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GI stem cells – new insights into roles in physiology
and pathophysiology

Susan J. Henning1 and Richard J. von Furstenberg2

1Department of Medicine – Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill,
NC 27599-7555, USA
2Department of Medicine – Division of Gastroenterology, Duke University, Durham, NC 27710, USA

Abstract This overview gives a brief historical summary of key discoveries regarding stem cells of
the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs):
an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for
daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve
ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated
epithelial lineages that can reacquire stem cell characteristics following injury to the intestine.
Markers and methods of isolation for active and quiescent ISC populations are described as well
as the numerous important advances that have been made in approaches to the in vitro culture
of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known
and unknown aspects of the ISC niche are discussed. Although most of our current knowledge
regarding ISC physiology and pathophysiology has come from studies with mice, recent work
with human tissue highlights the potential translational applications arising from this field of
research. Many of these topics are further elaborated in the following articles.
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Introduction

The following articles summarize a selection of topics
on GI stem cells that were presented and discussed at
the FASEB Science Research Conference entitled ‘Gastro-
intestinal Tract XVI: GI homeostasis, the microbiome
and the barrier, development and disease’, held 2–7
August 2015 in Steamboat Springs, CO, USA. These
reviews illustrate the complexity of our current knowledge
regarding physiology and pathophysiology of GI stem cells
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and point to remaining controversies and to gaps that still
need to be explored.

This overview lays the scene for the following articles
by presenting a historical context and by touching briefly
on the various topics that are covered in detail in the
subsequent reviews. While several of these focus solely
on the stem cells of the small intestine, as does this
overview, others extend to stem cells of diverse regions
of the GI tract, including stomach, colon and liver,
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highlighting the fact that there are both similarities and
differences.

Historical perspective of stem cells of the intestinal
epithelium

The intestinal epithelium is the most rapidly proliferating
tissue in the mammalian body, being entirely replaced
every 3–5 days. This turnover is critical to maintaining
a healthy epithelium with dual roles of facilitating
digestion and absorption as well as maintaining the barrier
between the internal and external milieu. The unique
crypt–villus architecture with proliferating cells confined
to the lower third of the crypt (Fig. 1) has long attracted
physiologists, cell biologists and molecular biologists to
the challenge of understanding the behaviour of this
epithelium. Pioneering studies by Cheng and Leblond in
1974 led to the ‘unitarian hypothesis’ that undifferentiated
cells (termed ‘crypt-base columnar’ (CBC) cells) located
in the intestinal crypts just above and between the Paneth
cells may serve as multipotent stem cells responsible
for the generation of all differentiated lineages of the
small intestinal epithelium. These studies relied on the

observation that at early times after administration of
[3H]thymidine, cells damaged by the local radiation were
phagocytosed only by the CBC cells, but subsequently,
phagocytic fragments could be detected in cells of all four
differentiated lineages (Cheng & Leblond, 1974). While
the small numbers of enteroendocrine cells observed in
the original study led to some debate as to a separate origin
for this lineage, subsequent work confirmed the ‘unitarian
hypothesis’ by showing that enteroendocrine cells share a
common stem cell with other epithelial lineages (Bjerknes
& Cheng, 1981; Thompson et al. 1990; Bjerknes & Cheng,
1999).

The explosion of interest in the field of intestinal stem
cells (ISCs) is illustrated in Fig. 2, which also highlights
several landmark studies. In addition to the work from
Hazel Cheng and her colleagues in Toronto, the other
major groups in the early years were these of Bruce Ponder
and Chris Potten, both in the UK. The Ponder laboratory
creatively used chimeric mice to study the clonal behaviour
of crypt cells and observed that in adult mice individual
crypts were always composed of only one parental type
(Ponder et al. 1985). As discussed in a later section, crypt
monoclonality has recently been reinvestigated and is
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Figure 1. Architecture of the small intestinal epithelium
Centre, 3D depiction and typical 2D view as seen in a cross section showing crypt–villus units. Differentiated
lineages found on the villi are colour coded as indicated. Left, structures of villi and crypts as seen in sections made
along the longitudinal axis of the intestine and illustrates the fact that the villus is surrounded by multiple crypts.
Right, an enlargement of the crypt area showing the proliferative transit amplifying (TA) cells (yellow), the stem
cell zone and the Paneth cell lineage (orange). Within the stem cell zone, current nomenclature describes the stem
cells that are intercalated between the Paneth cells at the crypt base as ‘crypt base columnar’ (CBC) cells (green)
and those located immediately above the Paneth cells as ‘+4 cells’ (red).
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now understood at a dynamic level. Potten was a radio-
biologist and the exquisite studies from his laboratory
on the response of the intestinal epithelium to radiation
laid the groundwork of our current understanding of
the regenerative capacities of the intestinal epithelium.
The microcolony assay originally described by Withers &
Elkind (1970) and refined by Potten and his colleagues
in the 1980s (Hendry et al. 1984) represented the first
functional measure of ISC numbers and is still used today.
Likewise, the demonstration that cells in the supra-Paneth
zone, i.e. the so called ‘+4’ position, are capable of long
term retention of labelled thymidine analogues (Potten
et al. 2002), remains a hallmark of cells in that region.
These historical considerations are further discussed in
the following review by Smith et al. (2016).

