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Abstract

Background—Sirolimus, an immunosuppressant agent used in renal transplantation, can prevent 

allograft rejection. Identification of the therapeutic index (ratio of minimum toxic concentration to 

minimum therapeutic concentration) for immunosuppresants is necessary to optimize the care of 

patients and set standards for bioequivalence evaluation of sirolimus products. However, the 

therapeutic index for sirolimus has been inconsistently defined, potentially due to inconsistencies 

in sirolimus exposure-response relationships.

Methods—The authors used retrospective therapeutic drug monitoring data from the electronic 

health records of patients treated in a tertiary healthcare system from 2008 to 2014, to: 1) develop 

a population pharmacokinetic model, 2) use the model to simulate sirolimus concentrations, and 3) 

characterize the exposure-response relationship. Using Wilcoxon rank-sum and Fisher’s exact 

tests, the authors determined relationships between sirolimus exposure and adverse events 

(anemia, leukopenia, thrombocytopenia, hyperlipidemia, decline in renal function) and the 

composite efficacy endpoint of graft loss or rejection.

Results—The developed 2-compartment population pharmacokinetic model showed appropriate 

goodness of fit. In a late-phase (>12 months), post-renal transplant population of 27 inpatients, the 

authors identified statistically significant relationships between 83 simulated peak and trough 

Corresponding author: Michael Cohen-Wolkowiez, Duke Clinical Research Institute, 2400 Pratt Street, Durham, NC 27705, USA; 
phone: +1-919-668-8812; Fax: 919-681-9457; michael.cohenwolkowiez@duke.edu. 

Conflicts of Interest
For the remaining authors none were declared.

HHS Public Access
Author manuscript
Ther Drug Monit. Author manuscript; available in PMC 2017 October 01.

Published in final edited form as:
Ther Drug Monit. 2016 October ; 38(5): 600–606. doi:10.1097/FTD.0000000000000313.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304667495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sirolimus concentrations and outcomes: graft loss or rejection (p=0.018), and decline in renal 

function (p=0.006), respectively.

Conclusions—Use of therapeutic drug monitoring results and pharmacokinetic modeling 

permitted correlation of sirolimus concentrations with graft loss or rejection, and decline in renal 

function. However, the method was limited in its assessment of other adverse events. To better 

evaluate sirolimus exposure-response relationships, the method should be applied to a larger 

sample of newly-transplanted patients with a higher propensity toward adverse events or efficacy 

failure.
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INTRODUCTION

Sirolimus is an immunosuppressive agent that inhibits antibody production and T-

lymphocyte activation and proliferation. Approved by the Food and Drug Administration 

(FDA) since 1999, sirolimus is indicated for the prevention of allograft rejection in patients 

13 years and older with a transplanted kidney.1 According to existing evidence, sirolimus is 

efficacious as a sole immunosuppressive agent in preventing organ rejection, when 

administered at doses of 1 to 4.2 mg/day.2,3 The product label currently recommends doses 

of 1 to 6 mg/day, with up to 7 mg/day administered to those with high immunologic risk.3

Despite a narrow recommended dosing range, previous studies indicate significant intra- and 

inter-individual variability in sirolimus pharmacokinetic (PK) parameters and resultant 

exposures in patients on chronic treatment with sirolimus.4,5 Because of the observed 

variability in sirolimus exposure, current recommendations suggest dose titration to achieve 

trough concentrations of 12 to 24 μg/L, often dependent on time since transplantation.2,3,6 

Importantly, titration of sirolimus dosing based on trough concentrations alone does not take 

into account drug toxicity. Previous investigators have identified significant adverse events 

(AEs), including bone marrow suppression, hyperlipidemia, diabetes mellitus, renal 

dysfunction, pneumonitis, and others, that occur despite administration within the 

recommended dose range and achievement of therapeutic sirolimus concentrations.7-12

