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Abstract

Background—The global supply of unfractionated heparin (UFH) and all commercially 

available low molecular weight heparins (LMWH) remain dependent on animal sources, such as 

porcine intestine or bovine lung. Recent experience has shown that contamination of the supply 

chain (with over-sulfated chondroitin sulfates) can result in lethal toxicity. Fondaparinux is 

currently the only commercially available synthetic analogue of heparin. We recently described a 

new class of chemoenzymatically synthesized heparin analogues. One of these compounds (S12-

mer) is a dodecasaccharide consisting of an antithrombin-binding moiety with repeating units of 

IdoA2S-GlcNS6S and two 3-O-sulfate groups that confer the ability to bind protamine.

Objective/Methods—We sought to further characterize this new compound in vitro using 

biochemical and global coagulation assays and in vivo using thrombosis and hemostasis assays.

Results—The anticoagulant activities of the Super 12-mer (S12-mer) and Enoxaparin in anti-

factor Xa and plasma-based thrombin generation assays were roughly equivalent with a 50% 

reduction in peak thrombin generation occurring at approximately 325 nM. When protamine was 

titrated against a fixed concentration of S12-mer in plasma or blood, the S12-mer displayed a 
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significant restitution of thrombin generation and clot formation. In vivo, S12-mer inhibited 

venous thrombosis to a similar extent as Enoxaparin, with similar bleeding profiles.

Conclusions—These data show that the S12-mer has almost identical efficacy to Enoxaparin in 

terms of FXa inhibition, while displaying significant reversibility with protamine. Taken together 

with the ability to ensure purity and homogeneity from batch to batch, the S12-mer is a promising 

new synthetic heparin analogue with a potentially enhanced safety profile.

Introduction

Heparin-based anticoagulants are considered to be standard therapy for the prevention and 

treatment of arterial and venous thromboembolism (VTE) [1]. Natural heparin is 

physiologically synthesized in several tissues by a series of enzymes that link together and 

modify the basic disaccharide backbone of iduronic or glucuronic acid and glucosamine 

residues, resulting in a mixture of molecules with an average molecular weight of 14,000 Da 

[2, 3]. Unfractionated heparin (UFH) is administered as a mixture of sulfated 

glycosaminoglycans of variable lengths and molecular weight and is a natural product 

obtained from a relatively crude preparation of bovine and/or porcine mucosal tissue [4–6]. 

UFH has a propensity to bind to plasma proteins, platelets, macrophages and endothelial 

cells, and as a result, its bioavailability, pharmacological properties and anticoagulant effects 

may be unpredictable [7–9]. UFH exerts its anticoagulant effect by functioning as a potent 

cofactor in the inactivation of several coagulation enzymes, including factors IIa (thrombin), 

VIIa, IXa, Xa and XIa by antithrombin (AT) [9–15]. Unfortunately, UFH is susceptible to 

problems with the supply chain; consequently, a string of high profile incidents has resulted 

in serious concerns about its quality control practices and safety profile [16–19].

In the last few decades, UFH has been largely supplanted by low molecular weight heparins 

(LMWHs) in many clinical scenarios [20, 21]. LMWHs, which are derived from 

depolymerized heparin, have several advantages over UFH. They bind less avidly to plasma 

proteins, endothelial cells, macrophages, and platelets, and therefore possess a more 

predictable bioavailability profile [22, 23]. Currently, LMWHs are the most widely 

prescribed heparin in many countries and remain the standard of care for VTE prevention 

and treatment [20]. LMWHs, however, are still a fairly heterogeneous mixture with 

molecular weights that range from 3,500 to 6,000 Da [21, 23]. Due to their reduced chain 

length, LMWHs are poorly and variably reversed with protamine, restricting their clinical 

utility to scenarios with acceptably low bleeding risk [24, 25].

