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Abstract——Adolescence is a developmental period
when physical and cognitive abilities are optimized,
when social skills are consolidated, and when sexual-
ity, adolescent behaviors, and frontal cortical functions
mature to adult levels. Adolescents also have unique
responses to alcohol compared with adults, being less

sensitive to ethanol sedative–motor responses that most
likely contribute to binge drinking and blackouts.
Population studies find that an early age of drinking
onset correlates with increased lifetime risks for the
development of alcohol dependence, violence, and
injuries. Brain synapses, myelination, and neural
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circuits mature in adolescence to adult levels in parallel
with increased reflection on the consequence of actions
and reduced impulsivity and thrill seeking. Alcohol binge
drinking could alter human development, but variations
in genetics, peer groups, family structure, early life
experiences, and the emergence of psychopathology in
humans confound studies. As adolescence is common to
mammalian species, preclinicalmodels of bingedrinking
provide insight into the direct impact of alcohol on
adolescent development. This review relates human
findings to basic science studies, particularly the pre-
clinical studies of the Neurobiology of Adolescent
Drinking in Adulthood (NADIA) Consortium. These
studies focus on persistent adult changes in neurobiology
and behavior following adolescent intermittent ethanol

(AIE), a model of underage drinking. NADIA studies and
others find that AIE results in the following: increases in
adult alcohol drinking, disinhibition, and social anxiety;
alteredadult synapses, cognition, and sleep; reducedadult
neurogenesis, cholinergic, and serotonergic neurons; and
increased neuroimmune gene expression and epigenetic
modifiers of gene expression. Many of these effects are
specific to adolescents and not found in parallel adult
studies. AIE can cause a persistence of adolescent-like
synaptic physiology, behavior, and sensitivity to alcohol
into adulthood. Together, these findings support the
hypothesis that adolescent binge drinking leads to long-
lasting changes in the adult brain that increase risks
of adult psychopathology, particularly for alcohol
dependence.

I. Introduction

Adolescence is a period of developmental transition,
encompassing physical, mental, emotional, and social
aspects. The development of both physical and inter-
personal skills required to successfully integrate into
society is essential for living in groups, and these skills
improve through adolescence to adult levels. In addi-
tion, adolescence is a time when talents, reasoning, and
other abilities are formed. Adolescence in humans and
other social animals is characterized by high expression
of risk taking, exploration, novelty and sensation seek-
ing, social interaction, and play behavior that contrib-
utes to this transition. Recent discoveries using human
brain imaging provide strong evidence that these
characteristics are linked to maturation of brain struc-
ture (Lenroot and Giedd, 2006; Bava and Tapert, 2010).
Although much of development involves programmed
sequences of change in gene expression related to cellular
differentiation and protein expression, experience and
environment during adolescence also contribute to life-
long adult abilities and characteristics. Nutrition, alco-
hol exposure, and multiple other environmental factors
are known to impact both prenatal and postnatal phys-
ical development.
Adolescent development of abilities, social skills,

and other complex processes is difficult to define and
quantitate. However, in general, training and acquisi-
tion of skills in adolescence are important for developing
both highly-skilled human and animal individuals.
Training during adolescence improves abilities involv-
ing cognition, like playing chess or training to be a guide
dog, as well as physical abilities. Training at all ages
improves performance, but the improvement is often
much faster and greater during adolescence. During

adolescence, physical abilities improve in parallel to the
development of self-control, consideration of future con-
sequences, planning, and socialization skills, and even-
tually reductions in risk taking and sensation seeking.
Frontal cortical synaptic refinement and increased
myelination in adolescence most likely contribute to mat-
urational changes in reasoning, goal setting, impulse con-
trol, and evaluation of consequences. Other adolescent brain
changes include increased hippocampal neurogenesis,
maturation of brain regulatory neurotransmitters (e.g.,
their receptors and transporters), as well as hormonal
maturation during puberty. Each of these maturation
processes is driven by innate programming that responds
to environmental stimuli. Adolescent development is com-
mon to humans and rodents, allowing controlled pre-
clinical studies to focus on those environmental factors
that create resilience or risk for long-lasting changes
in adult characteristics.

The complex interactions of nature and nurture,
intermixed with adolescent resilience and sensitivities,
confound discernment of what characteristics are highly
sensitive versus insensitive to environment. Many
mental disorders emerge during adolescence, perhaps
due to genetically programmed dysfunctional develop-
ment, environmental disruption of developmental pro-
grams, or more likely a combination of both (Paus et al.,
2008; Davidson et al., 2015). In humans, family struc-
ture and socioeconomic status, adolescent choice of peer
group, and other individual selections create unique
environments that confound a clear understanding of
their impact on maturation of adult characteristics and
skills. Animal studies have the advantage of control
over environmental and genetic factors and can better
elucidate the impact of specific environmental events on
adolescent development. This review presents findings

ABBREVIATIONS: AIE, adolescent intermittent ethanol; BDNF, brain-derived neurotrophic factor; BEC, blood ethanol concentration;
ChAT, choline acetyltransferase; CIE, chronic intermittent ethanol; EEG, electroencephalography; EPM, elevated plus maze; ERO, event-
related oscillation; ERP, event-related potential; GABA, g-aminobutyric acid; HEC, hippocampal-entorhinal cortex; HMGB1, high-mobility
group protein B1; 5-HT, serotonin; IL, interleukin; IR, immunoreactive; LTP, long-term potentiation; MCP-1, monocyte chemoattractant
protein-1; NADIA, Neurobiology of Adolescent Drinking in Adulthood; NF-kB, nuclear factor k-light-chain enhancer of activated B cells;
NMDA, N-methyl-D-aspartate; NREM, nonrapid eye movement; OFC, orbitofrontal cortex; P, postnatal day; PFC, prefrontal cortex; RAGE,
receptor for advanced glycation end products; REM, rapid eye movement; SWS, slow-wave sleep; TLR, Toll-like receptor; TNF, tumor necrosis
factor.
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that support adolescence as a unique period of brain
maturation that is characterized by increased vulnera-
bility to binge alcohol-induced alterations in brain
maturation and adult neurobiology due to the distinct
adolescent responses to alcohol relative to adults. Pre-
clinical studies from the Neurobiology of Adolescent
Drinking in Adulthood (NADIA) Consortium, funded by
the National Institute of Alcohol Abuse and Alcoholism,
are presented and related to human findings when
possible. Together, they support the hypothesis that
adolescent binge drinking produces long-lasting effects
in the brain that increase the risk for the development of
psychopathology in adulthood, including alcohol-use
disorders.
The adolescent period is marked by behavioral and

hormonal changes that are common across species.
Adolescents are highly tuned to the environment and
peers, and adolescence is a critical period of social
development and integration into society. In the rat,
the adolescent period has been conservatively demar-
cated as postnatal day (P) 28–P42 (Spear, 2000),
although some have suggested a more liberal range
from P21 to P60 (Laviola et al., 2003). More recently,
the adolescent period has been divided into early (P25–
P42) and late (P43–P55) adolescence in rats, with the
early and late periods corresponding to approximately
10–18 and 18–25 years of age in humans, respectively
(Spear, 2015). Puberty, the hormonal and physiologic
change associated with sexual maturation, takes place
within the broader adolescent period. Although there
are species-specific behavioral and hormonal responses,
adolescence and puberty are general developmental
periods that are shared across mammalian species. As
in humans, complete pubertal maturation of the rat
occurs earlier in females than males (approximately
P36 and P44, respectively) (Vetter-O’Hagen and Spear,
2012). Importantly, adolescent-typical behavioral char-
acteristics are also conserved across species, such as
increased reward and sensation seeking, social interac-
tionswith peers, and risk taking, and reduced responses
to aversive stimuli, which are all observed during
adolescence, even beyond the peripubertal period (for
review, see Spear, 2000, 2011). For instance, increased
time spent engaging in social behaviors is common in
human adolescents (e.g., increased communication with
peers) (Csikszentmihalyi et al., 1977; Steinberg, 1989)
as well as in adolescent rodents and nonhuman pri-
mates (e.g., increased levels of play and affiliative
behaviors, such as huddling and grooming) (Ehardt
and Bernstein, 1987). In rodents, increased social
interactions influence food choices (Galef, 1977) and
sexual and aggressive behaviors (Fagen, 1976; Smith,
1982). Rodent adolescents also find peers (Douglas
et al., 2004) and novelty (Douglas et al., 2003) more
rewarding than adults do. These adolescent-typical char-
acteristics are important during the transition from
dependence to independence. These characteristics also

result in increased possibility of environmental exposures
and influences. As discussed below, the recent discovery
of epigenetic mechanisms under environmental regula-
tion may represent a significant portion of the genetic
aspects of adolescentmaturation.Adolescent highnovelty-
seeking and risk-taking behaviors contribute to the in-
creased propensity for experimentation and initiation of
drug and alcohol use during this developmental period.
Furthermore, the ability to learn and acquire new skills
or habits can combine with initiation of drug use to in-
crease the risk of long-lasting adult pathology. Given that
adolescence is a unique period of brain and behavioral
development that is highly sensitive to environmental
influences, clinical and preclinical studies focused on
adolescent development to understand what factors best
promote individual success for all in the community are of
great importance.

II. Brain Maturation and Adolescence

Brain development coincides with improvement in
abilities. One example is the maturation of visual and
auditory sensory processing. The sensory cortex has
unique developmental periods that are highly respon-
sive to enriched or deprived environments that drive
synaptic rearrangements and cortical response pattern
plasticity far more than are found at other times across
the life span. These highly plastic periods of sensory
cortical maturation are referred to as critical periods
of experience-dependent plasticity, and some of these
critical periods occur during the adolescent age (Gordon
and Stryker, 1996). Visual cortex maturation involves
optimizing visual acuity and discrimination through
activity-dependent synaptic pruning of inactive syn-
apses as well as maintenance and strengthening of active
synapses. Maturation of the visual cortex precedes the
critical period of the auditory cortex, which is charac-
terized by acquisition of tonal specificity and matura-
tion of auditory cortical responses. During plasticity
of the cortical critical periods, g-aminobutyric acid
(GABA) interneuron synapse formation and regulation
of pyramidal neuronal responses stabilize, and then
plasticity subsides. Synaptic rearrangements in the de-
veloping cortex are dependent upon neuronal activity
that triggers microglial–neuronal signaling. For exam-
ple, in developing mouse visual cortex at P28 near the
peak of the critical period of visual cortical experience-
dependent plasticity and synapse formation, light dep-
rivation and re-exposure regulate microglial–synaptic
interactions (Tremblay et al., 2010). Microglial activity-
dependent synaptic pruning involves complement
receptor signaling between immature synapses and
microglia (Schafer et al., 2012). In addition, microglia
regulate the formation and degradation of extracellu-
lar matrix—secreted noncellular molecules that sup-
port cells and in brain stabilize synapses and form
neuronal nets primarily on GABAergic neurons (Celio
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and Blumcke, 1994; Celio et al., 1998; Frischknecht
et al., 2009; see Coleman et al., 2014). Thus, adolescent
brain maturation involves neuronal and glial signal-
ing that regulates synapses, particularly interneuron–
projection neuron synaptic fields that are tuned during
development to more stable and less plastic adult brain
synapses.
Synapses are functional elements of the brain that

