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Abstract This paper presents a fast smoothed particle
hydro-dynamics (SPH) simulation approach for gaseous
fluids. Unlike previous SPH gas simulators, which solve
the transparent air flow in a fixed simulation domain, the
proposed approach directly solves the visible gas without
involving the transparent air. By compensating the density
and force calculation for the visible gas particles, we com-
pletely avoid the need of computational cost on ambient air
particles in previous approaches. This allows the computa-
tional resources to be exclusively focused on the visible gas,
leading to significant performance improvement of SPH gas
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simulation. The proposed approach is at least ten times faster
than the standard SPH gas simulation strategy and is able to
reduce the total particle number by 25–400 times in large
open scenes. The proposed approach also enables fast SPH
simulation of complex scenes involving liquid–gas transi-
tion, such as boiling and evaporation. A particle splitting and
merging scheme is proposed to handle the degraded reso-
lution in liquid–gas phase transition. Various examples are
provided to demonstrate the effectiveness and efficiency of
the proposed approach.

Keywords Smoothed particle hydrodynamics ·
Gas simulation · Adaptive particle splitting and merging ·
Phase transition

1 Introduction

The smoothed particle hydrodynamics (SPH) method has
become increasingly popular for simulating fluid motion
for a wide range of natural phenomena and special effects.
Yet, despite its popularity in liquid simulation, much less
research has been reported in the literature on SPH simu-
lation of gaseous fluids. Liquid is often considered to be
incompressible in simulation, though gas usually behaves
far more compressible. The time stepping condition in SPH
methods requires much smaller time step simulating highly
incompressible fluids than compressible fluids. This makes
the SPH approach potentiallymore promising for gas simula-
tion in a performance perspective. However, SPH simulation
of gaseous fluids has not been sufficiently explored.

The challenge associatedwith fast SPHgas simulation can
be better understood by examining a simple example, a plume
of smoke rising in the air.Using a standard SPHsimulator, the
air flow is simulated within a fixed domain and the visible
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plume is represented by a density field that flows with the
transparent air. The simulation domain is usuallymuch larger
in its extent than the space occupied by the actual evolving
plume; therefore, the majority of the computational cost is
spent on simulating the invisible air. The computational cost
required to compute the air flow in a large simulation domain
can be prohibitively high, making these approaches difficult,
if not impossible, to use in simulating large, complex scenes
with moving plumes, e.g. a steam train moving through a
field or plumes of chimney smoke billowing in a village.

To address this issue, we propose a novel SPH scheme
for gaseous fluids in which computation is performed only
on the visible gaseous fluids, thus minimizing the simulation
cost on ambient air gas particles. The interpolation error for
the gas density is compensated for by estimating the average
influence of the absent ambient air particles. The missing
interaction between the simulation particles and the absent
ambient air particles is also compensated for by a virtual
pressure that is locally determined based on the current fluid
dynamics and the atmosphere pressure. We demonstrate that
such an approach is able tominimize the unnecessary compu-
tation on ambient gas particles, while significantly improving
the runtime performance of SPH gas simulation. The new
method also enables fast SPH simulation of complex scenes
that involve liquid–gas phase transition. A robust particle
splitting andmerging strategy is proposed for liquid–gas tran-
sition situations; we show that phase transition phenomena
can be efficiently captured in a unified SPH framework. We
highlight the performance benefits (up to two orders of mag-
nitude) of this approach on several large-scale phenomena as
shown in Figs. 5, 4, 6, and 7.

2 Previous work

Recent SPH methods [20,22,27], have focused primarily
on liquid simulation. [29] proposed an SPH scheme to cre-
ate and preserve vortical details near moving objects in gas
simulation. However, they fill the whole simulation domain
with particles. In some hybrid methods, SPH gas particles
are generated in selected regions for various reasons, e.g. to
reduce the computational cost of solving high-speed gas flow
[10] and to help track the interface and compute gas-liquid
interaction [4]. Nonetheless, the entire gas domain needs
to be simulated by the grid-based simulator in these hybrid
approaches to achieve high-accuracy simulation results.

SPH simulation generally simulates the entire domain
because particle deficiencies lead to the erroneous interpola-
tion of particle properties, such as density and pressure. To
overcome this degradation of accuracy at rigid boundaries,
SPH simulations often add solid particles, both to avoid par-
ticle penetration and to improve density computation of the
liquid [3,7,19]. For water–air boundaries, ambient air parti-

cles have been added through a serialized sampling process
to improve the density and surface tension calculation of the
liquid [15,25]. Compared to the interaction between water
particles, the force between air and water is largely negli-
gible and is not included in their liquid-simulation model.
However, for gas simulation, the interaction between the vis-
ible plume and the surrounding ambient air is important and
cannot be ignored.