Previous investigators have not consistently defined the therapeutic index (the ratio of 

minimum toxic concentration to minimum therapeutic concentration) of sirolimus.2-4 The 

current FDA product specific draft guidance for sirolimus states that the range between 

sirolimus therapeutic and toxic whole blood concentrations is narrow. However, a definitive 

conclusion on the therapeutic index was not reported. Therefore, we aimed to determine 

whether the use of sirolimus concentrations obtained through therapeutic drug monitoring in 

a cohort of renal transplant patients could be used to develop a population PK model for 

sirolimus. We aimed to use such a model to link simulated exposures with efficacy or AEs in 

the same cohort of patients, and to determine whether this combined methodology will 

better define sirolimus exposure-response relationships that could help define the therapeutic 

index of sirolimus.
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MATERIALS AND METHODS

Database/Patient population

We included patients ≥18 years of age treated with oral sirolimus to prevent allograft 

rejection following renal transplantation. Eligible participants were inpatient or seen at an 

outpatient clinic in the Duke University Health System between January 2008 and July 

2014, and had at least 1 recorded sirolimus concentration in the medical record. We 

excluded patients without any electronically available dosing records. We identified 

qualifying patients and data using an electronic data warehouse containing information from 

all operational systems serving the medical center’s hospitals and clinics. We reviewed and 

extracted the following data from the data warehouse: patient demographics, drug levels, and 

other lab results. We verified drug dosing and changes in dosing, concomitant medications 

of interest, safety data, and clinical outcomes through direct review of electronic medical 

records. The Duke University Institutional Review Board and FDA Research Involving 

Human Subjects Committee approved the study with a waiver of informed consent.

Standard procedures for analysis of sirolimus blood samples

Sirolimus samples obtained within the Duke University Health System were collected in 

whole blood EDTA containers and transferred to the Mayo Clinic Laboratories in Rochester, 

MN. Blood samples underwent protein precipitation, and the resultant supernatant was 

analyzed by high performance liquid chromatography-tandem mass spectrometry. The lower 

limit of quantification for the assay was 2 ng/mL and the precision of the assay was <10% 

throughout the analytical range. (Mayo Clinic Laboratories, personal communication)

Population PK analysis

We analyzed sirolimus whole blood PK data with a nonlinear mixed effects modeling 

approach using the software NONMEM (version 7.2, Icon Solutions, Ellicott City, MD, 

USA). We used first-order conditional estimation method with interaction (FOCE-I) for all 

model runs and performed run management using Pirana (version 2.8.1).13 We then 

performed visual predictive checks and bootstrap methods with Perl-speaks-NONMEM 

(version 3.6.2).14 We performed data manipulation and visualization using the software 

STATA (version 13.1, College Station, TX), R (version 3.0.2, R Foundation for Statistical 

Computing, Vienna, Austria) and RStudio (version 0.97.551, RStudio, Boston, MA, USA) 

packages, including lattice, Xpose and ggplot2.15

We evaluated one- and two-compartment PK models in NONMEM. We assessed between-

subject variability (BSV) for PK model parameters using an exponential relationship. In 

addition to BSV, we assessed between-occasion variability (BOV) for PK model parameters 

using an exponential relationship. Proportional, additive, and combined (proportional plus 

additive) residual error models were evaluated.

We visually inspected the potential effect of covariates on PK parameters by creating scatter 

and box plots (continuous and categorical variables, respectively) for the following 

covariates: age, body weight, serum creatinine, hematocrit, gender, race, and presence of ≥1 

concomitant medication of interest with known PK interaction with sirolimus (i.e., 
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diltiazem, cyclosporine, erythromycin, ketoconazole, rifampin, verapamil). We normalized 

continuous covariates to the population median. For continuous covariates, we used power 

function to describe covariate relationships on PK parameters. We used a forward inclusion 

(p<0.05 and delta objective function value (Δ OFV) >3.8) and backward elimination 

(p<0.001 and ΔOFV >10.8) approach to evaluate statistical significance of relevant 

covariates. Missing clinical data was imputed using the last value carried forward.

