample size, and high correlation
between the predictors. This model served as a
baseline to investigate what happens when all slopes
are included in the model without accounting for
spatial correlation.

Model 3 represents a simplified version of Model
1, ignoring the spatial information in the data. Model
3 is nested within Model 1 with Rm

j¼1gðsjÞziðsjÞ
removed from Equation 2. Therefore, Model 3
assumes a constant effect (h0) across all VF locations.
We expected this model to outperform Model 1 if
there was no spatial variability across the VF in
parameter estimates. This would suggest that clini-

Table 2. Posterior Summaries for the Nonspatial Parameters in Model 1

Parameter Mean SD

Quantiles

0.025 0.50 0.975

Intercept, b~0 �1.25 0.22 �1.70 �1.25 �0.82
Follow-up time, in years, b1 0.17 0.06 0.04 0.17 0.30
Spatial mean, h0 �0.52 0.16 �0.84 �0.51 �0.21
ICAR variance parameter/100, r2

g/100 1.72 1.52 0.21 1.29 5.69
Proximity matrix parameter, d 0.68 0.23 0.19 0.72 0.99

The Monte Carlo standard errors for the presented estimated posterior means ranged from 0.00 to 0.05 with a median
value of 0.02.

Figure 2. Posterior means from (A) Model 1, (B) Model 2, and (C) Model 3 for the spatial slopes across the visual field. The posterior
standard deviations for the presented parameters ranged from 6.98 to 11.34 with a median value of 8.51 for Model 1, 34.52 to 122.50
with a median value of 56.43 for Model 2, and was 0.75 for Model 3. The Monte Carlo standard errors for the presented estimated
posterior means ranged from 0.01 to 0.05 with a median value of 0.02 for Model 1, 0.15 to 1.15 with a median value of 0.39 for Model 2,
and was 0.001 for Model 3.
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cians weigh each VF location equally when determin-
ing progression status.

Models P1 to P4 represent common analyses in the
progression determination setting.13 Simple PLR
analyses are done at each of the available 52 locations
on the VF. From each of these separately run
analyses, a frequentist P value is obtained indicating
if the regression slope is significantly less than zero. In
Model P1, we calculated the minimum P value over
the entire VF for a patient and entered it as a
predictor in a probit regression model with the
progression status, as defined by the consensus of
expert clinicians, as the outcome. We then used the
second (Model P2), third (Model P3), and fourth
(Model P4) smallest P values as predictors separately
in their own models and compared results. Models
PS1 to PS4 are similar except that they use the slopes
from the PLR as the predictor and restrict to only
those slopes that have a P value less than or equal to
0.01. Patients who do not have a VF location that
meets this P value restriction are given a covariate
value of zero to indicate this. These models account
for statistical significance through the P value
restriction as well as the rate of progression through
use of the slope values and, therefore. more closely
represent progression methods used in practice.

We considered multiple model comparison and
validation measures to differentiate the models in
terms of fit and prediction. The deviance information
criterion (DIC) is a commonly considered model
comparison tool used in the Bayesian setting where
the posterior mean of the deviance statistic, D̄, is used
to assess model fit while the effective number of
parameters, pD, is used to describe the model
complexity. The DIC then is defined as DIC ¼ D̄ þ
pD, with smaller values being preferred.14

Dk is a posterior predictive loss model comparison
metric that considers the balance between model fit
(Gk) and complexity (P).15 We work with the deviance
of the Bernoulli distribution (with continuity correc-
tion) and set k ¼ 1010 to calculate Dk. As with DIC,
smaller values of Dk suggest an improved model fit.
Dk is most useful in comparing the predictive
performance of a model while DIC is preferred if
the model is used mainly for explanatory purposes.