Adaptive SPH simulations have previously used the split-
and-merge technique for SPH particles. In [1,13,28] SPH
particles were bisected into different levels and particles
at the same level were merged on demand. These meth-
ods achieve good results in liquid simulation, but require
serialized adaptive sampling to maintain a uniform particle
distribution and improve stability. More recently [26] pro-
posed a two-scale particle scheme extending the processable
density ratio, and [23] blended different levels of particles
to achieve a smoother transition during splitting and merg-
ing. Their methods involve blending of different levels of
particles and relaxing the clustered particles after splitting
during a certain time period. This leads to better stability, but
comes at an extra computational cost in the splitting process.
Although these adaptive approaches adjust particle sizes to
reduce the number of ambient air particles being simulated,
the simulation cost still remains untenably high for very large
simulation domains.Our approach is considerably faster than
the previous methods that simulate ambient air particles,
because it focuses the computing resources only on the vis-
ible gaseous fluids and estimating the average influence of
the surrounding air. Such estimation is performed by com-
pensating for the lost gas density and interaction forces that
would be exerted by the unsimulated ambient air particles.

There are other works that are also partially related to our
approach. [12] and [14] achieved large-scale liquid simula-
tion with Lagrangian method. In [2], sparse particles were
allowed in a vortex-based simulation scheme. [5] also tried
to achieve similar goal of sparse representation using vortex
sheet to represent smoke. Virtual particles for interface han-
dling are also used in works involving solid simulation, such
as in [21]. In [16,17] optimizationmethods are used to reduce
simulation errors. In [11] the velocity field is decomposed
and only a small part of it is simulated using high-resolution
grid, achieving faster simulation. Recently [18] proposed a
unified representation focusing on simulating all types of flu-
ids, in which constrains and weak cohesive forces are used to
maintain particle density in cases of particle deficiency; how-
ever, they involved neither long-ranged movement of smoke
in large scenes nor phase transition in the work.

3 Fast SPH gas simulation

In gas simulation, standard SPH simulators (as shown in
Fig. 1a) fill the entire simulation domain with ambient air
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Fig. 1 a The standard approach fills the simulation domain with ambi-
ent air particles (blue). b Our approach removes these ambient air
particles and instead adds compensation forces to the gas particles (red)

particles. This is impractical for large or unbounded scenes,
where large numbers of particles are needed to fill the simu-
lation domain. Yet simply removing some of these particles
causes particle deficiency. This is not an issue for free-surface
liquids (liquid–air systems), where air particles are usually
ignored without consequence, since the liquid and air den-
sities differ so greatly. Atmospheric forces are negligible
compared to the liquid particle interaction, and the miss-
ing air particles do not cause noticeable errors in calculation.
These particle deficiencies do, however, pose serious prob-
lems for gaseous simulation with SPH. The forces between
the plume and the surrounding air are not negligible as in liq-
uid simulations, but are crucial in determining the movement
of simulated gas particles.

In order to achieve high-fidelity visual effects without
filling the entire space with ambient air particles, we must
compensate for the accuracy degradation from particle defi-
ciency. Particle deficiency has two main effects on accuracy:
(1) erroneous density calculation of SPH particles and (2)
missing interaction forces from the ambient air particles.

Following the same work flow as the standard SPH
method, we derive below a fast SPH scheme (illustrated
in Fig. 1b) which only simulates the visible gas and does
not model the surrounding ambient air. We have developed
appropriate compensation formulations for both gas-density
and particle-force calculations. Instead of using a secondary
density field to represent the distribution of the visible gas
plume, we use the SPH gas particles to directly represent the
visible gas; this is also convenient for phase transformation
of particles in liquid–gas phase transitions. Symbols used in
the following derivation of gas simulation can be found in
Table 1.