Population PK model evaluation and validation

During the population PK model building process, successful minimization, diagnostic plots, 

plausibility and precision of parameter estimates, as well as objective function and shrinkage 

values, were used to assess model appropriateness. We evaluated parameter precision other 

than the absorption rate constant and lag time for the final population PK model using non-

parametric bootstrapping (1000 replicates) to generate the 95% confidence intervals for 

parameter estimates. We performed standardized visual predictive check, using the final 

model to generate 1000 Monte Carlo simulation replicates per time point of sirolimus 

exposure. We then compared subject-level simulated results with observed values by 

calculating and plotting the percentile of each observed concentration in relation to its 1000-

simulated observations.16 The dosing and covariate values used to generate the simulations 

in the visual predictive check were the same as those used in the study population.

Relationship between sirolimus exposure and efficacy or AEs

We identified the following AEs of interest based on the drug FDA label: anemia (male: 

hematocrit <0.39; female: hematocrit <0.35), thrombocytopenia (platelets <150 ×103/ml), 

leukopenia (white blood cell count <3.2 ×103/ml), hypercholesterolemia (total cholesterol 

>199 mg/dL), hypertriglyceridemia (triglycerides >149 mg/dL), and decline in renal 

function (25% increase in serum creatinine during an admission or clinician documentation 

noting worsening function). Efficacy was assessed through the composite outcome of graft 

loss, and biopsy-proven rejection. We used our population PK model to simulate sirolimus 

exposure, including concentrations at the time of hematologic or cholesterol lab draws, and 

maximum, trough, and average concentration for each day of an AE assessment (i.e., lab 

draw) or efficacy diagnosis (i.e., serum chemistry or biopsy-proven rejection). Simulations 

accounted for any changes in drug dosing during hospitalization. For each inpatient, we 

characterized observed and simulated concentrations as meeting goal, less than goal, or 

greater than goal according to the timing of the simulated sirolimus exposure in relationship 

to the time since transplant. More specifically, for patients 0 to <4 months post- transplant, 

an acceptable goal trough concentration is 10 to 15 μg/L; from 4 to 12 months post-

transplant, the goal is 16 to 24 μg/L; and for patients beyond 12 months post-transplant, the 

goal is 12 to 20 μg/L.3 Patients without a well-defined date of transplant in the electronic 

health record (EHR) were assigned to the late post-transplant group (>12 months).

Because we could not confirm patient-reported dosing for outpatients, we did not simulate 

exposure in this population. However, we determined whether individually observed 

concentrations were within the goal range based on time since transplant.
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For inpatients and outpatients, we performed Wilcoxon rank sum analyses, Fisher’s exact 

tests, and linear regression where appropriate, to determine the distribution of specific 

efficacy or AEs among patients who met, those who were above, and those who were below 

goal concentrations. Finally, we performed a sensitivity analysis using similar statistical 

methods. In this analysis, we used lower thresholds to define anemia (hematocrit ≤ 0.25) and 

thrombocytopenia (≤ 100 × 103/ml) to determine whether those predefined thresholds 

influenced our results.

RESULTS

Inpatient cohort characteristics and observed data

A total of 83 sirolimus blood concentrations were available from 27 adult renal transplant 

patients who were admitted to a Duke University Health System hospital during the study 

period (Table 1). On average, patients in our cohort were 49 months post-transplant (median 

[range] 34 months [0-202]), and the median sirolimus dose was 2 mg/day (range [1, 6]) for 

observed concentrations (Table 1). We identified a wide range of concentrations collected 

during the study period (median [range] 7.9 ng/mL [2.5-64.4]); however, 3 concentrations 

were below the limit of quantification and not included in the analyses. Only 2 inpatients 

were also taking ≥1 of the CYP3A4/5 interacting drugs of interest during the study period. 

Based on recommended sirolimus concentrations according to time since transplant, 9 

patients (15 [18%] concentrations) had observed concentrations within the goal range. 