Markers for ISC populations

Until 2007 the study of ISCs was greatly hampered
by a lack of markers. That year a landmark paper by
Barker et al. reported the first definitive marker of ISCs,
namely the G protein coupled receptor Lgr5, which is
expressed specifically in the CBC cells located between
Paneth cells at the base of the crypt (Barker et al.
2007). Lineage tracing experiments demonstrated that
Lgr5-labelled actively cycling cells are multipotent for all
mature intestinal epithelial lineages, undergo self-renewal
and persist at least 60 days. Additional markers that
have subsequently been identified for the Lgr5 positive

population include Ascl2, Olfm4 and Sox9 (Gracz &
Magness, 2014; Tan & Barker, 2014; Tetteh et al. 2015).
There is now a general agreement that these cells are
the population normally responsible for daily homeostatic
turnover of the epithelium.

As shown in Fig. 2, between 2008 and 2012 there
was a flurry of reports of markers for the +4 cells,
which represent slowly cycling or quiescent populations of
ISCs, specifically: Bmi1, mTert, Dclk1, Sox9hi and Lrig1
(Montgomery & Breault, 2008; Gracz & Magness, 2014;
Tan & Barker, 2014). All of these populations appear
to function as reserve ISCs in the sense that they can
become activated following intestinal damage (such as
via radiation or chemotherapy) and play a critical role
in the regeneration of the epithelium. HopX also marks
slowly cycling cells which function as ISCs; however, the
extent to which these cells are activated by damage has not
yet been reported (Takeda et al. 2011). The question of
whether the various markers of these reserve ISCs identify
distinct or overlapping populations remains a matter of
debate. Understanding the biology of cells that function
as reserve ISCs has become even more complex in view of
the current evidence (summarized in Fig. 3 and discussed
further in several of the following reviews) indicating
that in response to damage to the active ISC population,
not only are the various quiescent ISC populations
activated, but in addition more differentiated cells such
as transit amplifying (TA) cells, secretory progenitors,
Paneth cell (PC) precursors and enteroendocrine (EE)
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Figure 2. Historical data for publications on intestinal stem cells (ISCs)
The graph shows the number of papers per year as found in PubMed using ‘stem cell intestine’ as the search term.
Arrows show a selection of key papers and the red portion of the line shows the period of identification of various
markers for +4 cells.
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precursors appear capable of reverting to an ISC state
and regenerating the epithelium (Gracz & Magness, 2014;
Philpott & Winton, 2014; Tetteh et al. 2015).

The knowledge summarized above has been generated
in mouse models in which lineage tracing with genetically
engineered animals has become the ‘gold standard’ for
demonstrating stemness. While identification of specific
markers for human ISCs has lagged, various investigators
have made serendipitous use of naturally occurring
mutations, mosaicisms and heterozygous alleles to study
the clonal behaviour of cells from the base of the intestinal
crypts both at homeostasis and following radiation. A
thoughtful and insightful summary of this important
translational work can be found in a recent review (Wright,
2012).