3.1 Gas density correction

Assuming the ambient air particles are included in the
SPH simulation, the following relations hold for a given
particle i :

Table 1 Definition of symbols in gas simulation

Symbols Meaning

ρ̄i Uncorrected density of particle i

ρi Corrected density of particle i

ρ0 Rest density of particle i

m j Mass of particle j

W (r, h) Smoothing kernel function

∇Wi j Short for ∇i W (ri − r j , h)

ri , r j Position of the i-th, j-th particle

V0 Intermediate variable

pi Pressure of particle i

Ti Temperature of particle i

ni Local normal vector at the particle i

Pa,Cd User defined strength factors

Cb, Dc, Dr User defined coefficients for buoyancy

CN User defined threshold value

ρi =
∑

j

m jWi j +
∑

j ′
m j ′Wi j ′ (1)

0 =
∑

j

m j

ρ j
∇Wi j +

∑

j ′

m j ′

ρ j ′
∇Wi j ′ , (2)

where the index j refers to the SPH particles of interest, the
index j ′ refers to the ambient air particles, ρs denotes the
density of particle s, ms denotes the mass of particle s, and
∇Wst = ∇sW (rs − rt , h) is the gradient of the smoothing
kernel function with support h. We use the standard smooth-
ing kernel functions as in [20]. Equations (1) and (2) both
come from the standard SPH formulation, where Eq. (1) is
the density interpolation and Eq. (2) is a first-order identity
that holds exactly for ideal particle distributions.

If the ambient air particles are simply removed from the
simulation, the second term in Eqs. (1) and (2) will disap-
pear, leading to erroneous results. To correct this error, it
is assumed that a virtual “average” particle k can be placed
nearby to satisfy Eqs. (1) and (2), i.e.:

ρi =
∑

j

m jWi j + mkWik (3)

0 =
∑

j

m j

ρ̄ j
∇Wi j + mk

ρk
∇Wik (4)

InEqs. (3) and (4) the effect of ambient air particles surround-
ing the particle i is compensated for by a virtual “average”
particle k paired with it. We use ρ̄i = ∑

j m jWi j to denote
the uncorrected density value, i.e. the density interpolation
following Eq. (1) without the second term. To determine the
properties of the virtual particle k, it is first assumed that
densities in adjacent particles change gradually in the gas
simulation; the density of particle k is then considered to be
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the same as the interpolated density of particle i , i.e. ρk = ρi .
Then the distance from any virtual particle k to its paired real
particle i is set as a fixed value, which will be discussed later.
Equation (4) contains two vector-valued functions that cancel
each other. The first term in Eq. (4) can be computed directly
and is known for a given particle i . On the right-hand side of
Eq. (4), the direction of the second term must be in line with
the first term. Therefore, we only need to consider the norms
of the two terms in Eq. (4), which can be rewritten as

mk = V0ρk = V0ρi , (5)

where V0 = |−∑
j
m j
ρ̄ j

∇Wi j |
|∇Wik | can be predetermined for

particle i .
Substituting Eq. (5) into Eq. (3), the corrected density of

particle i can be computed as

ρi = ρ̄i

1 − V0Wik
(6)

Equation (6) corrects the density of the SPH particles in the
absence of surrounding ambient air particles. However, for a
more accurate evaluation, the densities of adjacent particles
in Eq. (4) should also use the corrected value ρ j instead of
the uncorrected one ρ̄ j . This leads to the following formulae,
whose detailed proof is given in Appendix A:

mk = V0ρ̄i (7)

ρi = ρ̄i (1 + V0Wik) (8)

In the above calculation, the distance from a virtual particle
k to its paired real particle i is heuristically set as a fixed
value δh, where δ ∈ [0.4, 0.7] usually brings more plausible
results in our experiments. There may be other methods that
allow this distance to vary, but we have found simply fixing
the distance produces sufficiently good results for the SPH
gas simulation.

3.2 Particle force compensation

After removing the ambient air particles from the simulation,
the interaction forces between the simulation particles and
the ambient air particles must also be compensated for. The
missing interaction forces are responsible for three physical
effects: the local force balance, the atmospheric pressure, and
the local gas viscosity. Each of these physical effects requires
that an appropriate compensation be made.

The virtual particles generated for the gas density cor-
rection can be used to compensate the local force balance.
Following the standard SPH formulation, the pressure force
for a given particle i is

Fp,i = −
∑

j

m j

ρ j

pi + p j

2
∇Wi j , (9)

where ps is the gas pressure calculated at particle s. Using
the paired virtual particle k, an extra term is added to Eq. (9):

F̃p,i = −
∑

j

m j

ρ j

pi + p j

2
∇Wi j + mk

ρk

pi + pk
2

∇Wik (10)

Here the interpolated density uses the corrected density com-
puted from Eq. (8), and the pressure is computed from the
ideal gas state function:

p = κ(ρ − ρ0), (11)

where κ is the gas constant, and ρ0 is the gas density at rest.
The atmospheric pressure pushes the gas towards its inner

direction; to simulate this effect, we introduce a normal force.
First, the local normal vector at the particle i is computed as

ni =
∑

j

m j

ρ j
∇Wi j (12)