The receiver operating characteristic (ROC) curve
also was calculated for each model along with the area
under the ROC curve (AUC), the optimal sensitivity,
and optimal specificity values. We formally compared
the AUC values from the different models using a
paired statistical test and reported the P values. The

optimal sensitivity and specificity values were deter-
mined using Youden’s Index.16

Simulation Study

We carried out a simulation study to demonstrate
the ability of our model to efficiently and accurately
estimate the individual regression parameters across
the VF in a number of different data generation
settings and to compare the performance with
alternative models. These details and results are
presented in the Supplementary Material. The find-
ings suggest that Model 1 is robust to the data
generation setting and is preferred most often to the
competing models in the simulation framework.

Sensitivity Analyses

We performed a number of sensitivity analyses to
assess the adequacy and robustness of our model to
the choice of VF predictor (slopes), fixed versus
random settings for d, selected r2

g prior distribution,
selected neighborhood definition, and choice of the
ICARðr2

gÞ prior distribution. These details and results
also are presented in the Supplementary Material.
The findings suggested that the observed inference is
robust to each of these modeling choices. We also
presented an exploratory analysis of the robustness of
our findings based on the number of available VF
tests in Supplementary Table S5. The results appear
to be robust to the number of available VF tests
overall.

Model Validation

To validate the newly introduced model, we
predicted the probability of being diagnosed as
progressing by the clinician expert consensus for
patient/eyes in the validation dataset [p̂i0(b,h0,g)]
using the posterior predictive distribution. Recall that
this dataset was not used in building the predictive
model. We similarly predicted these same probabili-
ties using the competing models.

We compared the predicted probabilities with the
actual progression determinations for the patient/eyes

by defining d̂i0 ¼ Yi0�p̂ i0ðb;h0;gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ i0ðb;h0;gÞf1�p̂ i0ðb;h0;gÞg
p , i ¼ 1,. . .,n0,

where n0 is number of patient/eyes in the validation
dataset (n0 ¼ 100). Values of d̂i0 near zero indicate
accurate prediction while large values indicate the
opposite. We explored the distribution of these
diagnostic measures for each model to determine if
any outliers exist. We also calculated and compared
Rn0

i¼1jd̂i0j and Rn0

i¼1d̂
2

i0 for each model to identify which
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model provides the best predictions overall. Smaller
values for these summary measures indicate a model
is predicting well.

Results

Analysis of Modeling Dataset

We first applied Model 1 to the modeling dataset.
Posterior inference for the nonspatial parameters of
Model 1 are shown in Table 2. The 95% credible
interval (CI) for b1 does not include zero and is
positive. This indicates that a patient/eye followed for
a longer period of time is more likely to be diagnosed
as progressing by the group of clinicians. The 95% CI
for h0 does not include zero and is negative. This
indicates that a decrease in any of the VF sensitivities
over time (negative slope) leads to an increased
probability of being diagnosed as progressing by the
clinician expert consensus, regardless of spatial
location. In Figure 2A, we display the posterior
means for the location-specific slope parameters, h0/rz

þ g(sj), for Model 1. These parameters represent the
increase in an individual’s latent variable (Y*

i ) with a 1
dB decrease in sensitivity per year at the respective VF
location for a patient/eye. A significant increase in Y*

i

significantly increases the probability of progression
diagnosis. Therefore, more negative estimates of h0/rz

þ g(sj), as shown in the blue and green regions of
Figure 2A, indicate that decreases in VF sensitivities
over time at these locations have a greater impact on
the clinicians’ progression determination. Parameter
estimates near zero indicate that decreases in these
areas have less impact on the progression determina-
tion.

In Figure 2A, in the nasal, inferior-nasal, and
superior-nasal regions of the optic disc (see Fig. 1)
there is very little impact of decreasing sensitivities
over time on the probability of diagnosed progres-
sion. However, in the temporal, inferior-temporal,
and superior-temporal regions of the optic disc, the
parameter estimates are further from zero. This
indicates that decreasing sensitivities over time in
these regions may be more meaningful in terms of
glaucoma progression diagnosis. Locations s19, s20,
s21, and s22 of the inferior-temporal optic disc region
are the only locations to have 95% CIs which fail to
include zero [h0/rz þ g(s19): (�43.89, �1.29); h0/rz þ
g[s20]: (�37.26,�4.64); h0/rzþ g(s21): (�38.25,�4.48);
h0/rzþ g(s22): (�35.37,�1.19)].