Approaches to the isolation of ISCs

The generation of enhanced green fluorescent protein
(EGFP) reporter mice for Lgr5 and other markers
greatly facilitated the isolation and characterization of
putative ISC populations. Likewise the development of
the H2B–yellow fluorescent protein (YFP) reporter mouse
(Hughes et al. 2012; Buczacki et al. 2013) allowed modern
approaches to the study of the label-retaining cells (LRCs)
originally described by the Potten laboratory. In parallel
with deployment of various reporter mice, several groups
continued to pursue non-reporter methods to isolate ISCs
on the philosophy that such methods are critical to the
translation of knowledge generated in mouse models to
the human intestinal epithelium. Early studies with side

Dclk1
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progenitors

EE precursors

TA cells

PC precursors

Figure 3. Schematic drawing illustrating the response of the
intestine to damage
Most data come from studies of the effect of radiation, which
ablates the active ISCs (green) and activates reserve ISCs (red). The
latter appear to be heterogeneous with subpopulations (shown by
black arrows) marked by Dclk1, mTert, Bmi1 and Lrig1, and having
the property of label retention (LRC). In addition there is evidence
that multiple, more differentiated cells (dashed lines and red labels)
are capable of reverting to a stem cell phenotype after damage (TA,
transit amplifying cells; EE, enteroendocrine; PC, Paneth cell).

population sorting (Dekaney et al. 2005; Gulati et al.
2008) led to the identification of the membrane protein
CD24 as a useful marker for antibody-based sorting (von
Furstenberg et al. 2011). Concurrently, work from the
laboratory of Melissa Wong showed that CD166 marks
cells at the crypt base and that antibodies to CD166 can
be used to isolate these cells (Levin et al. 2010). Some
of the pitfalls of antibody-based sorting were carefully
documented in a multicentre study using CD44 to isolate
cells from the lower crypt (Magness et al. 2013). Although
none of these CD antibodies are specific for ISCs, sub-
sequent studies have shown that careful combinations
can be used to yield distinct populations of ISCs from
both mouse and human (Gracz et al. 2013; Wang et al.
2013). Interestingly although Lgr5 has an ectodomain,
attempts to develop Lgr5 antibodies suitable for sorting
have not met with success (Tan & Barker, 2014). At this
stage Lrig1 remains the only specific ISC marker for which
antibody-based sorting is possible (Powell et al. 2012). The
recent demonstration that different antibodies to Lrig1
mark different subsets of epithelial cells illustrates the
challenges of identifying antibodies suitable for genuine
ISC isolation (Poulin et al. 2014). In this regard, side
population sorting (Dekaney et al. 2005; Gulati et al.
2008) is an attractive option since it does not depend
on antibodies. Moreover this approach has recently been
further developed and shown to be capable of clearly
distinguishing between actively cycling ISCs and quiescent
ISCs (von Furstenberg et al. 2013). With the multiple
isolation methods now available, the field is poised for
cutting edge studies such as single cell transcriptome
analyses (Gracz et al. 2015) to assess heterogeneity of
ISC populations and further understand their biological
properties.

Culture of ISCs and crypts

Another critical development in the ISC field (Fig. 2)
was the report by Sato et al. in 2009, that isolated
Lgr5-EGFP cells could be clonogenically grown in vitro
in 3D cultures using Matrigel with an appropriate
cocktail of factors (Sato et al. 2009). Such cultures have
now become part of the standard repertoire of ISC
investigators. Unfortunately there remains a debate about
the appropriate nomenclature for the structures generated
in vitro, namely ‘organoids’ (Sato & Clevers, 2013) versus
‘enteroids’ (Stelzner et al. 2012). Nevertheless the growth
of these complex self-renewing structures from isolated
ISCs is generally recognized as a useful surrogate for
in vivo stemness. While the parent method of Matrigel
culture had very low clonogenic efficiencies (less than
1%), modifications which markedly enhance the efficiency
have subsequently been developed (Wang et al. 2013;
Yin et al. 2014). The method can also be made more
affordable by the use of serum and conditioned medium
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in place of recombinant growth factors (Miyoshi &
Stappenbeck, 2013). Initially developed for mouse tissue,
these Matrigel-based approaches have now been applied
to culture of isolated human ISCs (Gracz et al. 2013;
Wang et al. 2013). Although the original culture method
is labour intensive, recent work (Gracz et al. 2015) shows
that high throughput adaptations are feasible, which will
make ISC culture more amenable to detailed study of
ISC biology and to translational applications such as drug
screening.