The normal vector defined above is identical to the first
term in Eq. (2). For those internal simulation particles whose
neighborhoods do not contain any ambient air particles, the
second term in Eq. (2) is zero and, therefore, the norms of
their normal vectors are zero or approximately zero, depend-
ing on the particle distribution. For those simulation particles
that are adjacent to the missing ambient air particles, the sec-
ond term in Eq. (2) is non-zero and, therefore, the norms
of their normal vectors are non-zero as defined by the first
term. Based on this analysis, the atmospheric pressure force
is defined, as

F̃′
p,i = Pani = Pa

∑

j

m j

ρ j
∇Wi j , (13)

where Pa is a user-defined strength coefficient reflecting the
ambient air pressure. The pressure force defined above auto-
matically ensures that the atmospheric pressure is added only
to the particles on the gas boundary since the inner gas par-
ticles have zero norms for their normal vectors.

To account for the effect of the local gas viscosity, we
introduce a damping effect proportional to the particle veloc-
ity as follows:

ãdamp,i = −Cdvi , (14)

where adamp,i is the acceleration of the i-th particle due to the
damping force,Cd is the damping coefficient, and vi denotes
the velocity of particle i . This damping force is applied only
if the norm of the particle normal exceeds a given threshold
value, i.e. |ni | > CN . This is to ensure that the damping effect
is only added to those boundary particles with neighborhood
deficiency.
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3.3 Buoyancy and boundary treatment

The buoyancy force is related to the temperature of SPH gas
particles. Similarly to [6], the temperature of each gas particle
is evolved as

dTi
dt

=
∑

j

m j

ρiρ j
Dc(Ti − Tj )

(ri − r j ) · ∇Wi j

(ri − r j )2 + γ 2 , (15)

where Ts is the temperature of particle s, Dc is the ther-
mal conductivity, and γ 2 � 1 is a small positive number
to avoid computational singularity. For those particles with
|ni | > CN , a radiation term is also applied to simulate the
heat transfer to the missing particles:

dTi
dt

= −Ti/Dr , (16)

where Dr denotes the radiation half time, and lower value
of Dr leads to faster cooling of the corresponding particles.
Then the buoyancy of the gas particle is set to be proportional
to the temperature, i.e.

ãb,i = CbTib, (17)

where ãb,i is the acceleration of the i-th particle due to the
buoyancy force, Cb is the buoyancy coefficient, and b is a
unit vector pointing to the buoyancy direction.

In this work, the rigid boundaries are represented with
boundary particles. The positions of boundary particles are
not affected by gas particles, but they participate in all SPH
calculations in the same way as normal simulation particles,
as in [27].

4 Phase transition between liquid and gas

Using the proposed fast SPH scheme for gas simulation, it
becomes possible to develop an efficient and unified SPH
scheme for complex scenes that involve liquid–gas phase
transition. The density of liquid is often 1000 times higher
than the gas density. When the phase transition occurs, this
high-density ratio causes a drop in simulation resolution and
robustness and ultimately loss of visual plausibility. To pre-
vent this loss of plausibility, this situation requires a proper
particle splitting and merging strategy, which is explained in
the following sections. We combine a pattern-based splitting
scheme originated from [9] and a merging strategy based on
local mass decentration [8] to achieve this goal, and a prac-
tical approach is described in the following subsections to
make these strategies fit for phase-transition simulation.

4.1 Keeping simulation resolution in phase transition

Due to the large density ratio between liquid and gas phases,
the effective volume of an SPH particle will be significantly

Fig. 2 2D examples of particle splitting. Based on a predefined pattern,
e.g. the hexagon pattern shown in a and the square pattern shown in b,
the mother particle (the red node) is split into a set of evenly distributed
daughter particles (the blue nodes). The distance between the mother
particle and the daughter particles is ε. The smoothing radius of the
daughter particles is αh, where h denotes the smoothing radius of the
mother particle

larger in the gas phase if it is directly vaporized from the liq-
uid phase. This leads to degraded simulation resolution. To
overcome this problem, we split the involved liquid particles
before transferring them into the gas phase. To be truthful
to the underlying physics, the change of local mass distri-
bution due to this refinement process must be minimized,
and the global mass and momentum conservation should be
preserved.