Twenty-four patients (61 (73%) concentrations) were below the goal range, and 5 patients (7 

(8%) concentrations) were above the goal range. Only 1 patient had all concentrations within 

the goal range; 20 patients had all concentrations below or within the goal concentration 

range; the remaining 6 patients each had some concentrations below, within, and above the 

target range.

Outpatient cohort characteristics and observed data

During the study period, a total of 513 sirolimus concentrations were available from 96 

patients seen in a Duke University Health System outpatient clinic, and the median [range] 

time since transplant was 59 months [1-237]. Based on recommended sirolimus 

concentrations according to time since transplant, 29 patients (47 (9%) concentrations) were 

within the goal range, 75 patients (434 (84%) concentrations) were below the goal range, 

and 8 patients (8 (2%) concentrations) were above the goal range. Twenty-four (5%) 

observed concentrations (from 16 patients) were below the limit of quantification and were 

not included in further analyses.

Population PK model development

Based on visual inspection of PK data and review of the literature, we chose a two-

compartment model with first-order absorption and elimination. Because few samples from 

our population were obtained within the first 2-3 hours after dose, thereby precluding 

characterizing the absorption phase following drug administration, we used the parameter 

estimates of the absorption rate constant (2.18 h−1) and lag time (0.24) from a previous 

model and fixed them in our model.17 The model adequately described the observed 

sirolimus concentrations from the inpatient cohort. On preliminary scatter plots, BSV in 
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clearance appeared to be influenced by covariates, age and body weight. During the 

univariable covariate screen for clearance, we observed a statistically significant drop in 

OFV with the age covariate (see Table, Supplemental Digital Content 1, which summarizes 

the covariate model building process for sirolimus). The goodness of fit also improved after 

we included age in the final model. Scatter plots suggested no statistically significant 

correlations between covariates and volume of distribution.

Population PK model evaluation

The final model parameter estimates had good precision (Table 2). The relative standard 

errors around the parameter point estimates were 9 to 39%. The median bootstrap estimates 

were within 5% of original population estimates for all parameters. The 2.5th and 97.5th 

percentiles were narrow for all the parameters except BOV, which had a wider range. There 

were no obvious trends or model misspecification identified in the goodness of fit diagnostic 

plots for the final model (see Figure, Supplemental Digital Content 2, which expresses the 

final population PK model diagnostic plots). The standardized visual predictive check 

revealed a good fit of the observed sirolimus concentrations, as evidenced by the uniform 

distribution of calculated observation percentiles for each time point and only 9.8% of 

observed concentrations outside of the 90% prediction interval.

Relationship between observed or simulated sirolimus exposures and efficacy or AEs 
among inpatients and outpatients

Our analyses identified 2 notable findings in the inpatient population. Graft loss or rejection 

was more common among those with simulated trough concentrations above goal compared 

to those with simulated trough concentrations below goal (coeff [95% confidence interval]: 

0.32 [0.16, 0.48]). Decline in renal function was more common among those with simulated 

peak concentrations at the recommended trough goal compared to peak concentrations 

below the goal range (0.11 [0.04, 0.18]). Initially, we observed statistically significant 

associations between sirolimus concentrations and anemia (p=0.017 for observed 

concentrations) or thrombocytopenia (0.029 for observed, 0.040 for simulated trough, 0.002 

for simulated average concentrations); however, the associations were no longer statistically 

significant when we further evaluated these relationships with sensitivity testing using lower 

thresholds for classification of anemia and thrombocytopenia. We did not identify other 

statistically significant associations between the distribution of AEs and drug concentrations. 

We found no statistically significant associations between concentrations and AEs among 

outpatients.