More recently, the synthetic heparin analogue Fondaparinux has found clinical utility [26, 

27]. Fondaparinux is a construct of the naturally occurring sulfated pentasaccharide core 

sequence found in all anticoagulant heparins, and is responsible for their binding to and 

potentiation of AT [28, 29]. Reduced sulfation of molecular species in LMWH preparations 

or the shorter polysaccharide chain size has been identified as the cause of the relative lack 

of protamine reversal [30]. Whereas LMWHs inactivate both Factor Xa -- and to a lesser 

extent thrombin -- when complexed with AT, Fondaparinux is a short fragment with 

specificity for FXa only [29, 31]. However, despite its high degree of sulfation, the 
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relatively short chain length precludes Fondaparinux from any capacity for reversal by 

protamine [32].

In this study, we undertook a complete evaluation of the in vitro anticoagulant and in vivo 

antithrombotic profiles of a chemoenzymatically synthesized heparin analogue. This 

homogenous molecule, deemed “Super 12-mer” (S12-mer), has been engineered with the 

key 3-O-sulfation at sites needed to preserve its (indirect) anti-factor Xa activity and a 

longer 12-sugar chain length to conserve its interaction with protamine for effective reversal 

(Figure 1) [33]. These experiments establish the feasibility of future studies aimed at 

advancing this compound to further pre-clinical evaluation.

Materials and Methods

Materials

HEPES, polyethylene glycol MW 8,000 and calcium chloride were purchased from Fisher 

(Waltham, MA). 1-palmitoyl-2-oleoyl-phosphatidyl serine (PS), and 1-palmitoyl-2-oleoyl-

phosphatidylcholine (PC) were purchased from Avanti Polar Lipids, Inc (Alabaster, AL). 

Recombinant TF 1–263 was purchased from Haematologic Technologies Inc. (Essex 

Junction, VT) and was re-lipidated in PCPS (25% PS, 75% PC) vesicles as previously 

described [34, 35]. Corn trypsin inhibitor (CTI) was prepared as previously described [36] 

and qualified via aPTT assay with a commercial standard. Plasma derived FXa and AT were 

purchased from Haematologic Technologies Inc. (Essex Junction, VT). UFH was obtained 

from Hospira Inc. (Lake Forest, IL). Fondaparinux sodium (Arixtra™) was purchased from 

Cardinal Heath (Dublin, OH). Enoxaparin (Lovenox™) was from Sanofi-Aventis 

(Bridgewater, NJ). Protamine sulfate was obtained from APP Pharmaceuticals 

(Schaumburg, IL). The synthetic dodecasaccharide (S12-mer) was synthesized from a 

glucuronide-based monosaccharide, with a series of elongation, epimerization, and O-

sulfation steps catalyzed with recombinant enzymes, as previously described [33]; a 

dodecasaccharide (C12-mer) was synthesized in parallel without 3-O-sulfation to generate a 

non-anticoagulant control. The purity and structures of both S12-mer and C12-mer were 

confirmed by nuclear magnetic resonance (NMR) and mass spectrometry as described 

previously [33]. Rhodamine 6G was from Sigma/Aldrich. A monoclonal fibrin-specific 

antibody was isolated from ascites derived from a clone kindly provided by Dr. Marschall S. 

Runge; this antibody was labeled with Alexa Fluor-647 (Invitrogen).

Methods

Blood collection

Healthy individuals were recruited by advertisement under a protocol that was approved by 

the Institutional Review Board for human subjects at the University of North Carolina. After 

discarding the first 3 mL, blood samples were obtained by clean venipuncture of an 

antecubital vein with a 21Ga. butterfly needle into syringes preloaded with 3.2% sodium 

citrate (1:9). Contact pathway-inhibited citrate plasma was prepared by drawing blood into 

3.2% sodium citrate containing 0.1mg/mL CTI. Platelet poor plasma was prepared via 2 

successive centrifugations at 2,500g.
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Anti-FXa assay

Various heparins (UFH, Fondaparinux, Enoxaparin, S12-mer or C12-mer) were titrated with 

200 nM human antithrombin (final) in hepes-buffered saline with 2 mM CaCl2 and 0.1% 

PEG 8000 (HBS/PEG/Ca2+) in the presence or absence of 2µM Protamine sulfate and 

allowed to incubate for 2 minutes at room temperature in a 96-well microplate. 5 nM human 

FXa was added to the wells and allowed to incubate for 1 minute. The reaction was initiated 

by the addition of 200 µM (final) FXa chromogenic substrate (Pefachrome FXa) and 

amidolytic activity at 405 nm was measured in a Molecular Devices Spectromax microplate 

reader.