are very small—most are less than 0.1 mM3—whereas
brains are 1012–1014 times that size (e.g., human brain
is about 1200 cm3 and adult rat brain about 2100 mm3)
(Oguz et al., 2013). Interestingly, overall brain struc-
ture changes during adolescence, with decreases in gray
matter and increases in white matter shown in both
human (Giedd et al.,1999; Gogtay et al., 2004; Bava
et al., 2010) and rodent studies (e.g., Oguz et al., 2013;
Mengler et al., 2014). These changes are far larger than
can be explained by changes in synapses, and they are
thought to be associated with the processes of synaptic
pruning, extracellular matrix formation, and increased
myelination. The developmental trajectory of brain
regional volumes in humans has been studied (Giedd
et al., 1996; Sowell et al., 1999; Gogtay et al., 2006;
Demaster and Ghetti, 2013) and is generally similar to
that found in rats (Calabrese et al., 2013; Oguz, et al.,
2013). For instance, subcortical limbic structures, such
as the hippocampus and amygdala, mature during
adolescence in humans (Giedd, et al., 1996; Sowell
et al., 1999; Suzuki et al., 2005; Gogtay et al., 2006;
Uematsu et al., 2012; Demaster and Ghetti, 2013) at a
relatively faster pace than the prefrontal cortex (PFC)
(see Casey et al., 2005 for review). The PFC is the last
structure tomature, and development of PFC structural
and functional connectivity continues into late adoles-
cence and early adulthood in humans (Lebel et al., 2008;
Petanjek et al., 2011) and rodents (Cunningham et al.,
2002; Markham et al., 2007). An immature PFC, along
with more developed limbic regions, may lead to an
imbalance or disruption of top-down control, which is
thought to underlie particular adolescent-typical be-
havior such as impulsivity and risk taking (Andersen
and Teicher, 2008; Casey et al., 2008; Ernst and Fudge,
2009; Casey and Jones, 2010). PFC development and
connectivity parallel the appearance of adult executive
functions.
Late youth and adolescence are also when mental

diseases commonly emerge (Paus et al., 2008; Davidson,
et al., 2015), with some clearly related to alterations in
the patterns of gray and white matter that exemplify
the adult brain (Giedd, 2004). Indeed, white matter
structures mature hierarchically and become more
organized in parallel with the development of cognitive
faculties (Asato et al., 2006; Lenroot and Giedd, 2006;
Bava and Tapert, 2010). Myelin increases efficient
neural transmission throughout the brain, and it is
thought to contribute to the enhanced brain-regional
connectivity, processing speed, and cognitive function

that occur during childhood and adolescence (Casey
et al., 2008). In a study of 885 individuals between 3 and
20 years of age, magnetic resonance imaging brain
scans accurately distinguished biologic age, primarily
by using diffusivity indices of white matter maturation
(Brown et al., 2012). Recent studies have related the
development of white matter along an accumbofrontal
tract connecting the orbitofrontal cortex (OFC) and
nucleus accumbens to the maturation of developmental
models of decision making (Karlsgodt et al., 2015).
Exercise, as assessed by fitness among adolescents, is
associated with increased white matter microstructure
and frontal and motor fiber connectivity, consistent
with the postulate that environment and experience
impact white matter development and connectivity
(Herting et al., 2014). In rats, whole brain volume
increases by approximately 20% from P28 to P80 (that
is, from early adolescence to young adulthood), whereas
white matter, including the corpus callosum and exter-
nal capsule, increases by about 30% (Oguz et al., 2013).
In rats, there are maturational changes in corpus
callosum anisotropy found with diffusion tensor imag-
ing (Vetreno et al., 2016a), and diffusion tensor imaging
has been used to detect anisotropic changes in the
human adolescent brain that are consistent with in-
creased myelination (Zhu et al., 2012).

The PFC is particularly dynamic during adolescence.
Human histologic studies find that the dendritic spine
density of PFC synapses is two- to threefold higher in
youth and declines through adolescence and into the
third decade of life before stabilizing at adult levels
(Petanjek et al., 2011). These findings are consistent
with delayed maturation of PFC and its regulation of
mesolimbic, amygdala, and behavioral control, result-
ing in the thrill-, novelty-, and sensation-seeking be-
havior that is characteristic of adolescence (Ernst and
Fudge, 2009; Pattwell et al., 2012). Human adolescents
also show an exaggerated amygdala response to fear
that matures with the development of connections
between the amygdala and ventromedial PFC in hu-
mans and infralimbic PFC in mice (Malter Cohen et al.,
2013). This is consistent with studies that find attenu-
ated extinction of fear conditioning in adolescent hu-
mans (Pattwell et al., 2012) that matures in parallel
with frontal cortical circuits important for fear extinc-
tion (although see Broadwater and Spear, 2013a). As
discussed above, activity-dependent plasticity in the
PFC involves responsiveness of both GABAergic inter-
neurons and glutamatergic pyramidal projection neurons,
as well as consolidation of circuitry within other regions,
to produce the development of executive functions
during adolescence. Maturation of cortical GABAergic
and glutamatergic synapses occurs in parallel with
ongoing adolescent-specific changes in several major
neuromodulatory neurotransmitter systems, such as
acetylcholine, serotonin (5-HT), norepinephrine, and
dopamine (see Guerri and Pascual, 2010; Spear, 2000,
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2010 for review). Neuromodulatory neurotransmitters
integrate GABAergic interneuronal and glutamatergic
pyramidal neuronal firing, synchronizing firing and
connectivity. Thus, both human and animal studies
are consistent with adolescence being a critical period
of frontal cortical activity-dependent plasticity. Fur-
thermore, it is thought that adolescent frontal cortical
integration underlies the maturation of adult emotion
and reasoning. As PFC circuits mature, reflections on
long-term consequences start to guide behavior, an
important adult characteristic that may blunt the
impulsive thrill seeking that is often seen during
adolescence.

III. Adolescent Alcohol Sensitivity

A. Developmental Insensitivity to Ethanol

Numerous studies have found that adolescents are
less sensitive to certain adverse effects of ethanol
relative to adults (see Spear, 2011, 2014; Novier et al.,
2015 for review), perhaps contributing to a propensity
for adolescents to binge drink (Johnston et al., 2015).
[TheNational Institute of Alcohol Abuse and Alcoholism
definition of binge drinking is 4+ or 5+ drinks in a row for
females or males, respectively, or achieving blood
ethanol concentrations (BECs) of greater than 0.08
g/dL.] For example, adolescent rats are generally less
sensitive to ethanol-induced sedative/hypnotic effects
(Moy et al., 1998; Silveri and Spear, 1998; Draski
et al., 2001), social inhibition at high ethanol doses
(Varlinskaya and Spear, 2002), motor impairment
(Hollstedt et al., 1980; Silveri and Spear, 2001; White
et al., 2002a), conditioned taste aversion (Anderson
et al., 2010; Schramm-Sapyta et al., 2010), and acute
ethanol withdrawal (i.e., hangover) (Doremus et al.,
2003; Varlinskaya and Spear, 2004; Doremus-Fitzwater
and Spear, 2007). Thus, adolescents are less sensitive to
several factors that may serve as feedback cues to limit
alcohol consumption. A low sedative response to alcohol
is a risk factor for development of alcohol-use disorder in
humans (Schuckit et al., 2004) and is an adolescent
characteristic that crosses species (Spear, 2011). Fur-
thermore, low sensitivity to the perception of alcohol, as
measured by the SubjectiveHigh Assessment Scale, has
been established as one of the most significant risk
factors for the development of heavy drinking and
alcoholism (Schuckit et al., 2014). Studies relating blood
alcohol to behavior have suggested that adolescent
humans are less sensitive than adults (Day et al.,
2013), although this is more clearly established in
animal studies (Spear, 2014). Another index of alcohol
sensitivity may be the amount of alcohol consumed, and
studies find that both adolescent humans and rodents
consume about twice as much as adults (Spear, 2014).
Although the mechanisms of adolescent low alcohol
sedative response or tolerance-like ethanol responses
are not known, adolescent binge drinking in humans is

predictive of adult alcohol-use disorders (for review, see
Patrick and Schulenberg, 2013), and studies in rodents
that control for genetic and environmental differences
find adolescents are less sensitive to alcohol sedative/-
hypnotic effects (Silveri and Spear, 1998; Spear, 2014)
and adolescent alcohol exposure of rats leads to long-
lasting changes in adult rats that support hypotheses on
long-lasting changes in adult human brain due to
adolescent drinking.

The mechanisms underlying age-specific ethanol
sensitivity are not fully understood, but one possibility
is that adolescents are less susceptible to many ethanol
effects because they metabolize ethanol faster. Al-
though some studies have found that rodent adoles-
cents metabolize ethanol slightly faster than adults
(Hollstedt et al., 1980; Brasser and Spear, 2002), this is
not a consistent finding (Kelly et al., 1987; Silveri and
Spear, 2000). Furthermore, enhanced sensitivity to
certain ethanol effects observed in adolescents (detailed
below) argues against metabolic rate being the primary
mechanism for age-related differences in ethanol sen-
sitivity. Lastly, several studies have directly compared
developmental responses to various ethanol concentra-
tions in vitro when metabolism is not a factor (e.g.,
Swartzwelder et al., 1995a,b; Li et al., 2003). Another
potential mechanism is that the functional properties of
the neural systems underlying ethanol responses are
fundamentally different between adolescents and
adults. As suggested by Spear (2014), altered sensitivity
to ethanol during adolescence may be due to age-related
differences in excitatory glutamate [particularly at
N-methyl-D-aspartate (NMDA) receptors], inhibitory
GABAergic, and modulatory opioid systems. Relative
immaturity of these neurotransmitter systems, which
are directly targeted by alcohol, may alter brain
excitatory–inhibitory balance during adolescence, per-
haps contributing to age-related differences in ethanol
effects (for review, see Spear and Varlinskaya, 2005;
Spear, 2014). For example, adolescent rats differ from
adults in electrophysiological properties, with reduced
sensitivity to GABA type A (GABAA) receptor-mediated
inhibition in hippocampus (Li et al., 2003, 2006; Yan
et al., 2010; but see Yan et al., 2009), yet enhanced
sensitivity to ethanol-induced inhibition of NMDA-
mediated excitatory postsynaptic currents (Swartzwelder
et al., 1995a). Thus, altered responsivity of these neuro-
transmitter systems during adolescence may underlie
differential alcohol sensitivity, perhaps increasing risks
of excessive drinking. However, additional research is
needed to clearly define the unique aspects of the adoles-
cent response to alcohol.

