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Abstract

Overexposure to manganese (Mn) leads to toxic effects, such as promoting the development of 

Parkinson’s-like neurological disorders. The gut microbiome is deeply involved in immune 

development, host metabolism, and xenobiotics biotransformation, and significantly influences 

central nervous system (CNS) via the gut-brain axis, i.e. the biochemical signaling between the 

gastrointestinal tract and the CNS. However, it remains unclear whether Mn can affect the gut 

microbiome and its metabolic functions, particularly those linked to neurotoxicity. In addition, 

sex-specific effects of Mn have been reported, with no mechanism being identified yet. Recently, 

we have shown that the gut microbiome is largely different between males and females, raising the 

possibility that differential gut microbiome responses may contribute to sex-selective toxicity of 

Mn. Here, we applied high-throughput sequencing and gas chromatography–mass spectrometry 

(GC-MS) metabolomics to explore how Mn2+ exposure affects the gut microbiome and its 

metabolism in C57BL/6 mice. Mn2+ exposure perturbed the gut bacterial compositions, functional 

genes and fecal metabolomes in a highly sex-specific manner. In particular, bacterial genes and/or 

key metabolites of neurotransmitter synthesis and pro-inflammatory mediators are significantly 

altered by Mn2+ exposure, which can potentially affect chemical signaling of gut-brain 

interactions. Likewise, functional genes involved in iron homeostasis, flagellar motility, quorum 

sensing, and Mn transportation/oxidation are also widely changed by Mn2+ exposure. Taken 

together, this study has demonstrated that Mn2+ exposure perturbs the gut microbiome and its 

metabolic functions, which highlights the potential role of the gut microbiome in Mn2+ toxicity, 

particularly its sex-specific toxic effects.
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Introduction

Trillions of bacteria reside in human gastrointestinal tract and they are deeply involved in 

human metabolism and health (Ley et al., 2006). Besides food digestion and energy harvest, 

the gut microbiome plays a crucial role in neurodevelopment, immune response, 

inflammation and xenobiotic biotransformation (Guarner and Malagelada, 2003; Bäckhed et 
al., 2005). The gut microbiome is a highly dynamic system and can be influenced by 

environmental factors, such as heavy metals and antibiotics (Jakobsson et al., 2010; Lu et al., 
2014). Multiple xenobiotics can alter bacteria community compositions and disturb the 

production of key metabolites, which can largely influence the interactions between the gut 

microbiome and host (Maurice et al., 2013; Lu et al., 2014). On the other hand, gut bacteria 

can modulate the effects of xenobiotics on the host. For example, gut bacteria transform 

Hg2+ and Cr (VI) to Hg0 and Cr(III) to reduce their toxicity, while other xenobiotics, such as 

nitrazepam, are converted to more toxic species by gut bacteria (Takeno and Sakai, 1991; 

Upreti et al., 2004; Monachese et al., 2012; Younan et al., 2016). Therefore, bi-directional 

interactions between the gut microbiome and exposure actually exist.

Manganese (Mn) is an essential trace element for mammals and many microorganisms 

(Jakubovics and Jenkinson, 2001; Aschner and Aschner, 2005). Mn is necessary for normal 

brain function and amino acid, lipid, and carbohydrate metabolism (Greger, 1998; Aschner 

and Aschner, 2005). Mn also functions as the cofactor of numerous key enzymes, such as 

arginase, glutamine synthetase, manganese catalase, and manganese superoxide dismutase 

(Greger, 1998; Jakubovics and Jenkinson, 2001). However, Mn overload is toxic and 

associated with a series of diseases, including chronic liver failure, cardiovascular diseases, 

bone loss and neurodegeneration (Roth and Garrick, 2003; Crossgrove and Zheng, 2004; 

Milatovic et al., 2009). Mn can cross the blood-brain barrier, accumulate in the brain and 

cause neurodegenerative disorders, such as Parkinson’s disease (PD) (Crossgrove and 

Zheng, 2004; Reaney et al., 2006). Mn-induced tissues and neuron damages involve multiple 

mechanisms, including mitochondrial dysfunction, oxidative stress (Milatovic et al., 2009), 

activation of pro-inflammatory mediators and neuroinflammation (Chen et al., 2006; 

Milatovic et al., 2009), and alterations of ion homeostasis (Klaassen and Amdur, 1996; 

Zheng et al., 1999; Roth and Garrick, 2003; Zhang et al., 2003; Crossgrove and Zheng, 

2004). Manganese toxicity is also species-dependent. Mn3+ is more reactive and toxic than 

Mn2+ (Crossgrove and Zheng, 2004; Reaney et al., 2006). A previous study revealed that 

Mn3+ exposure caused significantly higher blood manganese levels than Mn2+, and Mn3+ 

accumulated in brain more efficiently than Mn2+ (Reaney et al., 2006). Since a considerable 

amount of Mn comes from food and water, gut bacteria are being exposed to Mn before it is 

absorbed to the body. However, it is largely unknown whether Mn exposure can perturb the 

gut microbiome and its functions. It is also unclear whether gut bacteria can influence the 

toxicity and physiological effects of Mn.