While the ability to grow isolated ISCs in vitro has
generated valuable knowledge regarding ISC behaviour,
the application of the same technique to the growth
of intact crypts may be even more important. The key
difference is that in the 3D Matrigel system, the culture
efficiency (defined as yield of enteroids versus number
of units plated) is 10–100 times greater using crypts as
the starting material than when the same conditions are
used for isolated ISCs. With crypts from mouse small
intestine, efficiencies are typically in the order of 60–80%
on initial plating and approach 100% during passaging
(Fuller et al. 2012). Efficiencies with human crypts are
somewhat lower, but still sufficient to generate abundant
cultures from endoscopic biopsies. Enteroid cultures
derived from human crypts have been used to study
physiological functions as well as host–pathogen inter-
actions (Foulke-Abel et al. 2014). Such enteroids can be
efficiently passaged and frozen, allowing valuable patient
samples to be studied indefinitely (Foulke-Abel et al. 2014;
Mahe et al. 2015). At least in mouse, crypts retain a high
level of viability even following storage of tissue for 24–30 h
at 4°C (Fuller et al. 2013), pointing to the possibility of
a useful harvest from postmortem specimens. Exciting
recent advances have shown that enteroids grown from
crypts can be transfected by both viral and non-viral
methods (Miyoshi & Stappenbeck, 2013; Sato & Clevers,
2013; Foulke-Abel et al. 2014), thus allowing genetic
modification either for studies of basic biology or for
therapeutic application (Schwank et al. 2013). As noted
by Smith et al. in the following review (Smith et al. 2016),
the caveat of all these advances is that the basic culture
conditions (Sato et al. 2009) were devised specifically for
Lgr5-ISCs and are probably pharmacological for those
cells and possibly totally inappropriate for the reserve ISC
populations.

Despite the extent to which 3D Matrigel culture of
ISCs has advanced the field, investigators have recently
recognized the advantages of 2D culture systems. A
promising development in this arena is the report of
alternative culture conditions (involving a fibroblast feeder
layer) which allow long term growth of ISCs in 2D
(Wang et al. 2015). This system, in which differentiation is
induced by exposure to an air–liquid interface, may prove
more amenable for large scale growth of ISCs and for
certain studies of physiological functions. A caveat is that

to date the method has only been reported for isolated
epithelial cells derived from 20–21 week human fetuses.
However, other authors have reported that using crypts
from adult intestine as the starting material, conditions
can be devised to allow monolayer cultures which are
highly polarized and thus suitable for functional studies
(Foulke-Abel et al. 2014; Jabaji et al. 2014).

Generation of intestinal tissue for transplantation

Beyond culture of isolated ISCs and of intestinal crypts,
other approaches that can be seen as critical for trans-
lational applications are the use of organoid units and of
iPS cells to generate intestinal tissue suitable for trans-
plantation. As reviewed recently (Spurrier & Grikscheit,
2013), organoid units have been the choice of investigators
in the field of tissue engineering. These units are generated
by mild digestion of the intestinal tissue, which allows
crypts to be released along with adherent mesenchymal
cells. When seeded onto appropriate scaffolds, they
can be implanted in the omentum where they grow
and vascularize. The resulting structures display fully
developed crypts and villi with all four lineages and
with functional capacity (Grant et al. 2015). Anastomosis
of the neointestine with the native intestine has been
demonstrated to yield clinical improvement in a rat model
of short bowel syndrome (Spurrier & Grikscheit, 2013).
Using a slightly different approach, other investigators
have shown that organoid units can be used to ameliorate
a rat model of bile acid malabsorption (Avansino et al.
2005). As tissue engineered small intestine has already
been generated from human and pig tissue, the roadblocks
to clinical application are rapidly being surmounted
(Spurrier & Grikscheit, 2013).

An exciting parallel development is the demonstration
that intestinal tissue can be generated in vitro by end-
odermal programming of both hES cells and hIPS cells
(McCracken et al. 2011; Spence et al. 2011). Inter-
estingly, the resulting structures spontaneously generate
mesenchyme as well as epithelium and thus have
appropriately been termed ‘induced human intestinal
organoids’ and abbreviated ‘iHIOs’ (Stelzner et al. 2012).
When transplanted under the kidney capsule of immune
deficient mice, HIOs grew 50–100 times their original size
and demonstrated presence of all differentiated lineages
as well as digestive and absorptive functions (Watson
et al. 2014). In addition these transplanted HIOs were
shown to be capable of responding to systemic signals
following surgical resection of the host mouse (Watson
et al. 2014). Despite these promising results, HIOs have not
yet been transplanted into the intestine. Thus, application
of the techniques from the tissue engineering field to
HIO growth and transplantation is an obvious future
avenue.
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Regulation of ISC biology