B. Developmental Sensitivity to Ethanol

Adolescents also show enhanced sensitivity to certain
effects of ethanol (for review, see Spear, 2011, 2014;
Novier et al., 2015). For instance, adolescent rats show
ethanol-induced social facilitation at low ethanol doses,
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an effect not observed in adult rats (Varlinskaya and
Spear, 2002, 2006), and greater ethanol-mediated re-
inforcement than adults (Pautassi et al., 2008). In-
creased sensitivity to the positive and/or reinforcing
effects of ethanol may promote alcohol intake, although
some would argue that elevated alcohol consumption is
due to decreased sensitivity to the rewarding effects in
adults (e.g., Koob and Le Moal, 1997). In animal and
human studies, multiple factors impact behavior, mak-
ing unequivocal conclusions on reinforcement difficult
(for review, see Stephens et al., 2010). In the case of
adolescent alcohol consumption, humans (SAMHSA,
2006) and rodents (Brunell and Spear, 2005; Doremus
et al., 2005; Vetter et al., 2007) have been reported to
consume up to 3 times more ethanol than adults, which
may be related to altered ethanol sensitivity.
Adolescents are also more sensitive to some memory-

impairing effects of ethanol. For example, adolescent
rats show greater memory impairment than adults
when assessed on the Morris water maze and in
discrimination tasks (Markwiese et al., 1998; Land
and Spear, 2004), but the opposite is observed in fear
conditioning, another learning and memory paradigm;
specifically, adolescent rats are less sensitive to
memory-disrupting effects of ethanol (Land and Spear,
2004; Broadwater and Spear, 2013b). Also, people in
their early 20s have been found to be more sensitive to
the effects of ethanol on multiple memory tasks than
those in their late 20s; however, tolerance due to
prolonged alcohol use in the older age group cannot be
definitively ruled out in this study (Acheson et al.,
1998). When measuring the hippocampal electrophysi-
ological response in adolescent rats relative to adults,
ethanol more potently inhibits adolescent NMDA
receptor-mediated synaptic activity (Swartzwelder
et al., 1995a) and the induction of long-term potentia-
tion (Swartzwelder et al., 1995b), perhaps contributing
to enhanced sensitivity to memory-impairing effects of
ethanol during adolescence. Adolescent rats are also
more sensitive to frontal cortical brain damage in binge-
ethanol models (Crews et al., 2000), consistent with the
hypothesis that developing brain regions are more
sensitive to ethanol toxicity than mature brain regions.
Although not assessed in the aforementioned studies,

others have reported that adolescents do not show
higher brain or blood ethanol concentrations compared
with adults. Ethanol is typically administered at doses
relative to body weight to account for the large differ-
ences in body mass between adolescent and adult
rodents, but it distributes preferentially into watery,
nonfatty tissues (Kalant, 1971). Body composition
changes across the life span, and factors that might
contribute to adolescent–adult distribution of ethanol
include decreases in water content in lean tissue as well
as increases in percentage of body fat from adolescence
into adulthood (for review in humans, see Veldhuis
et al., 2005). Consistent with an increase in percentage

of body fat, adult rodents tend to have higher blood
ethanol concentrations and a more prolonged ethanol
clearance relative to adolescents (Doremus et al., 2003),
making the possibility of higher ethanol exposure
contributing to enhanced sensitivity to cognitive effects
of ethanol during adolescence unlikely. Taken together,
these findings suggest that adolescents are more sensi-
tive to some effects of ethanol than adults, perhaps due
to enhanced sensitivity of NMDA-mediated ethanol
responses.

IV. Adolescents Binge Drink

Differing from the adult and alcoholic patterns of
daily, heavy drinking, adolescents generally drink in
social groups on weekends. Moreover, human and
rodent adolescents drink about 2–3 times more alcohol
than adults per drinking occasion (SAMHSA, 2006;
Doremus et al., 2005). Adolescent binge drinking is a
problem in many countries. The percentage of students
in 2003 who reported being drunk 10 times or more in
the last year were 40% in Denmark, 25% in the United
Kingdom, and 8% in theUnited States (Andersson et al.,
2002). In the United States 2014Monitoring the Future
Survey, 11%, 30%, and 50% of 8th, 10th, and 12th
graders reported having been drunk in their lifetime,
and 19% of 12th graders reported binge drinking (5+

drinks in a row) within the past 2weeks (Johnston et al.,
2015). Binge drinking peaks between the ages of 18 and
25 years of age, with males reporting binge drinking
four to five times per month (2003 National Survey on
Drug Use and Health). In fact, many adolescents drink
more, as 1 in 10 high school seniors reported drinking
10 or more drinks in a row, and 5.6% of high school
seniors reported consuming 15 or more drinks in a row
(Patrick et al., 2013). Longitudinal studies of adolescent
and young adult men and women (ages 18 and 24) find
that 15–20% report 15–20 maximum drinks per occa-
sion in the 6 months prior to each follow-up (Schuckit
et al., 2014). The low sensitivity to alcohol sedation,
combined with high risk taking and social reward
seeking, most likely contributes to the extreme heavy
drinking found in some adolescents.

Heavy binge drinking can result in a blackout, or loss
of memory of events that took place during a drinking
episode. Blackouts are based on the amount of alcohol
consumed and are more common in adolescents than
adults. BECs of over 0.30 g/dL, or about 4 times the legal
BEC limit for driving in the United States (0.08 g/dl),
are associated with 60% of alcohol-related blackouts
(Hartzler and Fromme, 2003; Wetherill and Fromme,
2009; Rose and Grant, 2010). Blackouts are common in
alcoholics and adolescents, consistent with these groups
drinking to the very high BECs that can result in
blackouts. For example, one study found that college
student males who experienced blackouts reported
consuming nine drinks on average (Zeigler et al.,
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2005). Among a sample of US college students, 51%
report having experienced an alcohol-related blackout
—40% within the last year and 9% within the past
2 weeks (White et al., 2002b). In another study that
determined maximum drinks per occasion in subjects
from ages 18 to 24, most subjects endorsed 5 as
maximum, but about 15–20% endorsed 15–22 drinks
as maximum per occasion (Schuckit et al., 2014), which
would produce very high BECs. Magnetic resonance
imaging studies find lower GABA in frontal cortex in 18-
to 24-year-old binge drinkers compared with light
drinkers, and binge drinkers with blackouts addition-
ally had lower levels of frontal cortical glutamate
(Silveri et al., 2014). In rats, equivalent binge models
induce significantly more frontal cortical damage in
adolescents than in adults (Crews et al., 2000). Thus,
alcohol-related blackouts are common among human
adolescents, and rat studies find the adolescent-
maturing frontal cortex is uniquely sensitive to damage
from binge-drinking levels of alcohol.
A lasting impact of adolescent binge drinking is

suggested by associations of age of drinking onset with
a number of lifelong risks. Adolescents who start
drinking before 15 years of age are 4 times more likely
to develop alcohol dependence in their lifetime than
those who start drinking after 20 years of age (Grant
andDawson, 1997). A young age of drinking onset is also
associated with increased risk for lifetime violence and
fights and injuries associated with alcohol use (Grant
and Dawson, 1997; Sher and Gotham, 1999; DeWit
et al., 2000; Dawson et al., 2008; Hingson et al., 2009).
Individual genotype and/or personality factors (such as
sensation seeking) most likely contribute to early
drinking, although peer use and alcohol-abusing par-
ents are environmental factors that also contribute to
an earlier onset of alcohol and substance use (Siqueira
and Smith, 2015). Population studies of 9- to 20-year-old
individuals find that a 10% delay in age of drinking
initiation leads to a 35% decrease in subsequent alcohol
consumption (Pedersen and Skrondal, 1998). For exam-
ple, individuals who started drinking before age 13 con-
sumed an average of 7 L alcohol/yr, whereas those who
started after age 17 consumed 3.8 L/yr, suggesting that
delaying onset of alcohol use can markedly reduce later
alcohol consumption (Pedersen and Skrondal, 1998).
Twin studies of 10- to 28-year-old subjects also find that
early drinking increases risks for alcohol dependence,
and that the risk for development of alcohol dependence
declines by 21% for each additional year that drinking
onset is delayed (Prescott and Kendler, 1999). More-
over, these authors find females to have higher risks
than males from early drinking, and they attributed
risks to familial factors related to genetics (Prescott and
Kendler, 1999). Other studies have linked drinking
onset and increased risks of alcohol dependence to
familial density of alcoholism, extroversion, event-
related brain potentials, and high posture sway (Hill

and Shen 2002), supporting genetic components. More
recent studies on familial factors have proposed that
alcohol may promote unique induction of genes in
adolescents that underlies the strong familial associa-
tions with an early age of drinking onset (Agrawal et al.,
2009). Another recent study found that youth sipping
alcohol in the 6th grade, often at home with parents,
greatly increased the chances of getting drunk and
drinking heavily by 9th grade when compared with
nonsippers, even controlling for temperament and other
behavioral problems (Jackson et al., 2015), suggesting
an environmental familial influence. Thus, the strong
familial contribution to early onset drinking and risks of
alcohol dependence include both genetic and environ-
mental components that are hard to untangle.

As mentioned earlier, extreme binge drinking of 10–
15 ormore drinks in a rowwas reported among 5–10% of
12th graders in the past 2 weeks (Patrick et al., 2013).
This may represent a group that is at particularly high
risk of later alcohol problems (Patrick and Schulenberg,
2013). Regardless, the high prevalence of alcohol binge
drinking among school children indicates thatmany are
drinkers (Table 1). Large longitudinal population stud-
ies find that the younger the age of drinking onset, the
greater the prevalence of lifetime alcohol dependence.
When these are combined with assessments of adoles-
cent drinking, they support the idea that a large
percentage of those who develop alcohol-use disorder
do so, in part, due to adolescent binge drinking.
However, other confounding factors are the adolescent
emergence of conduct disorder or antisocial personal-
ities that may identify themselves with early onset of
alcohol drinking and that later develop into alcohol
dependence. Alternatively, heavy binge drinking might
disrupt adolescent brain development, altering matu-
ration in complex ways. One study (White et al., 2011)
following boys from 8 to 18 years of age found that
impulsivity generally declined with increasing age, as
mentioned above. Among a subgroup with intermediate
impulsivity, heavy drinking at age 14 increased impul-
sivity at 15, but not older ages. However, continued
heavy drinking at 14, 15, and 16 increased impulsivity
within the binge group at each age, although both
binging and nonbinging individuals showed decreased
impulsivity with increasing age (White et al., 2011).
These longitudinal findings indicate that the emergence
of specific personality traits, such as impulsiveness,
thrill seeking, and anxiety, are all adolescent traits, as
well as traits associated with risk for alcohol depen-
dence, and that there may be a bidirectional influence
between alcohol use and the expression of these traits.
Along these lines, impulsivity among university stu-
dents has been found to predict the quantity of alcohol
consumed per month (Caswell et al., 2016).

Studies in animals are an important strategy to
disentangle genetic and environmental contributions
to alcohol use and its consequences. Whereas animals
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cannot model all aspects of alcoholism (Leeman et al.,
2010; Stephens et al., 2010), there aremany similarities
between animal and human alcohol use. For example,
impulsivity is greater in adolescent human binge
drinkers and mice with high alcohol consumption
(Sanchez-Roige et al., 2014a). Recent studies have also
indicated that alcohol can change gene expression
through epigenetic mechanisms in a manner that is
inherited, representing an environmental alcohol-
induced genetic change that was previously unexpected
(see Pandey et al., 2015). Indeed, mouse studies find
that exposure to alcohol epigenetically alters neuroen-
docrine and immune gene expression for at least three
generations (Sarkar, 2016). Studies in rhesus monkeys
have found that drinking in young adulthood strongly
disposes individuals toward heavy drinking in adult-
hood, and this effect is independent of the sociocultural
factors present in humans (Helms et al., 2014). Fur-
thermore, studies in mice (Alfonso-Loeches and Guerri,
2011) and rats (Alaux-Cantin et al., 2013) have found
that adolescent exposure to alcohol increases later
voluntary alcohol drinking. These findings and those
described below support the hypothesis that the age of
drinking onset contributes to risks of alcohol depen-
dence later in life at least in part via biologic conse-
quences of alcohol exposure.

V. Modeling Adolescent Alcohol Drinking

Human alcohol abuse and dependence (Leeman et al.,
2010), as well as sensitivity to alcohol response (Crabbe
et al., 2010), can be difficult to model in rats and mice.
Humans will drink far more alcohol by choice than
rodents, although alcohol drinking preference, positive
reinforcement, and negative reinforcement can be mod-
eled in animals. Furthermore, components of alcohol
dependence, alcoholic liver disease, and fetal alcohol
syndrome are modeled by exposing animals to alcohol via
various routes of administration, including ethanol vapor
chambers, intragastric gavage, and i.p. injections, all of
which can be used to reach high BECs like those

associated with human binge drinking and blackouts.
Models of adult alcohol abuse and alcohol dependence
often involve long-lasting alcohol exposures, but human
adolescent drinking is not typically characterized by
continuous daily drinking. Generally, adolescent drink-
ing is heavy binge drinking separated by periods of
abstinence, as it often involves social events clustered
around weekends or holidays when alcohol is available.