TEG

Thromboelastography was performed in a TEG 5000 coagulation analyzer (Haemonetics, 

Niles, IL). Whole blood was drawn via antecubital venipuncture and anticoagulated with 0.1 

mg/mL of corn trypsin inhibitor; 350µL of this sample was immediately added to TEG cups 

containing 5 pM recombinant TF 1–263 and varying amounts of heparin and/or protamine 

sulfate.

Thrombin generation assays

Plasma-based thrombin generation assays were performed essentially as described [37] with 

some modifications. Heparins and/or protamine were added to selected wells of a 96-well 

microplate followed by 80µL of pooled (10 donors) citrate plasma. Plasmas were re-

calcified (15 mM CaCl2) for 3 minutes in the presence of 416 µM Z-GGR-AMC substrate 

prior to activation with a 5 pM rTF / 4 µM PCPEPS stimulus. Control plasmas that were re-

calcified for the 3-minute incubation period and received phospholipids without tissue 

factor, generated no thrombin over the 1-hour course of the assay. Substrate hydrolysis was 

monitored in a Biotek Synergy H1M fluorometer, and thrombin generation was calculated 

based on a thrombin standard curve.

In Vivo Study Design

All studies were performed in mice under an IACUC-approved protocol at the University of 

North Carolina, following PHS guidelines for laboratory animal care and use. Adult male 

wild-type C57Bl/6 mice, ages 8–12 weeks were used in all studies, under ketamine and 

xylazine anesthesia (intraperitoneal administration, 100 and 10 mg/kg body weight, 

respectively). Four experimental groups were used for both thrombosis and hemostasis 

assays: controls (vehicle infused), S12-mer (0.6 mg/kg), S12-mer + protamine (0.6 mg/kg 

and 15 mg/kg, respectively) and Enoxaparin (1 mg/kg). These compounds were infused by 

jugular vein immediately preceding both in vivo assays; S12-mer preceded protamine 

administration by 5 minutes, using separate injections.

Thrombosis Assay

A model of venous thrombosis was used, as previously described [38]. Briefly, rhodamine 

6G (platelets) and Alexa Fluor-647-labeled anti-fibrin antibody were injected through the 

external jugular vein. The femoral vein was surgically exposed and an electrolytic injury (30 

seconds, 1.5 volts) was applied to a 75-micron diameter area on the vessel surface. The 
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vessel injury site was shutter-illuminated with 532-nm and 650-nm defocused lasers, with 

fluorescence emission capture via time-lapse digital video over 60 minutes. Relative 

intensity of each fluorophore was quantitated, normalizing for animal body weight and 

amount of injected fluorophore.

Hemostasis Assay

A saphenous vein bleeding assay was applied, slightly modified from that previously 

described [39]. The saphenous vein was exposed and transected: upon cessation of bleeding 

and a 30-second observation, the hemostatic clot was physically dislodged and the site was 

observed for repeat hemostasis, repeating this process over the course of 30 minutes. The 

total number of hemostatic events over 30 minutes was recorded.

Statistical Analysis

Heparin IC50 concentrations were calculated using Graph Pad Prizm software. Analysis of 

variance was applied to relative intensities of both platelet and anti-fibrin accumulation at 

thrombosis sites at the 60-minute time point and on the number of hemostatic events for the 

bleeding assay. Posthoc Fisher LSD tests were done for between-group comparisons. A p-

value of 0.05 was used to assign significance for initial analysis of variance and for the 

posthoc tests.