As shown in Fig. 2, themother particle (denoted by the red
node) is split into a set of daughter particles (denoted by the
blue nodes), which are evenly distributed around the original
position. Depending on the simulation need (to be explained
in Sect. 4.2), a daughter particle can also be placed at the cen-
ter, i.e. the position of the mother particle. The distance from
the mother particle to each daughter particle is denoted by a
scalar parameter ε. As in [1,9], we allow variable smooth-
ing lengths in the simulation. Thus, another scalar parameter
α is introduced to denote the change of smoothing radius,
i.e. hnew = αhorigin. Finally, the mass ratio between the
daughter particles and the mother particle is denoted by a
vector λ = [λ1, . . . , λM ]T , where i = 1, 2, . . . , M denotes
the daughter particles and M denotes the number of daugh-
ter particles. Thus, the mass of each daughter particle is
mi = λimN , where N denotes the mother particle and mN

is the mass of the mother particle.
It is proved in [9] that, given the values α and ε, the refine-

ment error can be written in terms of λ as

E[α, ε](λ) = m2
N

hdN

(
C̄ − 2λT b̄ + λT Āλ

)
, (18)

where each Āi j = 1
αd

∫
	
Wi (r, 1)Wj (r, 1)dr, each b̄ j =∫

	
WN (r, 1)Wj (r, 1)dr, C̄ = ∫

	
W 2

N (r, 1)dr, and d is the
simulation dimension. Wi (r, 1) = W (r − ri , 1) denotes the
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smoothing kernel function at the i-th particle position ri with
the unit kernel radius.

Therefore, given the refinement parameters (ε, α), the
optimal values for λ∗ can be obtained by minimizing the
error E[α, ε] with the constraint of ∑M

j=1 λ j = 1. Note that

in a given pattern, for each choice of (ε, α), the coefficients C̄ ,
b̄, Ā can be calculated numerically, which allows for the pre-
computation of the best λ∗. This process can also be reversed,
and the corresponding (ε, α) can be found from a desired λ∗
pattern. For a certain pattern, at the precomputation stage we
need to calculate corresponding values of (E, λ) from (ε, α)

pairs and save them into a two-dimension chart. This pro-
vides the necessary information to determine better patterns
that give a good balance between refinement error and mass
distribution.

4.2 Boiling and evaporation

Liquid can transform into gas through boiling or vaporiz-
ing. The former is a vibrant process occurring at the boiling
point, and the latter is a quiet process taking place slowly
at lower temperatures. The pattern-based splitting scheme
in Sect. 4.1 provides a natural way to model these two dif-
ferent phenomena. For boiling we choose a splitting pattern
that does not place a daughter particle at the center. Patterns
without a central node usually divide the mass of the orig-
inal particle evenly into new particles, especially when the
pattern is symmetric. Typically we use a regular icosahe-
dron pattern with (ε, α) = (0.3, 0.9), but other patterns can
also be chosen when necessary. After splitting, the new par-
ticles are transferred into the gas phase, experiencing density
drop and volume expansion in the boiling phenomena. The
smoothing radius of these gas particles is also enlarged in
this process, matching their expansion in effective volume.
For the relatively slower vaporization, we choose a splitting
pattern with a daughter particle in the center. In these types of
patterns, the majority mass of the original particle remains in
the new particle at the center. For example, in a cubic pattern
with (ε, α) = (0.4, 0.9) and with a relatively low refinement
error, the mass of the new particle is λi = 0.992 for the par-
ticle at the center and is λi = 0.001 for others. After particle
splitting, the center particle remains in the liquid phase and
the other particles are transformed into the gaseous phase.
The smoothing radius of these transformed particles is also
re-adjusted.

The above patterns are chosen with balanced consider-
ation. The cubic pattern, for example, provides a moderate
phase transition rate between liquid and air, with only a small
fraction of liquidmass turned into gas phase in each splitting,
and keeps the effective volume of the gas particles similar to
that of the liquid particles. For the boiling process the regular
icosahedron pattern provides a good balance between sim-

ulation efficiency (i.e. avoiding particle number explosion)
and resolution. These patterns also provide a relatively small
refinement error under the above mass distribution. There
may be better patterns; however, the symmetric and easy-to-
compute property of these patterns make the calculation both
in precomputation and actual simulation significantly easier
and faster. The effect of refinement error related to different
patterns and corresponding (ε, α) values and the effective-
ness of this method comparing to original distribution are
thoroughly analyzed and validated in [9].