The findings in Figure 2A have an anatomic
explanation. The retinal verve fiber layer (RNFL)

bundle is thickest and converges in the superior-
temporal and inferior-temporal regions of the optic
disc. As a result, early glaucoma VF loss as well as
RNFL defects are predominantly observed in these
two regions and, typically, glaucomatous damage to
the optic disc advances in a sequence beginning with
the same regions.

Model Comparisons

In Figure 2, the posterior means of the location-
specific slope parameters are displayed for models 1
to 3. The Model 1 results have been described
previously. In Figure 2B, the posterior means for
Model 2 are displayed. When compared to Model 1
(Fig. 2A), the range of the means are extreme and the
posterior standard deviations are larger at each VF
location. Figure 2B also lacks a clear pattern in the
means across the VF, unlike in Model 1. These results
are expected for Model 2 since multicollinearity is
known to change the signs of parameter estimates and
inflate standard errors. For Model 3 (Fig. 2C), only
one parameter is estimated across the entire VF.
Figures 2C and 2A are shown on the same scale for
comparison purposes. Recall that if Model 3 was the
true underlying model, we would expect Figures 2A
and 2C to look similar. However, the plots indicate
that there are changes across the VF that Model 3 is
unable to account for given its constant effect
specification.

In Table 3, we display the model fit/prediction
results from all considered models. The ROC curve
plots are displayed in Figure 3. For Models P1 to P4
and Models PS1 to PS4, we only display the ROC
curve plots for the models with the highest AUC value
in each group due to the large number of models
being compared. Model 2 has the largest DIC and pD
values, indicating poor overall fit to the data. The
predictive measures suggest that Model 2 has
improved predictive ability when compared to the
other models. However, given the DIC results, Model
2 is likely overfitting the data and resulting in
improved predictions as a result. In terms of model
fit, Model 1 has the smallest DIC when compared to
the competing models. Due to the increased flexibility
of Model 1, we now have improved predictive
performance when compared to the other models
(excluding Model 2) as suggested by Gk, P, and Dk (k
¼ 1010). The AUC value for Model 1 is significantly
larger than the values from all other models
(excluding Model 2) with the P vaues from the paired
statistical tests ranging from 0.000 to 0.018. Model 1
also has the highest optimal sensitivity among all
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models. The competing models are outperformed by
Model 1 in terms of model fit and prediction,
indicating that accounting for spatial variability
across the VF is an important feature of the analysis.

Model Validation

The results from the model validation analyses can
be seen in Table 4. As suspected, Model 2 is
overfitting and provides extremely poor predictions
for the validation dataset. Model 3 provides similar
predictive ability to Model 1 overall. Models P1 to P4
result in large outlying values of d̂i0, indicating poor
prediction for those patient/eyes. Models PS2 to PS4
predict slightly better than Models P1 to P4 overall
but are still outperformed by Model 1. These results
provide further evidence that the newly introduced
model is not suffering from overfitting and suggests
that it may be clinically useful.

Discussion

Because of the chronic and progressive nature of
glaucoma, an important requirement of the long-term
follow-up is establishing whether the disease is stable
or has progressed, which oftentimes is challenging to
the clinician. One of the methods commonly used in
clinical practice to judge progression is visual
observation of serial automated VF test results along
with other clinical and nonclinical information. This
approach is quicker and easy to perform for
experienced clinicians, but it is subjective without
quantification of the change and, therefore, the

outcome may be very variable even among glaucoma
specialists.17,18

This has led to the introduction of a number of
objective methods to assess VF progression in
glaucoma patients. The majority of these methods
use statistical modeling in the form of simple linear
regression analyses where VF measures collected in
frequent follow-up visits are analyzed over time.
These measures include the raw sensitivities at
individual VF locations as well as global indices,
such as the mean deviation (MD), pattern standard