Due to commonalities of adolescent development
across mammalian species (as described above), we
can use animal models to explore the impact of heavy
binge drinking during adolescence on the maturation of
adult characteristics. Adolescent intermittent ethanol
(AIE) exposure is a model that incorporates adolescent
age with intermittent ethanol administration, most
commonly 2 days of ethanol exposure followed by 2 days
off (no exposure). Although all ethanol exposure regi-
mens (vapor, gavage, i.p.) are compared with an appro-
priate vehicle control exposure, there is the potential for
high levels of ethanol to be aversive. Guerri and
colleagues first used this model (Pascual et al., 2007),
and others have adopted it to investigate adolescent
underage drinking in preclinical studies (e.g., Pascual
et al., 2009; Vetreno and Crews, 2012; Alaux-Cantin
et al., 2013; Ehlers et al., 2013b; Coleman et al., 2014).
Some studies directly compare adolescent and adult
responses, exposing adolescents to AIE and adults to
an identical adult chronic intermittent ethanol (CIE)
exposure, and this AIE-to-CIE comparison provides
insight into adolescent-specific maturational or age-
dependent responses. A major focus of the NADIA
Consortium is on AIE-induced changes in behavior
and physiology that persist into adulthood. The AIE
models used by the NADIA Consortium encompass the
adolescent period, include intermittent exposure, and
achieve binge-like BECs (.0.10 g/dL). Below we de-
scribe studies largely from the NADIA Consortium
finding that AIE leads to a persistent increase in
neuroimmune gene expression, loss of cholinergic and
other neuronal markers, reduced neurogenesis and
brain-derived neurotrophic factor (BDNF), as well as

TABLE 1
The prevalence of lifetime adult alcohol use disorders is related to age of alcohol drinking onset

The value in the last column is the percentage of the population with lifetime alcohol dependence (AD) related to adolescent drinking. It is calculated from the percentage
having been drunk (Johnston et al., 2015), the prevalence of lifetime alcoholism related to age of initiation of drinking (Grant and Dawson, 1997), assuming having been drunk
would be considered initiation of drinking. The last column calculates the prevalence of lifetime alcohol dependence related to adolescent drinking as a percentage of whole
population studies of the prevalence of alcohol dependence in the United States (Hasin et al., 2007). These estimates suggest about one third to three quarters of alcohol
dependence in the United States could be related to adolescent drinking.

Adolescent Age Adolescent Prevalence of
“Having Been Drunk”a

Prevalence of Lifetime AD
by Age of Drinking Onsetb

Prevalence of Lifetime Alcoholism
Related to Having Been
Drunk at Various Agesb

US Lifetime Prevalence of
Alcohol Dependencec (12% of All

Ages in US Population)

% of Each Grade % that AD Calculated % of Population % of AD Due to Adolescent
Drinking Age

Grade 8: 13–14 years old 11 38 4.2 35
Grade 10: 15–16 years old 30 30 9.0 75
Grade 12: 17–18 years old 50 17 8.5 71
aJohnston et al., 2015.
bGrant and Dawson, 1997.
cHasin et al., 2007.
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persistence of adolescent-like responses to alcohol in
adulthood, increased adult anxiety, increased adult
alcohol drinking, and epigenetic signaling—all of which
suggest that heavy binge drinking in adolescence has
long-lasting effects on adult brain and behavior.

VI. Lock-In—Persistence of an Adolescent
Phenotype in Adulthood, Including an
Adolescent-Typical Response to Ethanol

Several preclinical studies have supported the hy-
pothesis of a lock-in effect: that is, the idea that
adolescent-typical ethanol sensitivities are retained
into adulthood following a history of AIE (see Spear
and Swartzwelder, 2014 for review). As mentioned
earlier, adolescents are less sensitive to certain adverse
effects of ethanol. Interestingly, several studies have
found a similar adolescent-typical attenuated ethanol
sensitivity in adults exposed to AIE, such as decreased
sensitivity to ethanol-induced motor impairment
(White et al., 2002a), conditioned taste aversion (Diaz-
Granados and Graham, 2007; Sherrill et al., 2011;
Saalfield and Spear, 2015), social inhibition
(Varlinskaya et al., 2014), acute withdrawal (Boutros
et al., 2014), and sedative/hypnotic effects (Matthews
et al., 2008; Quoilin et al., 2012). The rewarding effects
of ethanol may also be enhanced in adulthood after
adolescent ethanol exposure, with evidence for greater
motivation to consume ethanol on an operant task
(Alaux-Cantin et al., 2013) and increased ethanol-
induced social facilitation (Varlinskaya et al., 2014).
Just as in adolescence, the maintenance of these
adolescent-like phenotypes may allow and/or promote
greater ethanol consumption in adulthood by attenuat-
ing sensitivity to adverse effects of ethanol and enhanc-
ing sensitivity to rewarding effects. Indeed, evidence is
mounting to suggest that adolescent alcohol exposure in
rats increases alcohol intake in adulthood (Pascual
et al., 2009; Maldonado-Devincci et al., 2010; Gilpin
et al., 2012; Alaux-Cantin et al., 2013; Milivojevic and
Covault, 2013); this is described in more detail below.
Other long-lasting effects of adolescent ethanol expo-

sure that appear to lock in an adolescent-like phenotype
are, for example, a lack of an event-related potential
response to ethanol (Ehlers et al., 2014a), increases in
impulsivity (although this effect was unmasked after
re-exposure to a chronic ethanol procedure in adult-
hood) (Mejia-Toiber et al., 2014), and greater risk
preference (Boutros et al., 2014; Sanchez-Roige et al.,
2014a,b; Schindler et al., 2014). Adults with a history of
AIE also show adolescent-like increases in sensitivity to
the deleterious effects of acute ethanol, such as impair-
ment in hippocampal-dependent memory (White et al.,
2000; Broadwater and Spear, 2013b; Risher et al.,
2013), and there is evidence of an immature pattern of
learning in a fear-conditioning paradigm (Broadwater
and Spear, 2014a). Thus, adolescent ethanol exposure

produces a variety of long-lasting consequences, many
of which are reminiscent of adolescent-like ethanol
responses.

Although the mechanisms of AIE-induced changes in
ethanol responses are poorly understood, Spear and
Swartzwelder (2014) propose that synaptic maturation
of excitatory and inhibitory balancemay be altered after
adolescent ethanol, thereby contributing to the reten-
tion of an adolescent-like phenotype in adulthood. For
example, persistent alterations in GABAA subunit
expression have been observed after adolescent ethanol
(Centanni et al., 2014; Risher et al., 2015), a receptor
system that undergoes considerable reorganization
during adolescence (Yu et al., 2006). Furthermore, there
is evidence for enhanced sensitivity of GABAergic tonic
current (Fleming et al., 2012) and increased propensity
for induction of long-term potentiation (LTP) at lower
levels of stimulation in the adult CA1 region of the
hippocampus (Risher et al., 2015) after AIE. This
lowered threshold for hippocampal LTP induction is
indicative of an AIE-induced hyperplastic state across
the hippocampal circuit, leading to interference in mem-
ory processes, and is reminiscent of an adolescent-like
hyperexcitability, at least in the hippocampus. AIE
exposure also alters adult dendritic spine density in
amygdala and hippocampus in a manner consistent
with blunted synaptic maturation, although the precise
findings differ across brain regions, perhaps due to
differences in stage of development. In hippocampus,
AIE-exposed adult rats showed an increased number
of dendritic spines, typical of immaturity as well as
LTP sensitization (Risher et al., 2015). In amygdala,
AIE caused a decrease in dendritic spine density in
adulthood that was associated with decreased expres-
sion of BDNF and increased anxiety-like behavior and
alcohol drinking (Pandey et al., 2015). The differences in
projection neurons and interneurons as well as the
development of synapses in these various brain regions
require additional studies. However, as mentioned
above, cortical maturation involves changes in inter-
neuron GABAergic synapses regulating pyramidal
neuronal inputs, with immature synapses being asso-
ciated with a low alcohol response. Glial extracellular
matrix deposition appears to stabilize synaptic struc-
ture and reduce plasticity, and AIE was found to
increase frontal cortical extracellular matrix proteins
(Coleman et al., 2011). Thus, it is possible that AIE-
induced extracellular matrix deposition and/or micro-
glial priming would stabilize immature synapses,
resulting in the persistence of adolescent-like responses
in adulthood, although more studies are needed to test
this hypothesis.

Neuronal activation to an ethanol challenge appears
to be altered after AIE in a brain-region–specific
manner. Immediate early genes, such as cFos and
egr1, rapidly increase in expression following neuronal
firing and thus provide an indirect measure of neuronal
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response. Acute ethanol challenges increase cFos and
egr1 expression in PFC, amygdala, nucleus accumbens,
and ventral tegmental area of adult rats (Liu and
Crews, 2015). However, adults with a history of AIE
have amarkedly reduced expression of immediate early
genes in response to ethanol challenge in the PFC (both
prelimbic and OFC portions; Fig. 1), and the adult
neuronal response in the amygdala is slightly blunted
by AIE. In contrast, the nucleus accumbens, a brain
region associated with reward and reinforcement,
shows an exaggerated cFos neuronal activation to
ethanol challenge after AIE. These data support the
interpretation that adolescent binge drinking (i.e., AIE)
results in increased activation of reward circuitry and
inactivation of frontal cortical executive functions dur-
ing adult binge ethanol, even after long periods of
abstinence. Together, these findings indicate that AIE
alters adult brain responses to ethanol as well as other
adolescent-typical characteristics in a manner consis-
tent with increased risks of alcoholism.

VII. AIE Increases Ethanol Self-Administration
in Adulthood

Human studies report that earlier initiation of alcohol
drinking is associated with an increased likelihood of
developing an alcohol-use disorder across the life span
(Grant and Dawson, 1997; DeWit et al., 2000). Pre-
clinical models of binge AIE have also revealed in-
creased voluntary ethanol drinking in adulthood in
rodents (Pascual et al., 2009; Alaux-Cantin et al.,
2013; Broadwater et al., 2013c; Gass et al., 2014;
Pandey et al., 2015). When assessed by two-bottle,
free-choice drinking with increasing ethanol concentra-
tions (3%, 7%, and 9% every 3 days) beginning in
adulthood, an i.p. AIE exposure led to a twofold increase
in voluntary ethanol self-administration in male
Sprague–Dawley rats (Pandey et al., 2015). Similarly,
Alaux-Cantin et al. (2013) found that early (P30–P43),
but not late (P45–P58), i.p. AIE exposure to male
Sprague–Dawley rats increased voluntary ethanol con-
sumption and preference in adulthood by approxi-
mately 75%, also assessed by two-bottle, free-choice
drinking. In the same study, increasing the ethanol
concentration (i.e., from 10% to 20% ethanol) and
limiting the two-bottle choice to every-other-day access
led to a larger, twofold increase in drinking and greater
escalation of ethanol intake in adulthood. Finally,
assessment of operant self-administration of 10% etha-
nol in adulthood revealed an approximate 70% increase
in ethanol intake. These AIE-exposed adults also dis-
played a higher breakpoint across progressive ratio
sessions, indicating that AIE-exposed rats will expend
more effort to obtain ethanol. In another study, expo-
sure of male Long–Evans rats to AIE vapor inhalation
(P28–P42) increased ethanol intake by approximately
30% in adulthood when assessed via operant self-

administration (Gass et al., 2014). Interestingly, these
AIE-exposed rats later required approximately 33%
more sessions to extinguish the learned ethanol-
seeking behavior (Gass et al., 2014). In an adolescent
self-administration model involving sole-source 10%
ethanol in a sweet solution (0.125% saccharin/3%
sucrose) for 30 minutes from P28 to P42, adult
Sprague–Dawley rats increased voluntary consumption
of sweetened ethanol by approximately 30%, but not
consumption of 20% ethanol, relative to control subjects
drinking the sweet-only solution (Broadwater et al.,
2013c). A caveat of this study, however, was that control
rats exposed to the sweet-only solution during adoles-
cence drank relatively more sweet-only solution in
adulthood, indicating greater adolescent responding
for all rewards as well as the exposure effect increasing
familiarity—the adult rats preferred whatever solution
they experienced in adolescence. In another study
(Pascual et al., 2009), male Wistar rats with a history
of i.p. AIE exposure (P25–P38) that were assessed in
adulthood on a two-bottle, free-choice model with 10%
ethanol every other day for 10 days exhibited a twofold
increase in both ethanol preference and resulting BECs
in adulthood, and AIE-exposed adults continued to
drink more ethanol than controls during a subsequent
limited access to ethanol (1-hour access to 10% ethanol
at the end of the light phase). Taken together, these
rodent studies are consistent with human data and
support the hypothesis that early initiation of binge
drinking during adolescence increases ethanol seeking
and drinking in adulthood, contributing to the develop-
ment of alcohol-use disorders later in life.