In particular, a compelling body of evidence demonstrates that the gut microbiome 

significantly affects central nervous system (CNS) via the gut-brain axis, i.e. the 

bidirectional biochemical signaling between the gastrointestinal tract and the CNS. The gut 

microbiome can largely influence behaviors and diseases in the host, such as depression and 

schizophrenia (Collins et al., 2012; Cryan and Dinan, 2012; Foster and Neufeld, 2013; 
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Dinan et al., 2014). Animals with depression and anxiety were generally associated with 

alterations of gut bacteria (O’Mahony et al., 2009; Park et al., 2013). Oral administration of 

Lactobacilli rhamnosus to mice could alter the GABA receptor expression in key CNS 

stress-related brain regions and influence anxiety-like behaviors (Foster and Neufeld, 2013). 

Gut microbiome perturbation has been proposed to play a role in neurodegenerative 

disorders such as PD (Ghaisas et al., 2016). Previous studies clearly showed that the gut 

produced a large amount of neurotransmitters and related compounds (O’Mahony et al., 
2015; Yano et al., 2015). For example, intestinal cells, but not brain cells, generate more 

than 90% of serotonin in the body (Gershon and Tack, 2007; Yano et al., 2015). Gut 

compounds play key roles in the cross-talk of microbiome-gut-brain. Inflammatory signaling 

is another important type of interaction in the gut-brain axis (Bercik et al., 2010; 

Hanamsagar and Bilbo, 2016; Rea et al., 2016). It has been shown that chronic 

gastrointestinal inflammation induces anxiety-like behaviors and alters central nervous 

system biochemistry (Bercik et al., 2010). However, it remains unknown whether Mn 

exposure perturbs the gut microbiome, which leads to altered chemical signaling involved in 

the gut-brain axis.

It has been reported that Mn has sex-selective toxicity (Zhang et al., 2003; Madison et al., 
2011; Mergler, 2012). For example, MnCl2 exposure had reverse effects on the body weight 

of male and female SD rats (Zhang et al., 2003). Another study found that Mn2+-exposed 

female mice had long-lasting effects in neuronal morphology, which was absent in male 

mice (Madison et al., 2011). However, the mechanism underlying sex-specific effects of Mn 

is poorly understood. Recently, we and others have shown that the gut microbiome is largely 

different between male and female animals (Chi et al., 2016; Cong et al., 2016), raising the 

possibility that differential gut microbiome responses may contribute to sex-selective 

toxicity. In fact, toxicants, such as arsenic and organophosphate pesticides, cause sex-

specific perturbations of the gut bacteria (Chi et al., 2016; Gao et al., 2017), which may 

further affect toxicity and disease susceptibility in males and females when exposed to these 

toxicants.

This study was designed to address three questions: Will Mn exposure alter the gut 

microbiome and its metabolic functions? Are there any changes of chemical signaling 

involved in the gut-brain interactions? Are these changes sex-specific? Therefore, both male 

and female C57BL/6 mice were exposed to MnCl2 in drinking water for 13 weeks, followed 

by the assessment with multi-omics, including 16S rRNA gene sequencings, metagenomics 

and GC-MS metabolomics. 16S rRNA sequencing and metagenomics sequencing were used 

to define the alterations of bacterial compositions and functional pathways of gut bacteria. 

GC-MS metabolomics was employed to analyze the metabolic changes related to the gut 

microbiome. To the best of our knowledge, this is the first study to examine the sex-specific 

effects of Mn exposure on the gut microbiome and associated metabolic functions.

Materials and Methods

Animals and manganese exposure

C57BL/6 mice (7 weeks old, Jackson Laboratory, Bar Harbor, ME) were housed in the 

University of Georgia animal facility for a week before exposure, as well as throughout the 
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duration of the experiment in static microisolator cages with Bed-O-Cob combination 

bedding under environmental conditions of 22°C, 40–70% humidity, and a 12:12 hr 

light:dark cycle. Before experimentation, all mice were allowed to consume tap water ad 

libitum, and were provided with standard pelleted rodent diet before and during 

experimentation. At the experimental period, mice were randomly assigned into either the 

control group, or 100 ppm MnCl2 treatment group (consumption of Mn is ~20 mg/kg body 

weight/day) (n=20, with 5 male mice and 5 female mice per group). The Mn dose used in 

this study was modeled according to several previous studies that demonstrated 

neurotoxicity of Mn at similar concentrations (Moreno et al., 2009; Avila et al., 2010; 

Krishna et al., 2014). The animals were treated humanely and every effort was made to 

alleviate suffering. The animal protocol was approved by the University of Georgia 

Institutional Animal Care and Use Committee. At the start of experiment, MnCl2 (Pfaltz & 

Bauer, Inc., Waterbury, CT) was dissolved in tap water and was administered to individual 

animal (~ 8 weeks of age) in drinking water for 13 weeks. The mice were allowed to 

consume ad libitum. Drinking water with MnCl2 was made fresh every week. Control mice 

(~8 weeks of age) continued to receive tap water in their drinking water bottles which they 

were allowed to consume ad libitum.