Table 3. Model Fit and Prediction Comparisons between the Considered Models

Method AUC Sensitivity Specificity DIC (pD) Gk P Dk

Model 1 0.80* 0.92 0.60 198.15 (12.61) 64.50 65.58 130.08
Model 2† 0.91 0.88 0.79 222.04 (47.80) 45.76 43.00 88.76
Model 3 0.72 0.70 0.73 207.58 (3.00) 75.89 70.93 146.83
Model P1 0.65 0.82 0.45 212.11 (1.93) 80.25 74.80 155.05
Model P2 0.67 0.56 0.72 213.38 (1.94) 80.46 75.13 155.59
Model P3 0.66 0.54 0.72 212.34 (1.94) 80.18 74.70 154.88
Model P4 0.68 0.54 0.75 210.49 (1.95) 79.23 74.15 153.38
Model PS1 0.70 0.56 0.80 201.29 (2.00) 73.62 68.45 142.08
Model PS2 0.67 0.50 0.83 202.82 (2.01) 73.85 69.07 142.92
Model PS3 0.59 0.32 0.90 210.80 (2.00) 77.65 72.44 150.09
Model PS4 0.60 0.28 0.91 210.13 (2.00) 77.37 72.05 149.42

Larger values of AUC, sensitivity, and specificity are preferred while smaller values of DIC and Dk are preferred (k¼ 1010).
* Model 1 AUC value is statistically larger than the AUC values from all other models (excluding Model 2 due to

overfitting).
† Unstable results due to overfitting. Results will not be generalizable to different datasets.

Figure 3. Receiver operating characteristic (ROC) curve plots with
AUC curves listed in parentheses. Model 2 is omitted due to
overfitting.
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deviation (PSD), and visual field index (VFI).1,2

Following glaucomatous VF over time using these
global indices leads to a reduction of the data to a
single measure that ignores the spatial nature of VF
loss of glaucomatous progression.19 The pitfall with
PLR is that it is based on the erroneous assumption of
progression independence between tests locations and
only considers test points that show deepening and
not enlargement; this assumption is contradicted by
available evidence.20 Other studies, such as the
Advanced Glaucoma Intervention Study21 and the
Collaborative Initial Glaucoma Treatment Study,22,23

have used scoring systems to condense VF data into a
single numeric value. The scoring techniques so far
have been used only in clinical trials and not in the
clinical practice because they display larger long-term
variability and fail to provide information with regard
to the spatial characteristics of the defects.

Alternative regression models also have been
implemented and compared to PLR, including point-
wise exponential and quadratic regression.3 Event-
based methods, which define progression based on a
prespecified level of deterioration, also have been
considered.24 Spatial filters have been offered as a
method to reduce variability in VF sensitivity
measurements before determining progression sta-
tus.25 Spatial disease mapping techniques also have
been used to model the raw VF sensitivities over time
with the goal of identifying significant progression.4

We proposed a new analytical method that uses the
sensitivities of all VF test locations and takes into
account their spatial correlation. This model outper-

formed competing models in terms of model fit and
predictive ability in the modeling and validation
datasets.

Our newly developed method most closely resem-
bles the previously introduced pointwise methods. In
the pointwise methods, a progression determination is
made based on the location and severity of decreasing
sensitivities across the VF. At each VF location, the
slope and/or P value are evaluated and a decision
about progression is made based on these 52 values.
Our method also attempts to summarize the infor-
mation contained in these 52 values. However, instead
of offering a new deterministic method to make the
progression decision, our method uses the introduced
statistical model to optimize the decision-making
process using all of the information simultaneously.
This data-driven method is shown to outperform
competing methods with similar forms. We also note
that without the use of the spatial prior distribution
(Model 2), the method would be essentially ignoring
the spatial location of vision deterioration. So while
the forms of the model are similar conditional on the
spatial random effects, unconditionally Model 1
allows for sharing of information across the VF
during estimation. As shown in Figure 2, this results
in stable and interpretable spatial patterns that are
driven by the observed data as well as our prior
understanding of the structure-function correlation
between the VF and optic nerve head.