VIII. AIE Results in Decreased
Behavioral Flexibility

Behavioral flexibility refers to the ability to change a
previously learned reinforced behavioral response to a
new response in light of changing task demands or
reinforcement. In a practical sense, behavioral flexibility
may represent the ability to adjust to the responsibilities
of emerging independence and parenthood. A consistent
finding of the NADIA Consortium is that AIE exposure
leads to impairments in behavioral flexibility in adult-
hood. In the section that follows, the long-term effects of
AIE exposure on behavioral flexibility will be reviewed.

A. Flexibility in Spatial Tasks

Spatial learning is often assessed using maze tasks
such as the Morris water maze or the Barnes maze. The
Morris water maze consists of a circular tub filled with
an opaque liquid containing a submerged platform,
which is solved when the animal learns to locate the
hidden platform by using spatial cues to escape the
water. The Barnes maze is a large, brightly illuminated
circular platform with multiple holes situated around
the edge. An escape box is located under one of the holes,
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and the rodent uses spatial cues to locate the escape box.
These tasks are ideal for assessing not only spatial
learning, but also behavioral response to a subsequent
challenge, such as moving the platform or escape hole,
that would require a flexible strategy. Several studies
have shown that AIE exposure does not affect spatial
learning in adult mice (Coleman et al., 2011, 2014) or
rats (Vetreno and Crews, 2012; Acheson et al., 2013)
when assessed on the Morris water maze or the Barnes
maze. Similarly, AIE exposure does not alter acquisi-
tion of a radial arm maze or operant task (Risher et al.,
2013). However, when the learned location of the escape
platform or hole is moved, adult AIE-treated mice and
rats require significantly more trials to learn the new
location or rule (Coleman et al., 2011, 2014; Vetreno and
Crews, 2012). Perseveration of previously learned be-
haviors or difficulties breaking previously learned

habits appear to underlie some of this poor perfor-
mance. Indeed, AIE-exposed rats also exhibited persev-
erative behaviors, such as spending more time in the
area of the original escape platform (Coleman et al.,
2011; Vetreno and Crews, 2012), and behavioral in-
efficiency, such as taking longer and traveling farther to
reach the same goal as control rats (Acheson et al.,
2013). Interestingly, neuroimmune-signaling molecules
have been shown to correlate with these behavioral
deficits: increased expression of Toll-like receptors
(TLRs) and high-mobility group protein B1 (HMGB1;
discussed in more detail below) was associated with
reduced behavioral flexibility and increased persevera-
tive behavior on the Barnes maze (Vetreno and Crews,
2012) and may contribute to deficits in behavioral
flexibility. These findings suggest that AIE-induced
changes in neuroimmune signaling contribute to AIE

Fig. 1. AIE alters adult brain regional responses to an alcohol challenge in adulthood. Adult rats previously exposed to AIE exhibit altered neuronal
responses to an ethanol challenge in adulthood as indexed by expression of the immediate early gene cFos, an indirect marker of neuronal activity.
Comparison of cFos immunoreactivity (+IR) in adult Wistar rats that received an ethanol challenge (4.0 g/kg, i.g.) in adulthood (P80) revealed that prior
AIE exposure (5.0 g/kg, i.g., 2 days on/2 days off from P25 to P55) significantly reduced cFos + IR in the orbitofrontal cortex (OFC; ↓57%), prelimbic
cortex (PrL; ↓48%), ventral tegmental area (VTA; ↓50%), and basolateral amygdala (AMG; ↓33%), relative to ethanol-challenged control (CON) subjects.
In contrast, previous AIE exposure increased neuronal activity in response to ethanol challenge in the nucleus accumbens core (NAcc; ↑43%) relative to
CON subjects. These studies reveal that adolescent binge ethanol exposure causes long-lasting reductions in frontal cortical reactivity in areas involved
in executive function and increased activation in reward circuitry in response to ethanol challenge in adulthood, indicative of an enduring alteration in
the adult brain response to ethanol. Data are presented as mean 6 S.E.M. *p , 0.05, ***p , 0.001, relative to CON. This figure is adapted from (Liu
and Crews, 2015).
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alterations in PFC synaptic maturation, increased per-
severation, and blunted ability to adapt to changes in
the environment.

B. Flexibility on Operant Tasks

Instrumental conditioning involves training an ani-
mal to perform a specific action (such as a lever press or
nose poke) to obtain a reward, which reinforces the
operant action. Several studies have determined that
AIE exposure does not alter acquisition of operant self-
administration of a reward (Semenova, 2012; Risher
et al., 2013; Gass et al., 2014; Mejia-Toiber et al., 2014;
Boutros et al., 2016). It also does not change the
preference for a large reward (Mejia-Toiber et al.,
2014) or performance on a progressive ratio schedule
(Gass et al., 2014). However, similar to AIE effects on
spatial learning tasks, AIE deficits can emerge when
the operant behavior is challenged, such as by changing
the contingency between the operant and the reward. In
a set-shifting study, Gass et al. (2014) trained rats to use
a visual cue to determine which lever to press to receive
a reward. Then they changed the rule so that the rat
would use location cues and ignore the previously
informative visual cue (i.e., set shifting). AIE exposure
impacted learning this new rule—rats took longer to
perform to criterion and made more errors than control
rats (Gass et al., 2014). In a separate group of rats, Gass
et al. (2014) trained rats to self-administer a 20%
alcohol solution and found that AIE-exposed rats self-
administered more alcohol than controls, similar to
other reports (Alaux-Cantin et al., 2013). However,
when the alcohol reward was withheld (i.e., extinction
training), control rats learned to stop pressing the lever
much faster than AIE-exposed rats (Gass et al., 2014).
In humans, a similar resistance to extinction or absti-
nence of alcohol drinking after adolescent binge drink-
ing could increase alcohol consumption in adulthood, as
well as make it more difficult for individuals to dis-
continue drinking once initiated. Interestingly, the
deficits in both set-shifting and extinction learningwere
reversed by treatment with the positive allosteric
mGluR5 modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-
5-yl) benzamide, a putative cognitive-enhancing agent.
The procognitive effect of 3-cyano-N-(1,3-diphenyl-1H-
pyrazol-5-yl) benzamide may be due, in part, to its effects
on the medial PFC (Fowler et al., 2013), a brain region
particularly vulnerable to the neurotoxic effects of ado-
lescent binge ethanol exposure (Crews et al., 2007). Thus,
AIE disrupts frontal cortical control, increases repetitive
habit-like responding, and reduces the ability to adapt to
changes in reinforcement.

IX. Adolescent Alcohol Effects on Anxiety and
Negative Affective Behavior

Adolescents can be highly emotional, with some
suggesting that adolescents drink alcohol to enhance

positive emotional states (e.g., enhancement motives),
which has been related to heavy drinking and is linked
to certain adolescent personality characteristics, such
as sensation seeking, low inhibitory control, and impul-
sivity (Siqueira et al., 2015). Adolescents often exhibit
high emotional and impulsive decision making, associ-
ated with negative affective states and low distress
tolerance (Ernst and Fudge, 2009), especially among
teens who misuse alcohol or drugs (Clark et al., 2008).
For example, among Caucasian adolescents, negative
affect and low distress tolerance are associated with
increased probability of alcohol use (Daughters et al.,
2009). Furthermore, protracted heavy drinking may
provoke negative affect (Brown et al., 1995; Liappas
et al., 2002) and diminish problem-solving abilities
(Brown et al., 2000; Goudriaan et al., 2007). Youth
who engage in heavy episodic drinking have greater
recent and lifetime alcohol consumption, more frequent
alcohol-induced blackouts, and more withdrawal symp-
toms, with all being associated with increases in
negative affect (Winward et al., 2014). These studies
are consistent with the hypothesis that binge levels of
alcohol drinking during adolescence result in more
negative affect in adulthood. Although emotional re-
sponses are difficult to quantitate in animal models,
multiple assessment methods of affect have been de-
veloped to determine negative affect and/or anxiety-like
behavior in rodents. In general, studies suggest that
adolescent ethanol exposure induces long-lasting in-
creases in adult negative affect, although there are
some caveats to this conclusion.

A. Rodent Models of Anxiety

Manymethods of assessing anxiety in rodents involve
measuring locomotion in an experimental chamber, and
relative locomotion in risky versus safe aspects of the
environment provides an index of anxiety. Such tests
include the light–dark box (consisting of a brightly
illuminated compartment and a dark compartment)
and the elevated plus maze (EPM; consisting of a plus-
shaped maze with two open arms and two enclosed
arms). Similarly, the open-field test can be used to index
anxiety as highly anxious rodents display thigmotaxic
behavior, in which they remain close to the walls of the
chamber and do not venture into the center. All of these
tests involve a conflict between the rodent’s tendency to
explore a new environment with the discomfort of being
in a bright, elevated, or otherwise unsafe environment
(Bourin and Hascoet, 2003). Anxiolytic drugs increase
time in the illuminated compartment of the light–dark
box and the open arms of the EPM, whereas drugs
that reduce time in the illuminated compartment are
thought to reflect anxiogenic activity (Pellow et al.,
1985; Lister, 1987; Onaivi andMartin, 1989; Bourin and
Hascoet, 2003; Prut and Belzung, 2003). Young adoles-
cent rats (P34) move more quickly out of the light com-
partment into the dark compartment in the light–dark
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box, consistent with adolescent high anxiety-like behav-
ior, but by late adolescence (P55) behavior is compara-
ble to adult performance (Desikan et al., 2014). Acute
ethanol is anxiolytic, and, similar to other ethanol
responses, adolescent rats required a higher dose of
alcohol to increase open arm times in the EPM than
adult rats (Varlinskaya and Spear, 2002; Sakharkar
et al., 2012, 2014; Pandey et al., 2015). When examining
the long-term effects of adolescent alcohol, Sakharkar
et al. (2016) found that AIE exposure led to increased
anxiety-like behavior in adulthood, as indicated by a
significant reduction from about 65% to 35% time spent
exploring the illuminated compartment of the light–dark
box. Likewise, AIE exposure of Sprague–Dawley rats
resulted in heightened anxiety-like behavior in the
EPM, specifically, a decrease in open arm entries from
about 45% to 30% at 24 hours after AIE that persisted
for at least 50 days (Pandey et al., 2015). In the open-
field test, AIE-exposed mice exhibited reduced center
exploration when assessed in adulthood (Coleman
et al., 2014), and AIE-exposed rats displayed longer
latencies to enter the center (i.e., thigmotaxis) when
assessed over 100 days later (Vetreno et al., 2014).
Consistent with the findings that AIE enhanced anx-
iety in adulthood, other studies reported persistent
increases in immobility in the Porsolt swim test. This
test assesses the latency of the rodent to become
immobile following placement into a cylinder of water
and is a screen for antidepressant drugs, which increase
the latency to immobility. Adult animals exposed to AIE
exhibited both faster latency to immobility as well as
more sinking episodes than controls (Slawecki et al.,
2004; Ehlers et al., 2011).