16S rRNA sequencing

Mice fecal pellets from individual mouse were collected for 16S rRNA analysis at 0 and 13 

weeks, and stored under liquid nitrogen before being transferred to -80°C until further 

analysis. DNA was isolated from fecal pellets using a PowerSoil® DNA Isolation Kit (MO 

BIO Laboratories, Carlsbad, CA) according to the manufacturer’s instructions. The resultant 

DNA was quantified by Nanodrop® and stored at −80°C until further analysis. Purified 

DNA (1 ng) was used to amplify the V4 region of 16S rRNA of bacteria using universal 

primers of 515 (5′-GTGCCAGCMGCCGCGGTAA) and 806 (5′-
GGACTACHVGGGTWTCTAAT). The resultant DNA products were barcoded and 

quantified by Qubit 2.0 Fluorometer using Qubit dsDNA HS Assay kit (Life Technologies, 

Grand Island, NY) according to manufacturer’s instructions and pooled to be sequenced. 

Sequencing was performed on an Illumina Miseq at the Georgia Genomics Facility to 

generate pair-end 250 × 250 (PE250, v2 kit) reads. The raw mate-paired fastq files were 

merged and quality-filtered using Geneious 8.0.5 (Biomatters, Auckland, New Zealand) with 

error probability limit set as 0.01. The data then were analyzed using quantitative insights 

into microbial ecology (QIIME, version 1.9.1). UCLUST was used to get the operational 

taxonomic units (OTUs) with 97% sequence similarity. The data was assigned at five 

different levels: phylum, class, order, family and genus.

Metagenomics sequencing

For metagenomics sequencing, DNA (10 ng/μL) was fragmented using the Bioruptor 

UCD-300 sonication device, followed by sequencing library construction using the Kapa 

Hyper Prep Kit according to the manufacturer’s instructions. The resulting DNA was 

pooled, quantified, and sequenced at the Georgia Genomics Facility using an Illumina 

NextSeq High Output Flow Cell. The raw fastq files were imported into the MG-RAST 

metagenomics analysis server (version 4.0) with MG-RAST ID: Control (male): 4689984.3, 

4689979.3, 4689977.3, 4689967.3, and 4689960.3; MnCl2 treatment (male): 4707697.3, 

Chi et al. Page 4

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2017 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4707696.3, 4707700.3, 4707701.3, and 4707704.3; Control (female): 4689988.3, 4689986.3, 

4689982.3, 4689978.3, and 4689973.3; MnCl2 treatment (female): 4707703.3, 4707702.3, 

4707699.3, 4707698.3, and 4707695.3 (Meyer et al., 2008). Sequences were assigned to 

M5NR Subsystems database for functional analysis with maximum e-Value cutoff 10–5, 

75% minimum identity cutoff, and minimum alignment length cutoff of 35. Metagenomics 

analyzed and compared the normalized sequencing counts of bacterial genes between the 

controls and treatment samples.

Gas chromatography mass spectrometry metabolomics profiling

Metabolites were extracted from fecal samples collected from individual mouse using 

methanol and chloroform as described previously (Lu et al., 2014). Briefly, 20mg feces was 

vortexed with 1ml of methanol/chloroform/water solution (2:2:1) for 1 hour, followed by 

centrifugation at 3,200 × g for 15 minutes. The resultant upper phase and lower phase were 

transferred to a HPLC vial and dried for about 4 hours in SpeedVac, and derivatized using 

N,O Bis(trimethylsilyl)trifluoroacetamide (BSTFA). The derivatized samples were analyzed 

using an Agilent Technologies 6890N Network GC System/5973 Mass-Selective Detector 

(Agilent Technologies, Santa Clara, CA) with an Agilent DB5-MS column (5% Phenyl and 

95% dimethylarylene siloxane as the stationary phase, 30 m length; 0.250 mm diameter 

(narrowbore); film thickness 0.25 μm) (Agilent Technologies, Santa Clara, CA) under the 

following conditions: initial oven temperature was set at 60° C for 2 minutes, ramped to 

320°C by 8°C/minute, and then held at 320°C for 10.5 minutes. 2 μL of sample solution was 

injected with helium as the carrier gas at a flow rate of 0.8 mL/minute. The temperature of 

the injector, ion source, and MS Quadrupole were set at 275°C, 230°C, and 150°C 

respectively. The mass spectrometer was operated in full scan mode from 50 to 600 m/z. The 

XCMS Online tool was used to pick up and align peaks and calculate the accumulated peak 

intensity. To identify the metabolite represented by a particular feature, retention time and 

m/z data from the XCMS Online output was used to filter the total ion chromatogram. The 

compounds were tentatively identified after matching with the NIST MS database and the 

identification of a few selected metabolites, such as amino acids, was further validated using 

authentic standards.

Statistical analysis

Principal coordinate analysis (PCoA) was used to compare the gut microbiome profiles 

between the control and treatments, while a nonparametric t-test was conducted by 

Metastats, integrated with Mothur software (Schloss et al., 2009), to determine statistically 

significant changes (p<0.05) to the gut-microbial community structure between treatments 

and control as previously described (White et al., 2009). DESeq2 (version 3.4) has been 

applied to calculate the statistically significant changes of functional genes (Love et al., 
2014). To generate difference of metabolic profile between the control and treatment group, 

a two-tail Welch’s t-test (p<0.05) was used.
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Results