As detailed in previous reviews (Clevers, 2013; Gracz &
Magness, 2014; Tan & Barker, 2014) as well as in the
following articles, the combination of in vivo lineage
tracing, cell sorting and in vitro culture has led to extensive
analysis of the biological properties of both the actively
cycling CBC-ISCs and the +4 quiescent ISCs. Homeostatic
balance of self-renewal and differentiation of CBC-ISCs
is dependent on multiple signalling pathways, including
Wnts, EGF, Notch, Bmp and others (Sato & Clevers,
2013; Gracz & Magness, 2014; Tan & Barker, 2014).
As noted by Demitrack and Samuelson in a following
review (Demitrack & Samuelson, 2016), given that the
Lgr5 active ISC population is more numerous and more
readily accessed, to date the majority of studies on
regulatory pathways have focused on these cells. The
populations that serve as quiescent or reserve ISCs may
have some regulatory features in common with active
ISCs (e.g. Notch signalling), but must also have distinct
differences to account for their markedly lower rates of
proliferation. Recent studies have begun to document
these differences. For example, the elegant work of Yan
et al. showed clearly that while the Lgr5 population is
stimulated by Wnt signalling, this is not the case for the
Bmi1 population (Yan et al. 2012). Intriguingly, a recent
report by Roche et al. suggests that differing expression
levels of the transcription factor Sox9 may be responsible
for quiescence versus active cycling, with the former being
maintained by high levels of Sox9 (Roche et al. 2015). The
following review by Richmond et al. (Richmond et al.
2016) draws on literature from various tissues to pre-
dict the smorgasbord of other factors that are likely to
be involved in the maintenance of reserve ISCs in the
quiescent state. Since these ISC populations are activated
following epithelial damage (such as radiation or chemo-
therapeutic agents), uncovering the interplay of factors
responsible for activation is an area of clear clinical
relevance. Likewise, elucidating the mechanisms that
return these cells to their quiescent state (which may be
distinct from the mechanisms responsible for quiescence
during homeostasis) will be critical in the development
of ISC based therapies. An intriguing question is whether
the various quiescent ISC populations which have been
identified to date are regulated via common or distinct
mechanisms. This is a particularly challenging question
given the evidence summarized above (Fig. 3) and in
recent reviews (Clevers, 2013; Gracz & Magness, 2014;
Philpott & Winton, 2014) for significant plasticity wherein
epithelial cells at various stages of differentiation can
reacquire a stem cell state in response to intestinal
injury. Interestingly, as reviewed by Aloia et al. in this
series of articles, similar plasticity following damage
is found in both the stomach and the liver (Aloia
et al. 2016).

The ISC niche

Any discussion of the regulation of ISC biology needs
to include consideration of the stem cell niche. As
reviewed in the following article by Sailaja and Li
(Sailaja & Li, 2016) and elsewhere (Shaker & Rubin,
2010; Smith et al. 2012; Tan & Barker, 2014), the ISC
niche comprises both epithelial and stromal elements.
Cells of the niche can exert their influence on ISCs
via cell–cell contact, via paracrine secretions, or via
changes in the composition of the extracellular matrix.
With respect to the epithelial component of the ISC
niche, cells that should be considered as players include
Paneth cells, enteroendocrine cells, Tuft cells, goblet
cells, intraepithelial lymphocytes and the ISCs themselves.
Amongst these, to date by far the most attention has
been given to Paneth cells (Clevers, 2013). This is not
surprising in view of their close association with both the
CBC-ISCs and the +4-ISCs (Fig. 1). Paneth cells have
been shown to express numerous factors which stimulate
ISC proliferation (including Wnt, Notch and EGF signals)
and have been shown to enhance ISC growth in vitro
(Sato et al. 2011), likely to be via cell–cell contact (Gracz
et al. 2015). However, their role in vivo is a matter of
debate in view of the reports that mice engineered to have
reduced numbers of Paneth cells generally show normal
intestinal architecture and normal regenerative responses
to epithelial damage (Tan & Barker, 2014). This may reflect
redundant sources of key factors such as Wnts (Kabiri
et al. 2014; San Roman et al. 2014) as well as activation
of reserve ISCs to replace reduced numbers of Lgr5 ISCs
(Tan & Barker, 2014). The one aspect of ISC biology that
appears to be definitely mediated by Paneth cell signalling
(both in vitro and in vivo) is the increase in Lgr5 ISCs that
occurs following caloric restriction (Yilmaz et al. 2012).
Surprisingly this increase is associated with shorter rather
than longer villi, suggesting that normal lineage allocation
and differentiation is disrupted by caloric restriction.
While this could be viewed as an adaptation to the reduced
nutrient load for digestion and absorption, further studies
are needed to determine whether these effects reflect
luminal signalling or the altered metabolic state elicited
by caloric restriction.