B. Anxiety or Disinhibition?

As mentioned above, these common tests of anxiety
measure the locomotion arising from the conflict of
innate fear of brightly illuminated areas contrasted
with the drive to explore novel environments. Conse-
quently, these tests are known to vary across sites and
can be confounded by impulsivity, poor behavioral
control, and hyperactivity. In light of this, it may not
be surprising that some studies have reported results
that do not support enhanced anxiety when using the
same tests. For example, Ehlers et al. (2013b) found
that adult AIE-exposed animals exhibited shorter la-
tencies to enter the light box as well as more vertical
movements (rears) in the light compartment, which
they interpreted as evidence that the AIE-exposed adult
animals were more aroused and disinhibited. Other
studies found that AIE exposure increases open arm
time in the EPM in adulthood, suggesting arousal,
disinhibition, and/or impulsivity, as well as anxiolytic
responses (Ehlers et al., 2011; Gilpin et al., 2012; Gass
et al., 2014). The interpretation of these data as
disinhibition is supported by findings from the modified
open-field conflict test. This test provides a measure of

disinhibition by assessing a rodent’s contact with a food
pellet in the center of a brightly illuminated test
chamber. Relative to control subjects, adult animals
exposed to AIE spent significantly more time approach-
ing and consuming the food pellet, suggestive of dis-
inhibitory behaviors (Ehlers et al., 2011). A potential
mechanism for disinhibition could involve AIE-induced
alterations in the maturation of the PFC. Indeed, Shah
et al. (2004) found that inactivation of the PFC results in
increased exploration of the open arms on the elevated
plus maze.

Thus, anxiety and disinhibition appear to be con-
founds in these tests of anxiety, and the assessments of
AIE exposure most likely reflect relative effects be-
tween these outcomes. One factor that may contribute
to the disparate findings is the strain of rat, as rat
strains are known to differ in baseline anxiety mea-
sures. Specifically, some reports of AIE-induced anxiety
in adulthood used Sprague–Dawley rats (Pandey et al.,
2015; Sakharkar et al., 2016), whereas those reporting
disinhibition or impulsivity used Long–Evans orWistar
rats (Ehlers et al., 2011; Gass et al., 2014), although AIE
enhanced thigmotaxis (consistent with enhanced anxi-
ety) in adulthood in Wistar rats (Vetreno et al., 2014).
Another potential factor is the AIE regimen, as the
studies reporting enhanced anxiety used bolus admin-
istration routes (intragastric, i.p.) and those reporting
disinhibition or anxiety applied the ethanol via vapor. A
critical difference in these regimens is that the bolus
administration will produce more dynamic BEC that
rapidly rise and then fall, whereas vapor results inmore
stable, high BEC. Although all these routes achieve
binge levels of alcohol, the different dynamics may shift
the balance from enhanced anxiety to enhanced disin-
hibition. Thus, evidence from multiple laboratories
indicates that AIE can promote both anxiety and
disinhibition, but the nature of rodent assessments
prevents a clear determination of how AIE impacts
these two traits.

C. Rodent Models of Social Anxiety

Another measure of anxiety and negative affect in the
rodent is the social interaction test. Human studies of
adolescent development show that adolescents spend
more time interacting with their peers than any other
age group (Hartup and Stevens, 1997), and these peer
interactions become highly significant and motivating
(Steinberg and Morris, 2001; Spear, 2010). In a de-
velopmentally similar manner, adolescent rats engage
in substantially more social activity with age-matched
rats, typically in the form of play fighting (Vanderschuren
et al., 1997; Varlinskaya and Spear, 2002, 2008). The
rodent social interaction test can be used to measure
these adolescent-typical behaviors by assessing social
motivation as well as play fighting and social investi-
gation (Varlinskaya et al., 1999) and to provide an index
of anxiety-like behavior in social settings (File and Seth,
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2003). In adolescent rats, low-dose acute ethanol chal-
lenge (e.g., 0.50 g/kg) in familiar, nonanxiogenic environ-
ments leads to increases in social behavior characterized
by increased play fighting that is not observed in adults
(Varlinskaya and Spear, 2002, 2006, 2007; Willey et al.,
2009), which may be related to enhanced sensitivity to
the rewarding effects of ethanol during adolescence (as
discussed above). However, higher doses of ethanol (e.g.,
1 g/kg) cause social inhibition, albeit to a lesser degree
in adolescent relative to adult rats (Varlinskaya and
Spear, 2002). These behavioral changes are not simple
locomotor effects; the same doses of ethanol do not alter
measures of nonspecific locomotion in novel test envi-
ronments (Varlinskaya and Spear, 2002). Early AIE
exposure (P25–P45) significantly decreases social pref-
erence and social investigation in adult male but not
female rats, indicating that AIE-induced social anxiety
is sex-specific. Interestingly, this effect appears to be
specific to early adolescence, as intermittent ethanol
exposure during late adolescence (P45–P65) did not
affect social measures in adulthood. Furthermore, a
history of AIE, regardless of the timing of exposure,
altered the adult male responses to an acute ethanol
challenge—specifically, an alcohol challenge increased
social investigation and play fighting displayed by AIE-
exposed males that were reminiscent of behaviors
typically observed during adolescence, an effect that
was not observed in control-exposed rats (Varlinskaya
et al., 2014). These data suggest that early adoles-
cence, more than late adolescence, is a critical period
for establishment of age-appropriate social conse-
quences in male rats.

X. Adolescent Alcohol-Induced Neuroimmune
Gene Induction

As mentioned above, immune-signaling molecules
andmicroglia, the brainmonocyte-like cell, are involved
in synaptic plasticity and brain development. Dur-
ing brain development, microglia undergo dramatic
changes in morphology, being rounded and amoeboid
in the early postnatal period and attaining an adult-
like morphology by approximately P20–P30 in rat
cortex (Orłowski et al., 2003; Harry and Kraft, 2012).
Immune-signaling molecules, such as TLRs, HMGB1,
receptor for advanced glycation end products (RAGE),
proinflammatory cytokines, and other immune-
signaling molecules, contribute to brain develop-
ment (Boulanger and Shatz, 2004; Barak et al., 2014).
Although their precise developmental role is poorly
understood, TLRs undergo dynamic changes in expres-
sion during brain development (Kaul et al., 2012) and
regulate neuroprogenitor cells (Barak et al., 2014). TLR
and HMGB1 expression are increased in human develop-
mental cerebral cortical dysplasia (Zurolo et al., 2011),
consistent with involvement in cortical development.
During maturation of rat PFC from late adolescence

(P56) to adulthood (P80), there is an age-associated
reduction in expression of immune-signaling receptors
(TLR3, TLR4, and RAGE) that parallels thematurational
loss of cholinergic and other neurotransmitter receptors
(Vetreno and Crews, 2012; Vetreno et al., 2013). In
contrast, HMGB1 shows a developmental increase in
expression in PFC during maturation (Vetreno and
Crews, 2012). There are also developmental increases
and subunit changes in GABA and glutamate receptors
that most likely reflect maturation of synapses, as
discussed above. Interestingly, studies in mice find that
microglia play an important role in maturation of brain
synapses and function (Paolicelli et al., 2011; Paolicelli
and Gross, 2011). Brain neuronal development involves
overproduction of neurons and synapses that are later
pruned, and elimination of nonintegrated neurons and
silent synapses is associatedwith improved brain function
(Paolicelli et al., 2011) and brain regional connectivity
(Paolicelli and Gross, 2011).

Neuroimmune signals and HMGB1 activate micro-
glia as well as release glutamate from astrocytes
(Pedrazzi et al., 2006). Signaling between neurons,
microglia, and astrocytes contributes to synaptic exci-
tation (Fig. 2). Neuronal excitation can release HMGB1
from neurons, activating microglia, and astrocytes that
in turn increase synaptic glutamate and other mole-
cules to impact synaptic signaling. Moreover, alcohol
activates microglia and astrocytes (Guerri and Pascual,
2010) through neuroimmune signaling, possibly via
HMGB1 release from neurons (Zou and Crews, 2012).
Postmortem brains of humans with alcohol-use disorder
exhibited elevated microglial markers (He and Crews,
2007) and increased expression of HMGB1, TLR2,
TLR3, and TLR4 (Crews et al., 2013), as well as
proinflammatory cytokines and other neuroimmune-
signaling molecules (Crews and Vetreno, 2016). A
recent study reported that heavy binge-drinking ado-
lescents have increased blood cytokines (Ward, et al.,
2014). These results and others have led to the hypoth-
esis that ethanol induces neuroimmune-signaling mol-
ecules andmicroglial activation, and that this induction
in adolescence disrupts synaptic maturation.

In rats, AIE exposure increases HMGB1, TLR4, and
RAGE expression compared with controls, and each of
these signaling molecules remains elevated in absti-
nence and into adulthood (Vetreno and Crews, 2012;
Vetreno et al., 2013, 2014). These studies are consistent
with others indicating a vulnerability of the adolescent
brain to AIE, producing long-lasting changes that
persist into adulthood. Indeed, we found that expres-
sion of TLRs, RAGE, and HMGB1 was negatively
correlated with behavioral flexibility; specifically,
greater upregulation of innate immune receptor genes
was associated with greater impairments in Barnes
maze performance in adulthood (Vetreno et al., 2013).
The persistence of innate immune gene induction most
likely contributes to continuous neurodegeneration
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(discussed below), aswell as tomore specific insults to key
neurotransmitter systems during adolescent maturation
(Crews and Boettiger, 2009; Vetreno et al., 2014).
Although this review highlights HMGB1–TLR4 sig-

naling, there are multiple other proinflammatory genes
and proteins increased after AIE exposure in the rat,
many of which we have also observed in postmortem
brains of individuals with alcohol-use disorder. Our first
human brain studies looked at microglia and the
proinflammatory cytokine monocyte chemoattractant
protein-1 (MCP-1; CC chemokine ligand 2), which is the
cytokine induced most robustly by ethanol among those
measured in brain slice cultures (Crews et al., 2006a;
Zou and Crews, 2010). We found that postmortem
brains from subjects with a history of alcohol-use
disorder contain increased levels of MCP-1 protein
and the microglial marker Iba-1 in hippocampus,
ventral tegmental area, nucleus accumbens, and amyg-
dala (He and Crews, 2007). In later studies, we focused
on the OFC, a component of the PFC, and determined
that postmortem alcoholic OFC has more expression of
HMGB1 as well as TLRs and RAGE (Crews et al., 2013;
Vetreno et al., 2013). We also observed increased
interleukin (IL)-1B inflammasome markers in post-
mortem alcoholic hippocampus that could contribute
to loss of neurogenesis (Zou and Crews, 2012). In
addition, NADPH-oxidase is increased in human alco-
holic OFC (Qin et al., 2013), consistent with increased
oxidative stress, as found in the mouse brain after
ethanol exposure (Qin et al., 2013). These findings show

that neuroimmune-signaling pathways are upregulated
in alcohol-use disorder, which may be an important
aspect of the neurobiology of the disease (Fig. 3). Indeed,
work from theHarris laboratory found that activation of
the innate immune system increases alcohol consump-
tion in mice (Blednov et al., 2011). Studies by multiple
laboratories find that TLR, HMGB1, and other
neuroimmune-signaling molecules are increased by
alcohol and/or alter responses and preference for drink-
ing alcohol, suggesting a bidirectional relationship be-
tween neuroimmune signaling and alcohol drinking.