1. Mn2+ exposure perturbed the gut microbiome in a sex-specific manner

We first used 16s rRNA gene sequencing to examine the changes of gut bacterial 

compositions over time using beta diversity and alpha diversity metrics. Beta diversity 

evaluates the diversity in microbial community between samples, while alpha diversity 

reflects species richness in given samples. As shown in Fig. 1A and 1B, PCoA analysis 

shows that gut bacterial communities of mice initially clustered together at the baseline 

before exposure. After a 13-week Mn2+ treatment, the controls and exposed animals clearly 

separated into their own groups, which indicated Mn2+ exposure perturbed the trajectories of 

gut microbiome development. The alpha diversities (PD whole tree) in Mn2+-treated groups 

were lower than control groups (Fig. 1C and 1D), indicating that Mn2+ treatment reduced 

phylogenetic diversity of gut bacteria. Notably, a strong sex-specific alteration of gut 

microbiome was found. For example, the relative abundance of the phylum Firmicutes 
significantly increased in Mn2+-exposed male mice, while it decreased in Mn2+-treated 

female mice (Fig. 2A). Moreover, Mn2+ exposure significantly reduced the phylum 

Bacterodetes in male mice only. Likewise, sex-dependent perturbations of gut bacteria were 

also evident at the genus level, as illustrated in Fig. 2B and 2C. These results clearly show 

that the gut bacterial community structures have been differentially altered in male and 

female mice by Mn2+ exposure.

2. Mn2+ exposure altered the abundance of bacterial genes of tryptophan and GABA 
metabolism pathways

Perturbed gut microbiome profiles are frequently associated with the alterations of 

functional bacterial genes. Neurotransmitters serve as key signaling molecules for the gut 

microbiota to influence brain activities (Sampson and Mazmanian, 2015), so we examined 

whether Mn2+ exposure altered relevant genes in the gut microbiome. As shown in Fig. 3A, 

genes in tryptophan biosynthesis pathways, including anthranilate 

phosphoribosyltransferase, indole-3-glycerol phosphate synthase, and tryptophan synthase 

(beta and alpha chain), were significantly altered by Mn2+ in a sex-specific manner. For 

example, the gene encoding tryptophan synthase (beta chain) was decreased and increased in 

Mn2+-treated female and male mice, respectively (Fig. 3A). Mn2+ also induced a different 

effect on the genes of phenylalanine synthesis, with biosynthetic aromatic amino acid 

aminotransferase and prephenate dehydratase being increased and decreased in females and 

males (Fig. 3B). Likewise, a sex-specific effect of Mn2+ on GABA/putrescine metabolism is 

evident, as shown in Fig. 3C. For instance, the gene encoding glutamate decarboxylase, 

which synthesizes GABA from glutamate, was significantly decreased in Mn2+-exposed 

male mice only (Fig. 3C). As an important source of GABA, the metabolism of putrescine 

plays a role in GABA homeostasis (Sequerra et al., 2007). The putrescine transport gene, 

potA, was increased in Mn2+-exposed male mice, while potA and potG were decreased in 

female mice (Fig. 3C). Putrescine biosynthesis genes were also significantly changed by 

Mn2+ exposure in a sex-selective fashion, as revealed by altered agmatine deiminase in 

females and arginine decarboxylase and N-carbamoylputrescine amidase in males (Fig. 3C).
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3. LPS synthesis and DNA repair genes were specifically enriched in female mice by Mn2+ 

exposure

LPS plays an important role in the host inflammation and contributes to the gut-brain 

interactions (Cryan and Dinan, 2012; Sampson and Mazmanian, 2015). We found that the 

abundances of LPS biosynthesis genes were widely increased in Mn2+-treated female mice, 

but reduced in male animals, as shown in Fig. 4A and 4B. For example, bacterial genes 

involved in Kdo2 and lipid A synthesis, the important components of LPS, were increased in 

females only by Mn2+ treatment (Fig. 4A). Moreover, LPS assembly related genes were 

largely increased in female mice by Mn2+ exposure, but were either reduced or not 

significantly changed in male mice (Fig. 4B). The oxidative stress response gene, 

cytochrome c551 peroxidase, as well as multiple DNA repair genes, was significantly 

increased in female mice but decreased in male mice under Mn2+ exposure (Fig. 4C).

4. Genes related to iron homeostasis were altered by Mn2+ exposure

Mn can interact with iron and perturb normal physiological processes (Zheng et al., 1999; 

Crossgrove and Zheng, 2004). So, we next explored whether the iron homeostasis in the gut 

microbiota was affected by Mn2+. In fact, many iron transport related genes were 

significantly altered, such as ferrichrome-iron receptor, outer membrane receptor protein (Fe 

transport), ferric iron ABC transporter, iron compound ABC uptake transporter, and ferric 

uptake regulation protein (Fig. 5). Again, a sex-selective impact of Mn2+ exposure on iron 

acquisition and metabolism was found. These results suggest that Mn exposure could 

differentially affect the iron acquisition and metabolism in the gut microbiome of female and 

male mice.

5. Mn2+ exposure altered genes in quorum sensing, motility and chemotaxis and metal/
drug resistance

Bacteria control behaviors including motility and virulence according to the population 

density fluctuation by the cell-cell signaling process called quorum sensing. The detection of 

an autoinducer at the threshold concentration leads to the alteration of gene expression. We 

found that quorum sensing genes were specifically increased in Mn2+-exposed male mice 

only, including autoinducer 2 (AI-2) kinase LsrK, S-ribosylhomocysteine lyase and 

autoinducer-2 production protein LuxS (Fig. 6A). Consequently, bacterial genes involved in 

flagellar motility and chemotaxis were largely increased in male mice (Fig. 6B and 6C). 