DISCUSSION

Our combined method proved useful in the development of a population PK model using 

EHR data, simulation of drug exposure, and determination of some exposure-AE 

relationships in our population. Our PK model provided reasonable parameter estimates of 

volume of distribution and clearance compared to those in the literature. Observed 

differences between our parameter estimate for volume of distribution and existing 

estimates, may be related to unmeasured differences in population characteristics, including: 

1) administration with food and food content, 2) administered drug formulation, and 3) body 
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fat composition, given the high partition coefficient of sirolimus that increases the likelihood 

of a higher volume of distribution with high body fat composition.18-21 Differences in 

apparent oral clearance between our population and others may be related to variability in 

cyclosporine use and exposure, differences in extent of CYP3A4 and CYP3A5 expression, 

other disease states (e.g., liver disease and cancer), and other drug interactions.18,19,22,23 

Unlike other studies that have developed population PK models, we identified age as an 

important covariate for apparent clearance. This finding may reflect the relatively more 

advanced median age of patients in our study (59, range 29 to 72 compared to 48.6, range 20 

to 69), and potential influences of age on CYP3A4 activity.17,24,25

We successfully used our model to simulate drug exposures not generally identified with 

routine therapeutic drug monitoring. While the majority of patients in our cohort were 

without adverse event despite concentrations below goal range, our combined methodology 

allowed us to identify increased frequency of graft loss or rejection among those with 

simulated trough concentrations above compared to those at goal. Given the average time 

since transplant of patients in our cohort, we suspect the observed relationship between 

elevated concentrations and the composite efficacy outcome, reflects patients with graft 

dysfunction due to chronic allograft nephropathy who may have other reasons for poor drug 

clearance (i.e., liver dysfunction). Alternatively, such patients may have recently transitioned 

from a calcineurin inhibitor to sirolimus in order to attempt graft rescue or to minimize 

additional nephrotoxicity, but have not yet achieved target dosing.26-28

We also identified a relationship between decline in renal function and peak sirolimus 

concentrations within recommended trough goals. The association between inadequate 

immunosuppression and decline in renal function for renal transplant patients is well 

documented and often represents graft dysfunction secondary to rejection.29-31 Conversely, a 

decline in renal function associated with high sirolimus concentrations may represent drug 

toxicity.32 Although previous studies have documented limited renal toxicity associated with 

sirolimus, few have evaluated toxicity with sirolimus concentrations or determined the effect 

of sirolimus independent of cyclosporine.32,33 Our observed association between peak 

concentrations and decline in renal function is a unique finding in our data. Toxicity of 

immunosuppressants and other drugs (e.g., antibiotics) is usually attributed to: 1) cumulative 

exposures, 2) average exposures, or 3) area under the concentration time curves.34,35 

Although many potential reasons exist for renal dysfunction in hospitalized adult patients, a 

true relationship between peak sirolimus concentrations and nephrotoxicity, particularly in 

patients in the late transplant phase, could impact the post-dose timing of therapeutic drug 

monitoring.

Although useful in some aspects, our combined methodology was limited in its ability to 

fully characterize the exposure-AE relationship for all AEs of interest. For example, 

application of our method to hematologic AEs likely produced spurious results. We only 

observed relationships in the inpatient population with a relatively small sample size and 

numerous other reasons for thrombocytopenia and anemia (Figure1); results were no longer 

present with sensitivity testing; and the directionality of results were contradictory and 

appeared biologically implausible, or confounded by other clinical factors. Further, much of 

the existing evidence suggests that hematologic abnormalities are most commonly present in 
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the first 2 weeks after transplant and would be much less likely in our late-transplant 

population.36 Our use of electronic health records also limited our ability to identify other 

potential AEs such as gingival hyperplasia or evaluate other likely relevant covariates (e.g., 

serum albumin) in our PK model.