As adolescent drinking is known to increase the risk
of developing alcohol dependence during one’s lifetime,
we investigated the relationship between alcohol drink-
ing and neuroimmune gene expression across control
and alcoholic postmortem brains (Vetreno et al., 2013).
Interestingly, two forms of correlations were found
linking neuroimmune gene expression to alcohol con-
sumption and alcoholism. First, we found thatHMGB1–
TLR4 expression in OFCwas negatively correlated with
age of drinking onset—that is, expression was higher in
individuals who initiated alcohol use early. Second, total
lifetime alcohol consumption across groups was posi-
tively correlated with OFC expression of HMGB1, TLR4,
TLR3, TLR2, and RAGE. This persistent relationship
between cumulative alcohol use and HMGB1 and TLR
gene induction in brain provides support to the hy-
pothesis that alcohol-induced neuroimmune signaling
results in long-term changes in brain function and
neurodegeneration.

Fig. 2. Spreading proinflammatory signals across neurons and glia contributes to innate immune gene induction and hyperexcitability following AIE
exposure. Left: Alcohol, glutamate, and other inflammagens cause the nuclear release of HMGB1 from neurons that cause microglia to become hyper-
ramified, resulting in further release of HMGB1 and other proinflammatory signals. As a consequence, astrocytes reduce glutamate reuptake (Zou and
Crews, 2005), thereby increasing extracellular glutamate levels that induce neuronal excitability, and leading to further release of HMGB1 in a
positive feedback cycle. Right: Simplified schematic depicting innate immune induction of hyperexcitability. (1) Ethanol administration leads to
neuronal release of HMGB1 into the extracellular space. (2) Extracellular HMGB1 binds to TLRs on microglia and RAGE, leading to the release of
TNF-a and other innate immune signals. (3) TNF-a binds to TNF receptors on astrocytes, leading to glutamate sensitivity and reduced reuptake
through glutamate transporters. (4) Increased glutamate in the synapse activates N-methyl D-aspartate receptor subtype 2B (NR2B), culminating in
hyperexcitability. Neuronal hyperexcitability can contribute to alterations in neuronal connectivity as well as causing excitotoxicity. Figure adapted
from (Crews et al., 2011).
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The critical role of neuroimmune gene induction in
the persistent effects of adolescent alcohol exposure on
neurobiology is stongly supported by Guerri’s studies in
both rats (Pascual et al., 2014) and mice (Alfonso-
Loeches and Guerri, 2011). AIE exposure in rodents
insults PFC, hippocampus, cerebellum, white matter,
as well as cognition and reward. Guerri’s laboratory
finds that alcohol exposure increases neuroimmune
protein expression, as assessed by both in vitro and
in vivo methods. Guerri’s studies describe adolescent
alcohol-induced changes in the dopaminergic system,
white matter, and myelination, as well as synaptic and
epigenetic factors, all of which may contribute to
changes in adult alcohol reinforcement, anxiety, and
cognition dysfunction, and other behaviors consistent
with alcohol addiction (e.g., Pascual et al., 2007, 2009,
2012, 2014; Montesinos et al., 2015, 2016). Multiple
studies have found that transgenic mice lacking TLR4
do not show adolescent brain neuroimmune gene in-
duction following adolescent alcohol exposure (Montesinos
et al., 2015, 2016; Alfonso-Loeches et al., 2016). Fur-
thermore, these mice lacking TLR4 do not show the

changes in anxiety, alcohol drinking, cognitive dysfunc-
tion, reduced myelination, glial activation, glutamate,
and GABA receptor protein expression or epigenetic
marker expression typically found following AIE treat-
ment of control mice. Taken together, these studies
support the hypotheses that the long-lasting pathology
associated with adolescent alcohol abuse is linked to
alcohol-induced neuroimmune activation and its result-
ing pathologic changes in brain.

XI. Brain Electroencephalography and Sleep

Brain function can be assessed using electroenceph-
alography (EEG), an electrophysiological method that
records the electrical activity across the brain to evaluate
function. EEG rhythmic activity or event-related poten-
tials (ERP) that measure brain responses to a specific
sensory, motor, or cognitive event can be studied in both
rats and humans to investigate how the brain processes
sensory information (Handy, 2005). The P300 or P3
component of the ERP is an electrophysiological mea-
sure commonly studied in both humans and rats (Bauer

Fig. 3. Innate immune-signaling cascades and evidence for upregulation in brain following AIE exposure. A simplified schematic of the TLR and
RAGE signaling cascades. Stimulation of TLRs and RAGE with their endogenous agonist HMGB1 and other inflammagens [e.g., lipopolysaccharide
(LPS)] leads to the generation of proinflammatory oxidases and reactive oxygen species (ROS) and downstream activation of NF-kB. Nuclear
translocation of NF-kB leads to the secretion of proinflammatory gene expression, innate immune gene induction, cell death, and addiction-like
behaviors. AP-1, activator protein-1; CD14, cluster of differentiation 14; ERK, extracellular signal-regulated kinase; IKK, inhibitor of nuclear factor
k-B; JNK, c-Jun N-terminal kinases; MyD88, myeloid differentiation primary response gene 88; Src, proto-oncogene tyrosine-protein kinase; TIRAP,
Toll/interleukin-1 receptor domain-containing adaptor protein.
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and Hesselbrock, 1999; Porjesz et al., 2005; Ehlers and
Criado, 2010). The P3 is a positive potential that occurs
approximately 300 ms after unexpected and task-
relevant sounds or lights (Gratton et al., 1988). In
humans, the amplitude and latency of the visual P3
reduce across adolescence until stabilizing in early
adulthood (Hill and Shen, 2002). Adolescent humans
and rats have higher amplitude and longer auditory P3
latency compared with adults of their species (Polich
et al., 1990; Ehlers and Criado, 2010). A low P3
amplitude in youth with a family history of alcohol-
ism has been suggested to represent impaired in-
hibitory regulation or disinhibition, possibly due to a
developmental delay (Hill and Shen, 2002; Bauer and
Hesselbrock, 2003; Berman et al., 2006; Tremere and
Pinaud, 2006). Studies of young adult southwestern
California Native Americans with a history of adoles-
cent binge drinking reported that low P3 amplitude was
related to ethanol dependence (Criado and Ehlers,
2007; Ehlers et al., 2007). Similarly, rats exposed to
AIE for 10 days (P30–P40) and assessed as adults 6–
7 weeks after ethanol exposure display a reduced P3
ERP amplitude in the dorsal hippocampus (Criado and
Ehlers, 2007; Ehlers et al., 2007). Adults tend to have
increased ERP amplitude as compared with adoles-
cents. The reduced hippocampal ERP amplitude follow-
ing AIE exposure is consistent with disruption of
hippocampal maturation of function (Ehlers and Criado,
2010). Additional studies are needed to determine how
the lasting changes in ERPmay be related to alterations
in hippocampal neurogenesis, cholinergic signals, gluta-
mate excitatory synapses, and/or other AIE-induced
changes in adult hippocampus.
The effect of ethanol challenge on ERP responses in

adult rats is also altered by AIE treatment. Similar to
humans, adolescent rats (P32) have longer latency P3
components compared with adults. In rats, a dose-
dependent increase in the latency of the P3 auditory
ERP was observed after ethanol (1.5 and 3.0 g/kg) in
both adolescents and adults. In adult rats (P99), the
change in P3 latency due to ethanol challenge was
smaller in rats with a history of AIE compared with
age-matched controls not exposed to ethanol during
adolescence (Ehlers et al., 2014a). These findings are
consistent with other AIE findings supporting long-
lasting decreases in adult response sensitivity to etha-
nol and retention of the adolescent phenotype (Ehlers
et al., 2014a). These P3 ERP studies support the
hypothesis that AIE alters brain information processing
in adulthood, particularly after ethanol challenge, in a
manner that reflects behavioral disinhibition and per-
sistence of adolescent-like responses to ethanol.
The EEG also assesses rhythmic neural activity, with

rhythmic activity divided into frequency bands known
as alpha (8–15 Hz), beta (16–31 Hz), theta (4–7 Hz), and
delta (,4 Hz) (Ehlers and Criado, 2010). Event-related
oscillations (EROs) within and between different brain

regions are thought to reflect neural networks and can
provide insight into brain maturation in both humans
and rodents (Ehlers et al., 2014b). Higher ERO en-
ergy and lower synchrony are found in adolescent
humans and rats as compared with their adult coun-
terparts. During early adolescence, humans have
higher ERO energy in all frequency ranges (alpha, beta,
theta, delta) across cortical regions compared with
adults. Similarly, early adolescent rats have higher
ERO energy in all frequency ranges in parietal cortex
and in all frequencies except beta in frontal cortex as
comparedwith adult rats. Early adolescent humans and
rats also have lower synchrony within and across
cortical regions (Ehlers et al., 2014b). EEG under wake
and sleep conditions undergoes large changes in char-
acteristic amplitude and frequency during adolescence.
For example, EEG amplitude and frequency of the
posterior alpha rhythm are increased in the adolescent
brain. Slower waves in the waking EEG also decline
across adolescence (Niedermeyer and Lopes da Silva,
1999; Ehlers and Criado, 2010). These findings are
consistent with adolescent remodeling of the brain to
increase brain regional connectivity, decrease ERO
energy, and increase synchrony during maturation of
local and regional neurocircuits in both rats and
humans. Interestingly, the adult EEG theta response
to acute ethanol following AIE was blunted in parietal
cortex (Ehlers et al., 2013a). Thus, similar to the P3
ERP studies described above, adolescent waking EEG is
less sensitive to ethanol than adult responses, and AIE
blunts the sensitivity of waking EEG to ethanol chal-
lenge in adult rats.

The EEG has been used to study sleep in both rats
and humans. EEG is used in sleep studies with other
monitors of eye movements and muscle activity that
divide sleep stages. A well-studied EEG pattern is the
oscillatory theta rhythm of 6–10Hz, which is prominent
in the rat hippocampus, but is also observed in other
cortical and subcortical brain structures. Hippocampal
theta is observed during a variety of activities, including
locomotion and active sniffing, as well as during rapid
eye movement (REM) sleep. Theta rhythm in the
hippocampus requires cholinergic-GABAergic circuits
between the medial septal area and the hippocampus.
Most sleep in humans is nonrapid eye movement
(NREM or non-REM sleep), and theta disappears in
NREM sleep. NREM sleep is divided into three stages,
N1, N2, and N3, with the latter called delta sleep or
slow-wave sleep (SWS). More SWS occurs earlier in the
night, whereas REM sleep increases proportionally in
the last cycles before natural awakening. The effects of
alcohol on sleep have been studied extensively in adults
(Roehrs and Roth, 2001). For example, chronic alcohol
abuse in adults produces abnormal sleep patterns that
are evident up to 2 years following the last use of alcohol
(Drummond et al., 1998). Furthermore, during absti-
nence, EEG peak frequencies increase in individuals
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recovering from alcohol dependence (Irwin et al., 2000)
with increases in REM sleep associated with relapse.
Thus, stages of sleep EEG change during alcohol de-
pendence and recovery.
During adolescence, sleep EEG follows a matura-