Interestingly, multiple metal or drug resistance related genes were significantly increased in 

Mn2+-treated female mice but consistently decreased in male mice (Fig. 6D). Our results 

again highlight a sex-selective effect of Mn2+ on these critical bacterial functional genes.

6. Sex-selective regulation of genes of Mn transportation and oxidation

As an essential trace metal, Mn can be absorbed and utilized by many bacteria species 

(Jakubovics and Jenkinson, 2001). We next investigated whether Mn metabolism-related 

bacterial genes were regulated by exogenous Mn2+ exposure. Interestingly, two manganese 

transporter genes, manganese ABC transporter SitB and SitD, were specifically enriched in 

the gut microbiome of Mn2+-treated female mice, while they were largely reduced in male 

mice (Fig. 7A and 7B). The gene encoding multicopper oxidase that oxidizes Mn2+ to Mn3+ 
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significantly increased in females but decreased in males (Fig. 7C) (Webb et al., 2005). 

These results suggest the gut bacteria of male and female animals may have different 

capacities or responses to mediate Mn utilization and oxidation.

7. Mn2+ exposure disturbed the fecal metabolome of mice

The communication between gut bacteria and host is largely dependent on metabolites with 

various functions. We further examined whether the fecal metabolomes were altered by 

Mn2+ exposure. As shown in Fig. 8, the fecal metabolomic profiles of male and female mice 

were perturbed by a 13-week Mn2+ treatment in a sex-selective manner. In particular, the 

majority of fecal metabolites of male mice were down-regulated, while numerous up- and 

down-regulated metabolites were captured for female mice (Fig. 8A and 8B). For example, 

we observed the aphla-tocopherol and gama-tocopherol were decreased in Mn2+-treated 

male and female mice (Fig. 8C and 8D), with a stronger response being observed for female 

animals. In addition, several neurotransmitters or the precursors of neurotransmitter 

synthesis, such as glycine, glutamic acid and phenylalanine, were altered in a sex-selective 

manner, with up-regulation and down-regulation in the fecal metabolomes of female and 

male mice, respectively (Fig. 8E–8G). More identified significantly changed metabolites 

(p<0.05) are listed in Table S1 and S2.

Discussion

In this study, we explored the sex-specific effects of Mn2+ exposure on the gut microbiome 

compositions, functional genes and fecal metabolomes by high-throughput sequencing and 

GC-MS metabolomics. Our results reveal that the gut microbiome has been significantly 

perturbed in C57BL/6 mice by Mn2+ treatment. Our data also show that Mn2+ may affect the 

gut-brain axis by influencing the synthesis of several neurotransmitters or their precursors, 

including GABA and tryptophan. Mn2+ also modulates the bacteria-related pro-

inflammatory mediators, such as LPS, which may also impair gut-brain interactions. 

Moreover, our data highlight several potential mechanisms of how Mn2+ perturbs the gut 

microbiome, including altering quorum sensing, inducing oxidative stress, and disturbing 

iron homeostasis. Notably, we found strong sex-specific effects of Mn2+ exposure on the gut 

bacteria. Our data also suggest that the bi-directional interactions between Mn2+ exposure 

and the gut microbiome was impaired: Mn2+ exposure influences the gut bacteria and their 

functions, and Mn2+-induced perturbations of gut bacteria may mediate the toxicity of Mn in 

the host.

Recently, much attention has been paid to the interactions between the gut microbiome and 

CNS (Foster and Neufeld, 2013; Ghaisas et al., 2016). Compelling evidence indicates that 

the gut microflora has profound effects on CNS activities and host behaviors (Collins et al., 
2012; Cryan and Dinan, 2012; Foster and Neufeld, 2013). For example, previous studies 

suggested that bacterial colonization in the gut played a critical role in neural system 

development (Barbara et al., 2005; Stilling et al., 2014; Sampson and Mazmanian, 2015). 

Genes of some key neurotransmitter receptors like serotonin receptor 1A in germ-free mice 

are different compared with conventionally raised mice (Neufeld et al., 2011). Likewise, oral 

administration of some species such as Lactobacillus rhamnosus and Bifidobacterium 
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longum can alter the gene expression in CNS and influence anxiety-like behaviors (Bercik et 
al., 2011b; Bravo et al., 2011). Other experiments also demonstrated that the perturbation of 

gut microbiota by non-absorbable antimicrobials was associated with the changes of CNS 

activities and behaviors (Bercik et al., 2011a). One of the main potential mechanisms for gut 

bacteria to interact with host nervous systems is through neurotransmitters or their metabolic 

precursors (Sharon et al., 2014; Sampson and Mazmanian, 2015), such as GABA and 

tryptophan. Tryptophan is a central precursor of serotonin or 5-hydroxytryptamine (5-HT) 

(Leathwood, 1990). 5-HT is an important neurotransmitter involved in multiple 

physiological processes, such as modulating colonic motility (Fukumoto et al., 2003). 

Previous studies show that gut microbiota participated in the 5-HT turnover modulation 

(Reigstad et al., 2015; Yano et al., 2015). Tryptophan is generated by the gut microbiota and 

then can cross the blood brain barrier to be synthesized to 5-HT (O’Mahony et al., 2015). 