Results

Heparin anti-FXa efficacy

Five heparins including Fondaparinux, UFH, Enoxaparin, S12-mer and Control C12-mer, 

were analyzed in this study. As UFH and Enoxaparin are inherently heterogeneous mixtures, 

we used the average molecular weights (14,500 and 4,500 Da for UFH and Enoxaparin, 

respectively) associated with the functional sulfated polymer forms to calculate approximate 

molarity. Both S12-mer and C12-mer are structurally homogeneous dodecasaccharides 

synthesized through a chemoenzymatic approach that have definite molecular weights 

(3,483 and 3,387 Da for Super and Control 12-mer respectively); thus, molarity was 

precisely quantified. Anti-FXa activity was evaluated (Figure 2) to compare the activity 

between the four different heparins and IC50 values were calculated (Fondaparinux 7.2±0.5 

nM, UFH 39.8±4.8 nM, Enoxaparin 147±19.8 nM and S12-mer 99.7±12.9 nM, Control 12-

mer ~4 uM).

When protamine was added to the reaction, all three sulfated heparins (UFH, Enoxaparin 

and S12-mer) showed significant reversibility of their respective anti-FXa activities, and 

shifted their IC50 values approximately one order of magnitude higher. As expected, 

protamine had little effect on the anti-FXa capabilities of fondaparinux or the control 12-mer 

(data not shown).

S12-mer’s effects on thrombin generation in human plasma

TF-initiated thrombin generation in contact pathway-inhibited platelet poor plasma was 

assessed in the presence of S12-mer and Enoxaparin (Figure 3A and B respectively). Given 

the relatively similar specific anti-FXa activity, plasma half-life and potential reversal with 
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protamine, enoxaparin was chosen as a standard for S12-mer comparison [33]. The 

displayed concentration range (150–600 nM) was chosen as it displayed the best dose 

response in terms of thrombin generation inhibition for both S12-mer and Enoxaparin. The 

relevant thrombin generation parameters are summarized in Table 1. Compared to 

Enoxaparin, S12-mer shows a similar dose response in all thrombin generation parameters 

(lag, peak thrombin and time to peak thrombin). In contrast to the anti-FXa activity in a 

purified system, Enoxaparin shows slightly higher efficacy in plasma, which is not 

unexpected as Enoxaparin retains some anti-thrombin as well as anti-FXa activity. However, 

consistent with the anti-Xa data, both heparins reduced peak thrombin generation by half at 

approximately 150 nM, with nearly identical areas under the curve.

The ability of protamine sulfate to reverse the anticoagulant effect of S12-mer was evaluated 

at two different concentrations (Figure 4). Protamine sulfate is a mix of polypeptides of 

heterogeneous molecular weights. As with UFH and Enoxaparin, we used the average 

molecular weight of the functional peptide (5,000 Da) for a molar conversion. Analysis of 

thrombin generation in the presence of protamine proved to be problematic as protamine 

itself is an inhibitor of coagulation [40]. Specifically, titration of protamine in this plasma 

system (Figure 4A) resulted in a dose dependent increase in lag and time to peak thrombin 

as well as a decrease in peak thrombin. At both S12-mer concentrations tested (Fig 4B: 337 

nM and Fig. 4C: 168 nM), protamine reversibility was only achieved at near equal molar 

concentration of S12-mer and protamine. Interestingly, while peak thrombin and the area 

under the curve were reconstituted, both the lag time and time to peak thrombin remained 

unchanged from those values seen with either concentration of S12-mer alone.

S12-mer effects on ex vivo clot formation in whole blood

Thromboelastography was used to examine the effects of S12-mer on clot formation in the 

whole blood of three healthy volunteers (Figure 5A and Table 2). As with the plasma-based 

thrombin generation assays, a 5 pM TF stimulus (in the presence of 0.1 mg/mL of CTI to 

inhibit contact activation) was used to initiate the reaction. When S12-mer was titrated in 

whole blood (Figure 5A), a dose-dependent increase in R (clot time) was observed. 

Consistent with an increase in R, the α-angle (rate of clot formation) and maximum 

amplitude (MA, maximal clot firmness) of the reaction both decreased in a dose-dependent 

manner that plateaued between 300 and 600 nM.