Stromal elements of the ISC niche include myo-
fibroblasts, fibroblasts, endothelial cells, smooth muscle
cells, neurons and immune cells (Shaker & Rubin, 2010;
Smith et al. 2012; Tan & Barker, 2014). Of these, the
majority of studies have focused on the intestinal sub-
epithelial myfibroblasts. In vitro these cells have been
shown to enhance the growth of human and mouse crypts
and of isolated mouse Lgr5 ISCs (Lahar et al. 2011;
Lei et al. 2014). Candidate factors responsible for this
in vitro effect have been identified as members of the
Wnt signalling pathway, including R-spondin (Lei et al.
2014). In vivo studies have pointed to elevated secretion of
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the EGF family member amphiregulin as well as the Bmp
antagonist chordin-like 2 in response to epithelial damage
(Shao & Sheng, 2010; Seiler et al. 2015). The following
review by Mah and Kuo (Mah & Kuo, 2016) highlights
the fact that for several factors known to influence ISC
behaviour (e.g. individual Wnts and R-spondins), the
precise cellular sources within the ISC niche have not yet
been established.

In addition to epithelial and stromal elements, the
luminal environment should also be considered as part
of the ISC niche. Within the lumen, while pathogens
have long been recognized as having dramatic effects on
the intestinal epithelium, in the last 20 years commensal
microbes have been demonstrated to play numerous roles
in the normal physiology of the intestinal epithelium. The
presence of microbial sensing receptors (such as the TLR
family) within the stem cell zone suggests the possibility
that the intestinal microbiota may also influence ISC
behaviour (Neal et al. 2012; Brown et al. 2014; Nigro
et al. 2014). While in vitro studies with live bacteria
(either commensal or pathogenic) remain a challenge,
bacterial products have been shown to influence the
behaviour of intestinal crypts in culture. To date, the
story that has emerged for commensal organisms is
somewhat confusing. Two groups have studied the effect
of LPS, which acts through TLR4. One of these, using
ileal crypts (Neal et al. 2012), reported that LPS reduces
crypt proliferation and increases apoptosis, whereas the
other study, using jejunal crypts (Davies et al. 2015), found
no effect of added LPS. Regional differences are a logical
explanation for this apparent discrepancy. The potential
clinical significance of the adverse effect of TLR signalling
in ileal ISCs was elegantly illustrated by the use of a mouse
model of necrotizing enterocolitis (NEC) which showed
that when the signalling was blocked, the deleterious effect
of the NEC protocol was prevented (Neal et al. 2012).
Adverse effects of the viral mimetic polyI:C, which signals
via TLR3, have also been reported in crypt cultures (Davies
et al. 2015). These authors found evidence of decreased
differentiation of jejunal enteroids; however, they did not
determine whether these effects reflect direct action on
the ISCs. Interestingly, in contrast to the adverse effects of
signalling through both TLR3 and TLR4, another micro-
bial product, MDP, acting through Nod2, has the converse
effect of eliciting cytoprotection (Nigro et al. 2014), both
in crypt cultures and in vivo (using a doxorubicin model of
epithelial damage). These studies suggest that overall the
effects of the microbiome on ISC biology are complex. This
is an area clearly needing further investigation, especially
in view of reports that TLR4 receptors are elevated in ileal
crypts of patients with Crohn’s disease (Brown et al. 2014)
and ileal tissue from babies with NEC (Leaphart et al.
2007). Further, Nod2 mutations have been reported to be
associated with Crohn’s disease (Hugot et al. 2001).