Here, we found multiple genes involved in synthesizing tryptophan from chorismate were 

increased in Mn2+-treated female mice (Fig. 3A). GABA, as an inhibitory neurotransmitter, 

also functions in multiple physiological processes and is directly associated with anxiety and 

depression (Kalueff and Nutt, 2007; Hall et al., 2014). Similar to 5-HT, the concentration of 

GABA in the host is also affected by gut microbiota (Barrett et al., 2012; Sampson and 

Mazmanian, 2015). In this study, the gene encoding glutamate decarboxylase was altered in 

Mn2+-treated male mice (Fig. 3C). Bacteria can synthesize GABA from glutamate by 

glutamate decarboxylase (Barrett et al., 2012). Previous research has also found that 

putrescine is an important source of GABA in the brain of rats (Sequerra et al., 2007). 

Herein, genes involved in putrescine synthesis and transportation were changed by Mn2+ 

treatment (Fig. 3C). In addition, two phenylalanine synthesis genes also have significantly 

higher abundances in Mn2+-treated mice than controls (Fig. 3B). Consistently, at the 

metabolite level, several neurotransmitters or the precursors of neurotransmitter synthesis, 

such as glycine, glutamic acid and phenylalanine, were perturbed by Mn2+ exposure (Fig. 8). 

Glycine and glutamic acid are well-known neurotransmitters, while phenylalanine is the 

precursor of the neurotransmitter dopamine (Daubner et al., 2011). Collectively, these results 

suggest that Mn-induced perturbation of gut microbiome might disturb the normal 

metabolism of neurotransmitters or related precursors in gut, which could further interfere 

with normal gut-brain interactions.

Modulation of immune response is another mechanism that the gut flora can influence the 

neuron systems (Collins et al., 2012; Cryan and Dinan, 2012; Sampson and Mazmanian, 

2015). The gut microbiome plays a critical role in host inflammation, and multiple bacteria-

derived molecules can activate immune systems, such as LPS and bacterial lipoprotein 

(Hirschfeld et al., 1999; Cani et al., 2008; Hooper et al., 2012). LPS can stimulate immune 

cells to produce various pro-inflammatory cytokines, such as IL-1b, TNFa, and IL-6 

(Bruunsgaard et al., 1999). Cytokines can transport to neural systems and function as 

signaling molecules to influence neuron activities and behaviors (Cryan and Dinan, 2012). 

Here, we observed that genes involved in LPS synthesis and assembly are widely increased 

in Mn2+-treated female mice (Fig. 4A and 4B). Interestingly, a previous study found that 

Mn2+ enhanced LPS-induced NOS2 expression and cytokines release (Barhoumi et al., 
2004). Therefore, Mn2+ exposure might increase inflammatory response not only by 
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increasing LPS secretion in gut bacteria, but also by potentiating the physiological response 

of LPS, which in turn leads to a more pronounced effect on the gut-brain axis.

In this study, Mn exposure significantly altered the gut microbiome. Likewise, we also 

demonstrated that other environmental toxicants, like arsenic, could also largely alter the 

bacterial compositions, abundance and community structures of gut bacteria (Lu et al., 2014; 

Chi et al., 2016). What mechanism is responsible for regulating the bacterial community? 

This is an important question to be addressed in microbiome-exposure research. In this 

context, our data may provide new insights into how Mn causes gut microbiome 

perturbations. Mn exposure may result in shifted gut microbiome structures by altering the 

quorum sensing, Mn availability, oxidative stress and iron homeostasis, as briefly discussed 

as below.

Mn2+ exposure alters the quorum sensing system. Bacteria control behaviors such as 

sporulation, motility and virulence according to the population density fluctuation by 

quorum sensing (Nasser and Reverchon, 2007). Autoinducers play a key role in quorum 

sensing. Key quorum sensing genes, including AI-2 kinase LsrK, S-ribosylhomocysteine 

lyase and AI-2 production protein LuxS, were increased in Mn2+-exposed male mice (Fig. 

6A), indicating that Mn2+ exposure could perturb the bacterial community compositions via 

altering quorum sensing. Besides regulating the density of the bacterial population, 

alterations of quorum sensing could also lead to the regulation of many critical downstream 

genes and pathways. As the consequence, we observed genes involved in bacteria motility 

and chemotaxis were enriched in gut bacteria of Mn2+-treated male mice (Fig. 6B and 6C). 

Flagellar motility and bacterial chemotaxis play an important role in bacteria survival, which 

allows bacteria to respond to favorable or unfavorable environmental stimuli (Haefele and 

Lindow, 1987). Moreover, quorum sensing and flagella genes are also necessary for the 

biofilm formation in many bacteria, which could promote bacteria aggregation and adhesion 

(Pratt and Kolter, 1998; Singh et al., 2006). Chemotaxis ability is critical in the spreading of 

biomass in mature biofilm, which help bacteria find optimum conditions for growth and 

survival (Pandey and Jain, 2002; Singh et al., 2006).