The ability of protamine to reverse the effects of S12-mer on clot formation was also 

investigated (Figure 5B and Table 3). Maximal protamine reversibility was achieved at an 

equal molar quantity of heparin and protamine with an approximate 87% reconstitution in R-

time; however, the α-angle and MA were not proportionately reconstituted. In terms of clot 

formation, the observation that the S12-mer is not completely reversible with protamine, 

likely is due to protamine’s inherent anticoagulant effects on cofactor activation 

demonstrated in the figure 4A. Similar to what was displayed in plasma, protamine alone 

had significant dose-dependent anticoagulant effects on all TEG parameters (data not 

shown).
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In vivo thrombosis assay

The intravital fluorescence assay generally shows a peak in platelet accumulation at 20–30 

minutes, with a subsequent reduction by 60 minutes, whereas the fibrin accumulation 

achieves a sustained peak at slightly later times. Platelet accumulation was relatively similar 

among groups in our study, with some observable reduction in the group that received 

Enoxaparin and slight variations among the other groups (Figure 6A), although this did not 

achieve statistical significance in any case. In contrast, analysis of variance indicated 

significance among groups for fibrin accumulation (p<0.001) as detected by the anti-fibrin 

antibody. There was a reduction in fibrin accumulation at 60 minutes (Figure 6B) for S12-

mer and Enoxaparin in comparison to the control group (vehicle), achieving significance for 

all between-group comparisons (p<0.001). Of note, protamine administration following S12-

mer treatment returned fibrin formation to control levels (p<0.001 vs. S12-mer without 

protamine). Time-lapse videos for representative thrombus development are shown for 

vehicle, S12-mer, S-12-mer plus protamine, and Enoxaparin treatments (Supplemental 

Videos 1–4), showing fibrin and platelet accumulation over 60 minutes.

In vivo hemostasis Assay

The bleeding assay (Figure 7) also revealed statistical significance through analysis of 

variance (p<0.05). There were comparable numbers of hemostatic events over 30 minutes 

for mice treated with vehicle, (18 ± 2; mean and standard deviation); a greater number of 

hemostatic events equates with better hemostatic activity. The S12-mer and Enoxaparin both 

produced significantly fewer hemostatic events in the same time period (10 ± 2 and 10 ± 2 

respectively; p < 0.05 vs. the control group in posthoc tests), indicative of a bleeding risk. 

Protamine effectively restored hemostatic activity in S12-mer-treated animals (17 ± 2 

hemostatic events; p < 0.05 vs. S12-mer without protamine).

Discussion

Pharmaceutical grade heparins are mostly isolated in bulk from the mucosa of porcine 

intestines, a process that is frequently not performed under Good Manufacturing Practice 

(GMP) guidelines. Recently, the presence of an over-sulfated chondroitin sulfate impurity in 

unfractionated heparin was the direct cause of at least 90 deaths in the recipients of the 

contaminated UFH [16, 18, 41]. Indeed, this number could have been a gross underestimate 

of the true number of fatalities, given the known infrequency with which drug adverse 

events are reported to Regulatory agencies. This 18kD impurity has also been documented 

to be present in LMWHs [42]. Other concerns have been raised with naturally occurring 

heparins, such as the theoretical risk of contamination by the BSE agent in heparins of 

bovine origin. However, since no documented cases of variant Creutzfeld-Jakob disease 

transmitted by heparin have been documented, and in response to the need to diversify the 

source of naturally occurring heparins, the re-introduction of bovine heparins has recently 

been proposed [43]. These problems have therefore accentuated the need to develop 

synthetic heparins for human usage. At present, the only completely synthetic heparin 

analogue available is Fondaparinux sodium (Arixtra™). Despite its advantages, 

Fondaparinux also has certain drawbacks; its short chain polysaccharide structure lacks 

some of the other ‘off target’ pharmacologic benefits of longer chain heparins, and its long 
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half-life and strong dependency on renal excretion, as well as the lack of a specific 

anticoagulation reversal agent have limited its use in certain clinical situations.