The major limitation of VF testing is short-term (at
each test location) and long-term fluctuation (between
tests) of the sensitivity thresholds as a result of
measurement error and the combination of the
psychophysical nature of the test and biological
factors. The long-term variability between tests is
concerning and becomes an issue when serial VFs are
used to monitor disease progression. The fact that
reduction of the long-term fluctuation of VF sensi-
tivities is not a component of this analysis may be
regarded as a limitation. However, if one considers
that there is no standard method for determining
glaucoma progression by evaluation of longitudinal
VF data and that most widely used methods, such as
the GPA and the Octopus EyeSuite (Haag-Streit,
Koenig, Switzerland), do not attempt to reduce the
long-term variability, our method is acceptable based
on its performance. In addition, while developing and
validating the model described herein using spatially
correlated VF data from clinically confirmed peri-
metric glaucoma patients only may be viewed also as
a limitation, it is, however, important to note that this
method also may be used successfully in glaucoma

Table 4. Distribution of Model Validation Measures.
Smaller Values Indicate Improved Prediction.

Method Rn0

i¼1jd̂i0j Rn0

i¼1d̂
2

i0 minfd̂i0g maxfd̂i0g
Model 1 100.02 122.23 �1.22 3.02
Model 2* 412.41 16,430.20 �10.37 70.00
Model 3 101.15 116.62 �1.35 2.03
Model P1 125.90 907.30 �1.26 22.29
Model P2 112.95 260.84 �0.85 11.09
Model P3 110.06 215.12 �0.86 8.74
Model P4 109.70 215.34 �0.91 8.66
Model PS1 335.12 49,677.15 �222.48 2.42
Model PS2 104.32 156.06 �1.09 2.17
Model PS3 107.16 154.48 �0.75 1.93
Model PS4 113.26 174.05 �0.93 1.91

* One data point had to be removed from the Model 2
results because the prediction was in complete
disagreement with the outcome, resulting in ‘ for d̂i0.
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suspects, preperimetric glaucoma patients, and other
conditions where VF is used to monitor disease
progression, such as nonglaucomatous optic neurop-
athies. Although we chose the Garway-Heath’s map
because it is the most widely used based on the good
structure-function relationship it yields,26 it is worth
noting that a positive attribute of the proposed model
is its flexibility as it may be applied easily to other
glaucoma VF cluster map schemes. Studies compar-
ing different cluster map schemes may be needed in
the future to determine the scheme with the strongest
model fit and highest predictive ability to detect
glaucoma progression.

The complexity of the model is not a factor when
classifying new patients. The VF data for a new
patient can easily be entered into the regression
framework and a predicted probability of progres-
sion, as defined by the consensus of expert clinicians,
is calculated within a few seconds using the previously
obtained posterior samples from the model parame-
ters. This predicted probability then can be used to
classify the new patient based on the optimal
threshold value determined during the ROC curve
analysis. This speed will allow for real time decision
making in the clinical setting, which constitutes a real
strength of the proposed model.

In conclusion, we presented and described a tool
for the analysis of spatially correlated longitudinal VF
data and demonstrated its usefulness in the modeling
and validation datasets. With both datasets, we have
established that the proposed method outperformed
competing models in terms of model fit and predictive
ability without sacrificing information. Using the
introduced regression modeling framework, our
model can be extended in future work to incorporate
other covariates, such as RNFL, ganglion cell-inner
plexiform layer and optic disc topographic measures,
and patient level attributes that could provide
additional information for decision making. Our
newly developed model was able to jointly consider
highly correlated changes across the entire VF when
determining the progression status based on clinician
expert consensus, similar to the actual process used by
expert clinicians. Results from the validation dataset
suggest that the model may also be clinically useful.
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