Mn2+ exposure may also perturb the gut bacteria by mediating Mn2+ availability. As an 

essential metal, Mn is critical in multiple physiological processes in mammals and bacteria 

(Jakubovics and Jenkinson, 2001; Aschner and Aschner, 2005). Mn in gastrointestinal tract 

is normally maintained at low levels and bacteria that require Mn for growth are inhibited 

due to limited availability of Mn. In fact, one of effective strategies for the host to fight 

against bacterial infections is Mn sequestration (Diaz-Ochoa et al., 2014). The host can 

express proteins, such as calprotectin in mucosa, which can directly bind Mn2+ to reduce Mn 

available in gastrointestinal tract and then inhibit microbial growth. This process is called 

nutritional immunity (Diaz-Ochoa et al., 2014). However, Mn2+ exposure significantly 

increases Mn in gastrointestinal tract, which might weaken or even destroy nutritional 

immunity. Under such a scenario, bacteria limited by Mn availability can greatly benefit 

from Mn2+ exposure. For example, previous studies found that the growth of Lactobacillus 
species required extremely high concentrations of Mn2+ (Archibald and Fridovich, 1981; 

Archibald and Duong, 1984). In this study, Lactobacillus was enriched in Mn2+-treated 

female animals (Fig. 2B). Consistently, two genes encoding Mn ABC transporter were 
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significantly increased in Mn2+-treated female mice (Fig. 7A and 7B). Mn ABC transporter 

genes are actually encoded in the genome of Lactobacillus species (Groot et al., 2005). 

Taken together, our data suggest that Mn2+ may perturb gut bacterial profiles by altering the 

availability of Mn2+.

However, overexposure to Mn2+ potentially affects gut bacteria by inducing oxidative stress 

(Milatovic et al., 2009). Previous studies demonstrated that Mn2+ accumulated in 

mitochondria and could disrupt oxidative phosphorylation, leading to ROS generation 

(Gunter et al., 2006; Milatovic et al., 2009). Mitochondria dysfunction and DNA 

fragmentation is one of main toxic effects of Mn2+ on rat neurons (Malecki, 2001; Milatovic 

et al., 2009). In this study, the oxidative stress response gene, cytochrome c551 peroxidase, 

and multiple DNA repair genes were significantly activated (Fig. 4C). Likewise, we found 

that antioxidants, such as alpha-tocopherol and gama-tocopherol, were decreased in the fecal 

samples of Mn2+-exposed mice. These evidence suggests that Mn2+ may induce oxidative 

stress in gut bacteria, which could influence the growth and survival of selected components 

of gut bacteria.

In addition to oxidative stress, high concentrations of Mn2+ can disturb the balance of ions, 

especially iron homeostasis (Zheng et al., 1999). Numerous evidence shows that the 

interaction with iron is one of the mechanisms of Mn2+ toxicity (Zheng et al., 1999; Roth 

and Garrick, 2003; Crossgrove and Zheng, 2004). For example, previous studies 

demonstrate that Mn transportation through blood-brain barrier to CNS relies on the binding 

with transferrin, an iron transporting protein (Aschner and Aschner, 1990). Mn can change 

the catalytic function of aconitase potentially through competing with iron in the active 

center of this enzyme (Zheng et al., 1998). Likewise, Mn exposure causes excessive 

accumulation of iron in neurons, leading to oxidative stress and neuron damage (Zheng et 
al., 1999; Crossgrove and Zheng, 2004). Iron and Mn homeostasis are important for the 

survival of microorganisms (Jakubovics and Jenkinson, 2001). Thus, disturbance of iron 

acquisition and metabolism may contribute to shaping the gut microbiome compositions. 

Indeed, we found multiple bacterial genes involved in the uptake and transport of iron were 

significantly perturbed by Mn exposure (Fig. 5). Besides the effects of Mn on the gut 

bacteria, Mn may affect iron metabolism in gut bacteria by perturbing host genes or 

responses. Mn absorption is mainly occurred in gastrointestinal tract by transferrin-

dependent and transferrin-independent pathways, which are also used for iron absorption 

(Roth and Garrick, 2003). Transferrin and transferrin receptors can also be expressed in 

mucosa for iron sequestration (Diaz-Ochoa et al., 2014). Mn can activate the expression of 

host ferritin and transferrin receptor to increase the iron absorption in tissues (Zheng et al., 
1999). Therefore, enhanced nutritional immunity by increasing iron absorption in GI tract 

may potentially affect bacterial growth and microbiome community structures.

As already mentioned above, strong sex-specific effects of Mn exposure on the gut 

microbiome were observed. For example, Firmicutes significantly increased in Mn2+-

exposed males, but decreased in female animals (Fig. 2A). Bacterial genes in multiple 

pathways, such as LPS synthesis and DNA repair, were increased in females but decreased 

in males (Fig. 4). Fecal metabolomes were also differentially altered in male and female 

mice (Fig. 8). Likewise, multiple genes encoding heavy metal resistance protein and efflux 
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system protein, as well as several antibiotic resistance genes, were significantly increased in 

treated female mice (Fig. 6D). These genes can improve bacterial survival by exporting 

heavy metals out of cells. As discussed previously, the genus Lactobacillus and Mn ABC 

transporter genes were specifically enriched in Mn2+-exposed female mice (Fig. 2B and Fig. 

7). Collectively, differential enrichment of specific genes may reflect sex-specific gut 

microbiome responses to Mn2+ exposure. The mechanism underlying sex-specific gut 

microbiome response remain elusive. It could arise from the initial gut microbiome 

difference, driven by sex hormones, between male and female mice. Additionally, sex-

selective host response may also participate in mediating gut-microbiome response to 

exposure. Nevertheless, sex-specific gut microbiome response may play a role in differential 

toxicity of Mn in males and females.