The pattern-based splitting scheme described in [9] is
mainly developed for one-time splitting during the simulation
and should be further extended to be applicable in simula-
tions of certain phenomena as evaporation. In evaporation, a
liquid particle could be split several times. It is possible to
pre-compute different splitting schemes with different (ε, α)

values for each split, making the mass of the new gas parti-
cles similar to each other. However, after several splits, the
mass of the liquid particle reduces and the splitting error dis-
cussed in Sect. 4.1 becomes gradually larger. To overcome
this problem, we split liquid particles only up to a threshold
number of splits. Once a liquid particle reaches this splitting
threshold, we merge the particle with adjacent similar liquid
particles using a merging strategy originating from [8].

Specifically, for each candidate particle M , we compute
its inertia matrix as

IM =
⎛

⎝
Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

⎞

⎠ (19)

where Ixx = ∑
j m j ((y j − yM )2 + (z j − zM )2), Iyy =∑

j m j ((x j − xM )2 + (z j − zM )2), Izz = ∑
j m j ((x j −

xM )2 + (y j − yM )2), Ixy = ∑
j m j (x j − xM )(y j − yM ),

Iyz = ∑
j m j (y j − yM )(z j − zM ), and Ixz = ∑

j m j (x j −
xM )(z j − zM ). Here, the summation is performed over the
neighborhood of the candidate particle M defined by its
smoothing radius. Then, following [8], we define the mass
decentration as

ηM =
∣∣∣∣∣

(
trace(IM )

3

)3

− det(IM )

∣∣∣∣∣ (20)

The smaller the ηM value, the mass distribution within the
neighborhood of particle M is more similar to a uniform
sphere. The mass decentration ηM vanishes when the mass
distribution around the candidate particle M is an ideal
sphere. In our implementation, the particle with the small-
est mass dencentration is merged with its neighborhood. The
merged particle, denoted by M ′, has the total mass of the
entire neighborhood before merging, and it is placed at the
same position as M . After merging, the merged particle M ′
is split again into several particles of proper size, following
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Fig. 3 a The candidate particleM to bemerged with its neighborhood.
b A larger particle M ′ is generated after merging. c Then the large
particle M ′ is split into a set of daughter particles with desired size and
distribution

the splitting algorithm described in Sect. 4.1. As shown in
Fig. 3, this merge–split process ensures the quality of SPH
particles during merging and splitting operations.

It is noted that, right after the splitting or merging process,
partially “overlapping” daughter particles can temporarily
appear. However the new particle position, mass, etc. are
carefully pre-computed so that particle interactions in the
new distribution are maintained almost the same as before
even in the case of partial overlapping. Thus stable simula-
tion can be achieved without additional calculation like some
other methods, e.g. Poisson disc sampling.

5 Implementation

In the standard SPH algorithm, the motion of a particle i is
determined by

ρi =
∑

j

m jWi j (21)

ai = dvi
dt

= 1

ρi
Fp,i + 1

ρi
Fv,i + g, (22)

where Fp,i denotes the pressure force, Fv,i the viscosity
force, g the gravity acceleration, ai the acceleration of par-
ticle i , vi the velocity of particle i , and t the time variable.
Our approach first compensates for the density of each par-
ticle using Eq. (8). Then the local pressure balance and the
atmospheric pressure are combined to form the pressure force
term, i.e.

Fp,i = F̃p,i + F̃′
p,i , (23)

where F̃p,i and F̃′
p,i are defined in Eqs. (10) and (13).

The damping and buoyancy accelerations defined in
Eqs. (14) and (17) are also added to the right-hand side of
Eq. (22). The complete equation of our approach is

ai = 1

ρi

(
F̃p,i + F̃′

p,i

)
+ 1

ρi
Fv,i + g + ãdamp,i + ãb,i (24)

To obtain more visual variance of the simulated gas, it is
possible to artificially adjust the atmospheric pressure F̃′

p,i

according to the particle’s normal vector. Specifically, F̃′
p,i

is multiplied by a constant factor β ∈ [0, 1] if the norm of
its normal vector is less than a given threshold |ni | < CN ,
where near-zero β values will offer more visual variation.

If desired one can also add artificial vortex to the simula-
tion, such as Lagrangian vortex methods adopted in [18,24].
Specifically, the vortex carried by each particle is evolved by
the following equation:

Dωi

dt
= ωi · ∇v + β(ni × g), (25)

where ωi is vortex carried by the i-th particle, and β is a
user-defined constant used to control the overall strength of
the effect. Then a particle is driven by an extra force due to
the neighbors:

Fvort,i =
∑

j

(
ω j × (

ri − r j
))
Wi j (26)

The above vortex method adds more visual variance to the
result with about 15% increase in computational cost.