ISC clonality, dynamics and numbers

Early studies using mouse chimeras showed that during
the first two postnatal weeks of mouse development,
crypts are polyclonal, but by the third week they become
monoclonal (Schmidt et al. 1988) and remain monoclonal
through adulthood (Ponder et al. 1985). Crypt clonality
was subsequently confirmed by a somatic mutation
approach (Winton et al. 1988; Gordon et al. 1992). Despite
these observations, in the following years the generally
accepted model of ISC division was that of invariant
asymmetry in which one daughter cell is maintained as a
stem cell and the other progresses to the TA state and then
to one of the differentiated lineages. Not until 2010 was
the inconsistency between this model and crypt clonality
addressed. In that year, studies in the laboratory of
Doug Winton used an inducible lineage tracing approach
together with statistical modelling, to study the dynamic
behaviour of clonal crypt populations (Lopez-Garcia et al.
2010). These analyses pointed unambiguously to neutral
drift dynamics in which homeostasis is achieved at the
population level as a result of stem cells randomly dividing
to yield either two stem cells or two TA cells. The same
conclusion was simultaneously reached by studies from
the laboratory of Hans Clevers using a multicolour lineage
tracing approach (Snippert et al. 2010). As noted by
Lopez-Garcia et al., this model ‘provides an inherently
flexible assembly in which any stem cell can be deployed
to differentiate into one of a number of cell types,
to replace stem cells locally, and respond to changing
environmental demand’ (Lopez-Garcia et al. 2010). The
following review by Mah and Kuo (Mah & Kuo, 2016)
points to the regulation of ISC fate as a key area of future
investigation.

Over the years, the precise number of true stem cells in
each crypt has been a matter of some debate. Estimates
probably depend on the methodology employed and on
the likelihood that active and quiescent subpopulations
of ISCs may have been differentially detected. That
complication notwithstanding, most approaches put the
number at five to six (see below) although some studies
point to the number being as low as one stem cell per
crypt (Ponder et al. 1985; Gordon et al. 1992; Cosentino
et al. 1996) and as high as 16 (see below). Interestingly,
although the early studies from Hazel Cheng’s laboratory
have subsequently been viewed as mainly documenting the
existence of the active ISC population, whereas those from
the laboratory of Chris Potten were focused on the ‘+4’
ISCs, both of these groups concluded there were four to
five ISCs per crypt (Potten, 1998; Bjerknes & Cheng, 1999).
Subsequently, studies using Lgr5 as a reporter concluded
there were 14–16 ISCs per crypt (Lopez-Garcia et al.
2010; Snippert et al. 2010). More recently an elegant study
from the Winton laboratory using a marker-independent
approach, together with mathematical modelling, showed
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that the number of functional stem cells per crypt in the
small intestine is in the order of six (Kozar et al. 2013).
These authors concluded that only a subset of the Lgr5
cells behave as functional stem cells. Confirmation of this
finding was rapidly forthcoming via a landmark study
using multiphoton intravital microscopy, which showed
that the behaviour of Lgr5 cells is heterogeneous based
on location in the niche, those at the base having a
survival advantage and those at the niche boundary being
more likely to be lost (Ritsma et al. 2014). Thus, only a
fraction of Lgr5 cells retain long term self-renewal. Higher
resolution analysis identified the basis of this by showing
that Lgr5 cells at the niche border can become passively
displaced from the niche after division of a neighbour.
Conversely, when Lgr5 cells were depleted, there was a
sporadic transfer of cells from the TA zone into the niche
border with acquisition of Lgr5 expression (Ritsma et al.
2014). Hopefully, future studies will use similar imaging
approaches to assess the behaviour of the various sub-
populations of quiescent ISCs and more differentiated cells
(Fig. 3) which are involved in restitution of the epithelium
after damage.

Concluding remarks

We hope that this overview together with the following
articles will serve as a resource both for those who work
in the area of GI stem cells and those with broader
interests in the GI epithelium. Taken together the series
emphasizes that despite the dramatic explosion of research
on GI stem cells in the last 10 years, there are still many
gaps in our knowledge and controversial issues to be
resolved. Nevertheless, these reviews also point to exciting
potential clinical applications and thus to the importance
of continued dialogue and collaboration between basic
science investigators, physician scientists, and clinicians in
order to see these come to fruition.
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