In this study, we characterized the anticoagulant and antithrombotic profile of a homogenous 

synthetic heparin analogue ‘S12-mer’, the structure of which we have previously described 

[33]. Compared to Enoxaparin, S12-mer displayed superior anti-FXa activity in a purified 

system with a similar anticoagulant activity in plasma. Differences in activity in global 

coagulation assays are most likely due to the fact that LMWHs are a heterogeneous mixture 

that maintain some anti-thrombin as well as anti-FXa activity. Nonetheless, in vivo, S12-mer 

effectively inhibited venous thrombosis to a similar extent as Enoxaparin, with a similar 

bleeding profile.

This compound was designed in part to have a sufficient length that would promote high 

protamine binding; previous work by our group showed that a minimum of 12 saccharide 

residues are needed for effective reversal with protamine [33]. It is somewhat paradoxical 

that heparin’s antidote protamine is itself an anticoagulant. Specifically, protamine appears 

to exert its anticoagulant affect by inhibiting the activation of Factor V [40]. Thus, accurate 

dosing of protamine in an exact molar ratio to the specific heparin is essential, as excess 

protamine could lead to further anticoagulation. These data suggest that dosage of an equal 

molar ratio (1:1) of protamine to S12-mer will effectively reverse its anticoagulant effects. 

The reversibility of the S12-mer was demonstrated in vivo both in thrombosis and 

hemostasis assays; in a venous thrombosis assay, reduction in fibrin formation was seen 

with S12-mer administration, which was restored to near control levels by protamine 

administration (Figure 5B). Similarly, in a bleeding assay, the hemostatic response was 

restored with protamine administration following S12-mer treatment (Figure 6). There was a 

slight beneficial effect of S12-mer plus protamine on reducing platelet accumulation 

compared with S12-mer alone; though not statistically significant, this may indicate a 

profound effect of protamine on platelet accumulation in a venous system.

The S12-mer described herein offers the advantages of Fondaparinux, a single molecule 

compound with anticoagulation efficacy, but with protamine reversibility. Another potential 

advantage of the S12-mer lies in its short length compared to UFH species, for which longer 

lengths are considered to cause heparin-induced thrombocytopenia (HIT), a serious 

complication of heparin therapy [44]. Like Fondaparinux, for which the short length is 

reasoned to preclude formation of large molecular complexes with platelet factor-4, 

subsequently attracting antibodies that stimulate platelet activation and clearance [44, 45], 

the S12-mer should have a minimal risk for inducing HIT. However, this potential 

advantage requires further investigation.

Annually in the United States, it is estimated that 300,000–900,000 people are affected by 

VTE [46, 47]. Almost half of all events occur within 24 hours of a hospital stay or surgery, 

and prophylaxis with LMWHs or Fondaparinux has become the standard of care [21, 48]. 

Despite the advent of the direct oral anticoagulants that target factor Xa or thrombin, the 

need for injectable rapid acting, shorter half–life reversible heparins with a reliable and 

reproducible manufacturing source is likely to persist.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights for Review

• This paper characterizes the in vitro and in vivo anticoagulant properties of a 

novel, synthetic homogenous heparin, referred to here as ’12-mer’

• In vitro, the molecule has similar anti-Xa activity as the comparator LMWH, 

Enoxaparin.

• In vivo, S12-mer inhibited venous thrombosis to a similar extent as Enoxaparin, 

with similar bleeding profiles

• The 12-mer displays significant reversibility with protamine in vitro and in vivo.
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Figure 1. Chemical structures of synthetic 12-mers, enoxaparin and unfractionated heparin
Panel A shows the structures of Super (S)12-mer and control (C)12-mer. Panel B shows the 

representative structures of disaccharide repeating unit of enoxaparin (N+M ≈ 9) and 

unfractionated heparin (M+N ≈ 32).
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Figure 2. Anti-factor Xa activity of various heparins
Human antithrombin (200 nM) was incubated with varying amounts of Fondaparinux (*), 