To deal with situations when a particle moves too far
away from other particles and be isolated, we give them
a life-strength value ls and subtract Δls + ε from it each
step it remains isolated, where ε is a small random number.
If the particle becomes no longer isolated later, its life-
strength value is restored. A particle is removed whenever
its life-strength value is less than 0. Other calculations are
not changed under such situation.

6 Results

The performance gain for the proposed approachwill depend
on the size of the simulation domain in that larger domains
require more ambient air particles to fill the entire space.
Our approach is most efficient dealing with scenes that have
smoke plumes evolving across a large empty space with open
boundaries, which we will demonstrate in the examples. For
rendering, the fluid particles are directly rendered, which is
convenient for liquid–gas phase transition, and it can easily
cope with long-range movement of gaseous fluids in very
large scenes. Post-processing rendering techniques, similar
to those in [18], can also be adopted to enhance diffusion
effects, which we use in the steam train example.

To demonstrate the effectiveness and speed up of our
approach, a boiling example is presented in Fig. 4. At the cen-
ter of the scene, the water is boiled in a small pan producing
vapor. In Fig. 4a, using our approach described in Sects. 3 and
4, the vapor phase is successfully simulated, showing plau-
sible movement and shape. The simulation uses only about
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Fig. 4 Boiling. a Our approach. Using only about 9000 vapor parti-
cles in total, the simulation runs at 67.3 steps per second. b Standard
approach with ambient air particles. 640,000 ambient air particles are
required to fill the empty space, reducing the simulation speed to 7.4
steps per second. c Removing the correction and compensation from

a, the simulation speed is comparable with that in a at 84.6 steps per
second; however, the vapor does not hold its shape, scattering, and
becoming thin. d An implementation of the two-scale particle simu-
lation method. Up to 305,000 particles are generated in the boundary
region of the method. The simulation speed is 4.9 steps per second

9000 vapor particles in total, plus about 40,000 liquid parti-
cles, and with artificial vortex added the simulation runs at
67.3 steps per second on a Nvidia GeForce GTX 780 GPU.
The rendering volume grid is 160 × 120 × 400. The simu-
lation can run stably at 2 steps per frame (step size 1/60s).
For comparison, a vapor plume with the same resolution, but
simulated using fully filled ambient air particles, is shown in
Fig. 4b. In this case, no correction or compensation is needed,
but this small, simple scene requires about 640,000 ambient
air particles to fill the empty space, reducing the simulation
speed to 7.4 steps per second. In Fig. 4c, we demonstrate
what happens when we remove the correction and com-
pensation from the case shown in Fig. 4a. The erroneous
calculation causes the vapor phase to scatter and become thin.
The simulation speed is comparable with (a) at 84.6 steps per
second.

Previous SPH methods using adaptive+-sampling have
mainly dealt with liquid simulation; it is not straightforward
to extend previous methods to GPU-based gas simulation
without adjustment. We tested the method of [26] on the
above example. The vapor particles are used to define the
active region, and the low-resolution simulation in their
method is carried on by a simulation of half resolution. The
result is shown in Fig. 4d. Their method still needs to fill

the entire simulation domain with ambient air particles, and
a large amount of particles are also needed in the bound-
ary region. In total, the low-resolution simulation contains
about 88,000 particles (including liquid particles), and up
to 305,000 “boundary particles” are added into the simula-
tion around the vapor particles; the simulation speed is 4.9
steps per second. This speed is slower than the standard algo-
rithm, possibly because the splitting and relaxing algorithm
for the generation of “boundary particles” are not as well
parallelizable on GPU as other parts of the implementation,
and because the number of “boundary particles” needed does
not give much performance improvement space in gas sim-
ulations .

Figure 5 shows an outdoor bath using a rendering volume
grid of 260× 260× 400, where the water is evaporating and
producing a misty fog. The gas phase has a rest density that
is 1/1000 of the liquid phase. Filling this scene would need
9.9million ambient air particles besides liquid particles.With
our approach, up to 329,000 particles are used to simulate the
vapor plus about 78,000 liquid particles, achieving approxi-
mately 25 times speed up. The simulation runs at 13.9 steps
per second.