Estimation of the sirolimus exposure-response relationships for all known sirolimus AEs 

was likely limited by our study population. Although reflective of prescribing practice for 

sirolimus at our hospital during the specified time period, our sample size was small and 

mostly >1 year post transplant. These factors likely decreased the propensity to observe 

AEs, limited our ability to evaluate effects of interacting drugs in our PK model, and limited 

the number of patients with efficacy failure. Second, our study does not account for trends 

over time in sirolimus exposure that may be more definitively associated with AEs. Next, we 

targeted trough concentrations identified in the product label and literature for patients not 

receiving concomitant immunosuppression; goal concentrations used in real-world practice 

are often dependent upon both the time since transplant and the baseline risk for rejection of 

the individual patient.(3) Based on retrospective review, we were unable to identify 

individual patient risk status. Given the limited number of patients who had a sirolimus 

concentration and were therefore included in our cohort, our population may be biased 

towards patients suspected to have sirolimus concentrations out of the targeted range. 

Further, the goals for peak and average sirolimus concentrations have not previously been 

established; comparison of these values to trough values allowed a consistent point of 

reference, but may not reflect the most relevant point of reference for peak and average 

concentrations, given variable effects of drug PK on each of these values.

CONCLUSIONS

A combined approach using therapeutic drug monitoring and other data from the EHR, and 

PK modeling identified important exposure-AE relationships and revealed that the majority 

of patients did well with concentrations below goal range, but was limited in its ability to 

characterize all exposure-response relationships. If applied to a larger cohort who is at high 

risk for drug toxicity and efficacy failure, our combined approach may prove to be an 

efficient and inexpensive way to establish the therapeutic index of drugs, particularly when 

prospective data is limited.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplots of sirolimus exposure in patients with and without anemia from inpatient data (A), 

simulated data (B), and outpatient data (C). Boxplots of sirolimus exposure in patients with 

and without thrombocytopenia from inpatient data (D), simulated data (E), and outpatient 

data (F). Boxplots of sirolimus exposure in patients with and without graft loss or rejection 

from inpatient data (G) and simulated data (H). Boxplots of sirolimus exposure in patients 

with and without decline in renal function from inpatient data (I) and simulated data (J). 

Sirolimus exposure was defined as measured sirolimus concentrations on the day of AEs in 
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inpatient and outpatient data. Sirolimus exposure was defined as average sirolimus 

concentration on the day of AE in simulated data.
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Table 1

Inpatient demographics

Variable Median (range) or N (%)

N 27

Age (years) 56 (31 - 67)

Body weight (kg) 74 (51 - 124)

Female 12 (44)

Race

 White 16 (59)

 Black or African American 10 (37)

 Unknown or not reported 1 (4)

Sirolimus dose (mg/day) 2 (1, 6)

Time post-transplant (months) 34 (0-202)

Hematocrit 0.30 (0.22-0.44)

Platelet count (× 103/ml) 179 (39-570)

White blood cell count (× 103/ml) 7.2 (1.2-22.3)

Serum creatinine (mg/dl) 2.0 (0.7-9.0)
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Table 2

Parameter estimates for the final sirolimus population PK model

Parameter Estimate RSE
(%)

Parameter estimates reported

in the literature
a,b

Structural Model

Apparent oral clearance (L/h)
c 7.4 9 14.1 24; 8.91 17

Central volume of distribution (L) 128 29 219 24; 112.9 17

Apparent distributional clearance (L/h) 27.8 39 37.8 24

Peripheral volume of distribution (L) 278 29 297 24; 45217

Exponent of age effect on clearance
c −1.02 28

Absorption rate constant (1/h)
2.18

d - 2.18 17

Absorption lag time (h)
0.24

d - 0.24 17

Between subject variability (%CV)

Apparent oral clearance (L/h) 22.7 32 23.8, 22; 13.2 17; 48.424

Between-occasion Variability (%CV)

Apparent oral clearance (L/h) 26.1 36

Residual Variability (%)

Proportional error 33.8 14

a
Values from reference 18 are presented as mean values

b
Renal transplant patients

c
Apparent oral clearance (L/h) = (Individual age in years/Median age of the population)

d
Parameter values for absorption rate constant and lag time were obtained from a previously published model and fixed in our model
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