UFH (■), Enoxaparin (◆), S12-mer (▲) or control 12-mer (●) with (open symbols) or 

without (closed symbols) 2 µM protamine sulfate in HBS/PEG/Ca2+ buffer for 5 minutes at 

room temperature followed by the addition human FXa (5 nM). The reaction was initiated 

by the addition of FXa substrate (200 µM). FXa activity was monitored as a function of 

amidolytic cleavage of the FXa substrate and plotted as % FXa activity vs. control. Data are 

shown as the mean ± SD (N=3).
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Figure 3. Effects of S12-mer and LMWH (Enoxaparin) on thrombin generation in platelet poor 
plasma
Varying amounts of S12-mer (A) or LMWH (B) were added to contact pathway-inhibited 

and citrated platelet poor plasma. Thrombin generation was initiated with TF (5 pM) and 

phospholipid (4 µM) and monitored by cleavage of the fluorogenic substrate Z-GGR-AMC 

(416 µM). Data are shown as the mean of three independent measurements.
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Figure 4. Protamine reversibility of S12-mer in platelet poor plasma
Platelet poor plasma containing protamine alone (A) or two concentrations of 12-mer (B) 

337 nM, C) 156 nM that were incubated with an equimolar or 2-fold molar excess of 

protamine. Thrombin generation was initiated with TF (5 pM) and phospholipid (4 µM) and 

monitored via cleavage of the fluorogenic substrate Z-GGR-AMC (416 µM). Data are 

shown as the mean of three independent measurements.
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Figure 5. S12-mer effects on clot formation
S12-mer was titrated in the absence (A) or presence of an equal molar or 2-fold molar 

excess protamine (B) in contact pathway inhibited whole blood and subjected to 

thromboelastographic analysis after a 5pM TF stimulus. Data are presented as the mean ± 

SD (N=3 individuals).
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Figure 6. In vivo thrombosis assay
Graphs of normalized relative intensities for fluorescently labeled (A) platelets and (B) 

fibrin in a murine femoral vein electrolytic injury model of thrombosis, measuring thrombus 

localized fluorescence every 2 minutes over a 60-minute course after thrombus induction; n 

= 6 animals per treatment group. Each line represents the average of 6 experimental runs; 

error bars are standard deviations. For the fibrin data (B), the lower two lines (S12-mer and 

LMWH (Enoxaparin)) showed statistical reductions in fibrin accumulation at 60 minutes (p 

< 0.001), in comparison to the other groups (controls and S12-mer + protamine). 

Abbreviations in legends are as defined in the text; Prot = protamine.
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Figure 7. In vivo hemostasis assay
Graph of the number of hemostatic recurrences following repeated clot dislodgement from 

the transected saphenous vein in mice, over a 30-minute interval; n = 6 animals per 

treatment group. S12-mer and LMWH (Enoxaparin) were found to have similar increased 

numbers of hemostatic events in comparison to the control (vehicle) group and to the S12-

mer group treated with protamine (p<0.05). Abbreviations in legends are as defined in the 

text; horizontal bars represent the average for each group.
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Table 2

TEG parameters for S12-mer effects on clot formation.

Super 12-mer (nM) R (min) Angle (°) MA (mm)

600 20.2 ± 3.8 28 ± 11 54 ± 10

300 15.9 ± 2.2 31 ± 10 55 ± 11

150 12.4 ± 1.8 42 ± 11 58 ± 9

0 7.8 ± 0.9 56 ± 5 65 ± 6
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Table 3

TEG parameters for protamine reversibility heparinoid effects on clot formation.

Super 12-mer (12-
mer)

R (min) Angle (°) MA (mm)

Control 8.4 ± 0.9 53 ± 5 63 ± 6

600 nM 12-mer 13.9 ± 1.6 30 ± 6 52 ± 5

12-mer + 600 nM Protamine 9.6 ± 1.8 44 ± 5 59 ± 4

12-mer + 300 nM Protamine 13.5 ± 4.15 38 ± 12 53 ± 7
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