Figure 6 shows a steam train running across open ter-
rain and passing through a tunnel in a light-yellow hill.
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Fig. 5 Evaporation. A misty fog rises from an outdoor bath. The simulation includes about 407,000 particles in total, which is approximately 25
times faster than filling the scene using an estimated 9.9 million ambient air particles with standard approach

Fig. 6 Steam train running across an open terrain through a tunnel in
a light-yellow hill. The smoke rising from its smokestack is simulated
with up to 433,000 gas particles using our approach. If ambient air par-

ticles were used, this example would have required an estimated 119.3
million ambient air particles to fill the simulation space. Our approach
achieves more than 200 times speed up on this scene

Fig. 7 Plumes rising from an ancient city towards a magic attractor located above the center building. Up to 1.3 million particles are used with
our approach, saving computational cost on more than 600 million ambient air particles. More than 400 times speed up is achieved in this scene

We simulate the smoke rising from its smokestack in a
200 × 420 × 1920 region measured by volume data grid
size in rendering. If the standard approach were used, the
example would have required an estimated 119.3 million
ambient air particles to fill the simulation space. In this case
the artificial vortex is added.With our approach only 433,000
gas particles are used in total, and the simulation is able to
run at 17.0 steps per second, achieving more than 200 times
speed up.

Figure 7 shows an ancient city, from which a number
of plumes are rising into the sky towards a magic attractor
located above the center building. The plumes then converge
and mix around the magic attractor. Based on the proposed
approach, up to 1.3 million particles are used in this example

and the simulation runs at 3.0 steps per second. The render-
ing volume grid of this example reaches 1320×560×1240.
If the standard approach were used, the example would have
required more than 600 million ambient air particles in order
to fill the simulation space. For such a large scene it would be
too costly for normal GPUs to simulate ambient air particles,
and our approach brings more than 400 times speed up to its
simulation.

7 Conclusion

We have developed a novel fast SPH simulation approach for
gaseous fluids. The proposed approach is able to completely

123



532 B. Ren et al.

avoid simulating ambient air particles, bringing significant
performance benefit (up to two orders of magnitude) to SPH
gas simulation, especially for large open scenes. Liquid–gas
phase transition phenomena, such as boiling and evaporation,
can also be efficiently captured following the fast simulation
approach.

Unlike grid-based solvers, the SPH schemes do not have
built-in diffusion, and it is difficult to handle the diffu-
sion effect using the proposed approach. Although it can be
partially alleviated by rendering, this is an intrinsic limita-
tion related to single-phase SPH gas simulation, and using
multi-fluid models can be a possible research direction in
the future. Removing ambient air particles also makes it
difficult to analyze the momentum conservation property.
Although little disobedience of momentum conservation is
visually observed for the overall gas movement, the global
momentum conservation is not accurately ensured in the
proposed approach. Theoretically this could lead to error
accumulation, making the simulation possibly biased from
the natural movement in very long simulations. Though the
interactions between particles due to pressure is reproduced
in our approach, the immediate viscous interactions between
simulated particles and ambient air particles are not fully
recovered, losing vortical motions to some degree. This can
be partially compensated by adding artificial vortex; how-
ever, additional compensation mechanisms can be desirable.
In reality, in relatively narrow spaces sometimes it is possi-
ble for the unseen air to “carry over” interactions between
separated parts of visible gas through propulsion, viscosity
or other mechanisms. However, since these ambient air parti-
cles are removed in our approach, these indirect interactions
are no longer captured; our approach is thus less effective for
simulating narrow surroundings.
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Appendix A: Derivation of Eqs. (7–8)

This appendix shows the detailed derivations of Eqs. (7)
and (8). Since densities in adjacent particles are assumed
to change gradually in the gas simulations, we can further
consider that for a particle i , the densities of its neighboring
particles ρi, j are corrected with the same proportion as itself
and in a similar form as Eq. (6):

ρi, j = ρ̄i, j

1 − VWik
(27)

Here we want to determine the value of the scalar V , which
for a given particle i does not vary with adjacent particle j .
Using the form in Eq. (27), Eq. (4) can be rewritten as

0 = (1 − VWik)
∑

j

m j

ρ̄ j
∇Wi j + mk

ρi
∇Wik (28)

Utilizing V0 in Eq. (5), the above equation can be further
rewritten as

mk = (1 − VWik)V0ρi (29)

Note that it has been assumed in the first place that the final
correction form should be in the form of Eq. (27), which
is equivalent to requiring mk = Vρi . Comparing this with
Eq. (29), the following equation can be obtained:

(1 − VWik)V0 = V (30)

Solving Eq. (30) yields

V = V0
1 + V0Wik

(31)

Substituting Eq. (31) into Eqs. (27) and (29) leads to
Eqs. (7–8).
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