The bi-directional interactions between the gut microbiome and exposure exist. Besides the 

widespread effects of Mn2+ on the gut microbiome, our data suggest that the gut microbiome 

may also influence the toxic effects of Mn. For example, the increase of Mn transportation 

genes in female mice may enrich Mn2+ in gut bacteria, thus reducing its toxic effects in the 

host by limiting Mn adsorption in host cells. On the other hand, the gut microbiota may 

increase the toxicity by oxidizing Mn2+ to Mn3+. Mn3+ is much more reactive and toxic than 

Mn2+ (Chen et al., 2001). Previous studies indicated that Mn3+ had higher affinity with 

transferrin and could accumulate at higher concentrations in brain than Mn2+ (Reaney et al., 
2002; Kearns, 2010). Here, we found the gene encoding multicopper oxidase was highly 

enriched in Mn2+-exposed female mice only (Fig. 7C). Bacteria can oxidize Mn2+ to Mn3+ 

by multicopper oxidase (Webb et al., 2005). These data suggest that the gut microbiota in 

females may have a higher capability of oxidizing Mn2+ to more toxic Mn3+, which can 

enhance the toxic effects of Mn in the host. Interestingly, previous studies show that the 

toxic effects of manganese are different in males and females (Madison et al., 2011; Mergler, 

2012). Thus, differential biotransformation of Mn2+ by gut bacteria in males and females 

may play a role in the sex-specific effects of Mn exposure. Future studies are warranted to 

elucidate the role of the gut microbiome in mediating Mn toxicity in the host, particularly 

via a sex-specific manner.
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Fig. 1. 
The effects of Mn2+ exposure on the gut microbiome in male and female C57BL/6 mice, as 

revealed by 16S rRNA gene sequencing. Based on the PCoA analysis of beta diversity, the 

gut microbiome community structures of female (A) and male (B) mice were significantly 

altered by Mn2+ exposure. The phylogenetic diversity, as evaluated by PD whole tree (alpha 

diversity), of the gut microbiome was significantly decreased in Mn2+-treated female (C) 

mice and male (D) mice.
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Fig. 2. 
Mn2+ altered the relative abundance of gut bacteria at the phylum level in a sex-specific 

manner (A) (***p<0.001, **p<0.01, *p<0.05, N.S., no statistically significant change); Sex-

dependent perturbations of gut bacteria at the genus level, as illustrated by the fold changes 

of significantly altered gut bacterial genera (B: Females; C: Male) (Only genera with p<0.05 

are listed here; Fold changes were calculated using the relative abundance of each genus in 

Mn2+-treated mice divided by the relative abundance of the same genus in control mice. c: 
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class; f: family; O: order; G: genus. +∞: only appeared after Mn exposure; -∞: abolished by 

Mn exposure)
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Fig. 3. 
Sex-selective effects of Mn2+ on bacterial genes involved in neurotransmitter pathways. (A: 

tryptophan synthesis genes; B: phenylalanine synthesis genes; C: GABA/putrecrine 

metabolism genes) (***p<0.001, **p<0.01, *p<0.05, N.S., no statistically significant 

change)
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Fig. 4. 
Gut bacterial genes involved in Kdo2 and lipid A synthesis (A), LPS assembly (B) and 

oxidative stress response and DNA repair (C) were significantly increased in Mn2+-exposed 

female mice and decreased in male mice. (***p<0.001, **p<0.01, *p<0.05, N.S., no 

statistically significant change)
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Fig 5. 
Iron acquisition and metabolism related genes were widely altered in Mn2+-exposed female 

and male mice. (***p<0.001, **p<0.01, *p<0.05, N.S., no statistically significant change)
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Fig. 6. 
Quorum sensing genes specifically increased in Mn2+-exposed male mice (A). Bacterial 

genes of flagellar motility (B) and chemotaxis (C) increased in Mn2+-exposed male mice but 

significantly decreased in female mice. Heavy metal or antibiotic resistance genes decreased 

in the gut bacteria of Mn2+-exposed male mice, but increased in Mn2+-exposed female mice 

(D). (***p<0.001, **p<0.01, *p<0.05, N.S., no statistically significant change)
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Fig. 7. 
Sex-selective alterations of bacterial genes of Mn transportation and oxidation in mice 

exposed to Mn2+. Mn ABC transporter genes (A and B) and Mn oxidation gene (C) were 

significantly increased in female mice but decreased in male mice after Mn2+ treatment. 

(***p<0.001, **p<0.01, *p<0.05)
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Fig. 8. 
Mn exposure perturbed the metabolic profiles of fecal samples of female (A) and male mice 

(B). Antioxidants, such as α-tocopherol (C) and γ-tocopherol (D), were significantly 

decreased in the fecal samples of Mn2+-exposed female and male mice, with a stronger 

effect being observed in female animals. Relative intensity of phenylalanine (E), glycine (F), 

and glutamic acid (G) was significantly increased and decreased in Mn2+-exposed female 

mice and male mice, respectively. (***p<0.001, **p<0.01, *p<0.05, N.S., no statistically 

significant change)
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