tional trajectory. For example, waking delta and theta
power decline by about 65% between early adolescence
(e.g., ages 9–12) and 17 years of age. The maturational
decreases in delta and theta sleep EEG are unrelated to
pubertal maturation, but are strongly linked to age
(Feinberg and Campbell, 2010). The age-related ado-
lescent decline in EEG power is associated with an
increase in brain regional interconnectivity and func-
tional specialization of neural networks that underlie
the cognitive improvements during maturation to
adulthood (Quartz and Sejnowski, 1997; Tarokh et al.,
2010). Acute ethanol challenge in naive adolescent rats
alters subsequent sleep; for example, 20 hours after
ethanol treatment during the rats’ next sleep cycle,
ethanol withdrawal decreases SWS frequencies (1–
4 Hz) more in adolescents than adults, suggesting that
adolescents are more susceptible to hangover disrup-
tion of SWS (Ehlers et al., 2013a). AIE exposure
followed by 5 weeks of abstinent maturation to adult-
hood also caused a significant reduction in episode
duration and total amount of SWS in rats as compared
with controls. According to spectral analysis, AIE
significantly increases cortical peak frequencies in the
2–4 Hz, 4–6 Hz, and 6–8 Hz bands during SWS. These
findings indicate that AIE exposure reduces adult SWS,
consistent with the interpretation that AIE has altered
brainmaturation of the processes regulating sleep. Poor
quality sleep is associated with family history of alcohol
dependence, diagnoses of alcohol-use disorders or major
depressive disorders across a lifetime, and accultura-
tion stress. As mentioned above, EEG peak frequencies
increase in alcohol-dependent individuals in recovery
(Irwin et al., 2000), and increases in REM sleep may be
an indicator of alcohol relapse (Irwin et al., 2009). Thus,
changes in EEG during adolescent maturation as well
as during alcohol dependence and recovery are consis-
tent with EEG, providing insight into the mechanisms
of brain maturation and the development of alcohol
dependence.
Although the function of sleep is poorly understood,

changes in sleep during maturation and in individuals
with psychopathology have helped unravel some sleep-
related mechanisms (Feinberg and Campbell, 2010).
REM sleep is initiated by cholinergic neurons and
inhibited by monoamines such as 5-HT (Brown et al.,
2012). REM sleep has been referred to as paradoxical
sleep because high-frequency EEG waves that are
similar to a waking state occur, yet awakening an
individual during REM is more difficult than any other
sleep stage. The functions of sleep include links to
increased clearance of metabolic waste products via
the glymphatic system (Xie et al., 2013) as well as

alterations in immune signaling. Sleep-deprived rats
show a 20% decrease in white blood cell count and
significant alterations in the immune system (Zager
et al., 2007). Cytokines, such as IL-1 and tumor necrosis
factor (TNF), play a role in the regulation of normal
mammalian NREM. Electrophysiological, biochemical,
and molecular genetic studies find that blocking IL-1 or
TNF systems reduces spontaneous NREM sleep of
healthy animals. Furthermore, antigenic challenge to
the immune system increases brain IL-1 and TNF as
well as NREM. Because sleep deprivation impairs
immune function and immune challenge affects sleep,
it has been hypothesized that sleep may be considered a
component of the acute-phase response to infection and
functions in host defense (Krueger and Majde, 1990;
Opp, 2009). More recent studies have found that sleep
alters monocyte–macrophage immune cell phenotypes,
such as M1-proinflammatory macrophages or M2-
trophic wound-healing macrophages (Hakim et al.,
2014). For example, sleep deprivation reduces the
healing of burns in rats (Gümüştekín et al., 2004) and
enhances tumor growth in mice (Hakim et al., 2014).
Depriving mice of sleep suppresses proinflammatory
signals that promote tumor growth. Sleep deprivation
shifted macrophages to M2 phenotypes with more
TLR4. As discussed above, TLR4 molecules are signal-
ing molecules for immune system activation that are
also altered during brain development and by ethanol.
Transgenic mice lacking TLR4 were resistant to the
effects of sleep deprivation, consistent with sleep con-
tributing to normal immune-signaling processes and
overall health. In alcohol-dependent individuals, in-
creased markers of inflammation coincide with more
REM sleep, which is thought to predict alcohol relapse.
Pharmacologic neutralization of TNF-a, a proinflam-
matory cytokine, significantly reduces REM sleep in
abstinent alcohol-dependent subjects, linking circulat-
ing levels of TNF-a and REM sleep disruptions to the
neuropathology of alcoholism (Irwin et al., 2009). Thus,
innate immune signaling influences sleep cycles and
maturation of sleep, and the enhanced innate immune
signaling observed in adult rodents after AIE exposure
may be one mechanism by which AIE disrupts adult
sleep.

XII. Cholinergic System Development and Effects
of AIE

Cholinergic neurons of the basal forebrain play a
major regulatory role in learning and memory and are
the primary source of cholinergic innervation to the
hippocampus (Mesulam et al., 1983; Smith and Pang,
2005). They are generated early in embryonic develop-
ment (Gould et al., 1989, 1991; Dinopoulos et al., 1992;
Linke and Frotscher, 1993) and continue to undergo
maturational consolidation of projections during ado-
lescence (Matthews et al., 1974; Nadler et al., 1974;
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Zahalka et al., 1993). Cholinergic neurons begin to
extend their axons toward the hippocampus during
embryonic development (Linke and Frotscher, 1993),
and axonal expression of acetylcholinesterase, the
principal enzyme responsible for degrading acetylcho-
line, within the hippocampus increases through early to
mid-adolescence (P21–P35) (Armstrong et al., 1987;
Gould et al., 1991). Similarly, levels of choline acetyl-
transferase (ChAT), the enzyme responsible for acetyl-
choline synthesis, peak in hippocampus during early
adolescence (about P28) and remain relatively stable
until approximately P65, whereas activity of the high-
affinity choline transporter was found to increase
sharply during mid-adolescence (P40) and return to
baseline levels at about P50 (Zahalka et al., 1993). Thus,
basal forebrain cholinergic neurons have a developmen-
tal trajectory beginning in embryonic development that
extends to dynamic maturational synaptic refinement
during adolescence.
The NADIA Consortium has repeatedly found that

basal forebrain cholinergic neurons are vulnerable to
AIE exposure (Fig. 4). AIE causes a loss of ChAT-
immunopositive neurons in the basal forebrain of both
rats andmice that persists well into adulthood (Coleman
et al., 2011; Ehlers et al., 2011; Vetreno et al., 2014).
This effect appears to be somewhat selective for cholin-
ergic neurons, as mouse basal forebrain parvalbumin-
positive GABAergic neurons were not affected by AIE
exposure (Coleman et al., 2011). AIE also reduces
expression of the vesicular acetylcholine transporter,
which transports cytosolic acetylcholine into synaptic
vesicles for storage until release, in the adult basal
forebrain (Vetreno et al., 2014), consistent with the loss
of cholinergic neurons. In binge ethanol–exposed ado-
lescent mice, the reduction in cholinergic expression in
the basal forebrain is accompanied by downregulation
ofmultiplemuscarinic and nicotinic receptors (Coleman
et al., 2011) (see Fig. 5). AIE-induced loss of ChAT
expression is adolescent-specific because CIE treatment
of adults (P70–P90) did not reduce ChAT (Vetreno
et al., 2014). AIE exposure resulted in fewer ChAT plus
immunoreactive (IR) neurons at late adolescence (P56)
that persisted at similarly reduced levels into young
adulthood (P80) and to older ages (P220) (Vetreno et al.,
2014). Interestingly, exposure to endotoxin, a known
neuroimmune activator, induced a similar decrease in
ChAT plus IR, supporting the hypothesis that persis-
tent AIE-induced neuroimmune activation (Vetreno
and Crews, 2012, 2015; Vetreno et al., 2013) contributes
to the loss of ChAT plus IR. Assessments of ChAT
expression in postmortem alcoholic brain found a loss of
both ChAT and the vesicular acetylcholine transporter,
both markers of cholinergic neurons (Fig. 4) (Vetreno
et al., 2014). Additional studies are needed to under-
stand the role of cholinergic loss in alcoholism; how-
ever, given that human alcoholics tend to start drinking
early in adolescence and adult rats exposed to AIE

show similar deficits in ChAT expression, it is an in-
triguing possibility that these two phenomena may be
related.

XIII. Monoamine System Development and
Effects of AIE

A. Dopamine

Adolescent behavior is characterized by impulsive
and risky decision making, which can contribute to
alcohol use. These behavioral characteristics are often
attributed to specific maturational processes in the
brain (Varlinskaya et al., 2013). A circuit of interest
for these behaviors includes the ventral tegmental area,
nucleus accumbens, and PFC, which are anatomically
connected and play key roles in motivated behaviors
(Berridge and Robinson, 1998; Schultz, 1998; Miller and
Cohen, 2001; Wise, 2004; Goto and Grace, 2005;
Watanabe and Sakagami, 2007). Notably, the flow of
information through this circuit is clearly multidirec-
tional, involves specific subregions of the PFC and
accumbens, and is not completely understood. Studies
suggest that signals of motivational significance first
enter this circuit at the ventral tegmental area, which
sends dopamine projections to the PFC and accumbens
to trigger orienting and reward-seeking behavior
(Bromberg-Martin et al., 2010). The PFC and nucleus
accumbens also project to the ventral tegmental area
(Sesack and Pickel, 1992;Williams andGoldman-Rakic,
1998; Frankle et al., 2006); for example, PFC stimula-
tion canmodulate dopamine neuron firing (Gariano and
Groves, 1988; Svensson and Tung, 1989; Gao et al.,
2007; Jo et al., 2013). The PFC additionally sends
glutamatergic projections to the accumbens, where
inputs are integrated into the direct and indirect
pathways of the basal ganglia to produce motor output
(such as reward seeking). Importantly, both the meso-
limbic and mesocortical dopamine systems are chang-
ing during adolescence, but in different ways.
Electrophysiology and microdialysis studies indicate
that mesolimbic dopamine activity peaks during mid-
to-late adolescence (approximately P45), whereas
mesocortical dopamine activity appears to increase into
adulthood. Specifically, the mesolimbic dopamine sys-
tem, which is critical for reward-seeking and approach
behaviors, exhibits peak activity during adolescence,
with higher tonic dopamine levels and greater receptor
expression during adolescence as compared with juve-
nile or adult stages (Andersen et al., 1997; Badanich
et al., 2006; McCutcheon and Marinelli, 2009; Philpot
et al., 2009). PFC regions involved in executive control
(Blakemore and Robbins, 2012) that would moderate
reward-seeking and approach behavior develop more
slowly. During youth and adolescence, frontal lobe
maturation begins with the primary motor cortex,
whereas the PFC develops last (Gogtay et al., 2004).
At the same time, adolescence is characterized by
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gradual increases in dopaminergic innervation to the
PFC (Rosenberg andLewis, 1995; Spear, 2000;Wahlstrom
et al., 2010; Naneix et al., 2012) as well as changes in
dopamine receptor expression in the PFC (Andersen
et al., 2000; Naneix et al., 2012).
Many studies demonstrate alcohol-induced alteration

of dopamine neurotransmission in adulthood, as acute
alcohol increases the firing rate of dopamine neurons in
the ventral tegmental area (e.g., Gessa et al., 1985) and
increases both tonic and phasic release of dopamine in
the accumbens (e.g., Imperato and Di Chiara, 1986;
Robinson et al., 2009). Less is known about alcohol
effects on dopamine in themedial PFC, although alcohol
challenge can increase cortical dopamine concentra-
tions (Schier et al., 2013) and alcohol-preferring P rats
exhibit lower levels of medial PFC dopamine than
Wistar rats (Engleman et al., 2006).Most of this research
has been done in adults, with few studies measuring the
effects of alcohol on dopamine during adolescence. Of
note are microdialysis studies by Philpot and Kirstein
showing that adolescent rats have higher basal dopa-
mine levels in the accumbens and a greater dopamine
increase to alcohol challenge than adults (Philpot and
Kirstein, 2004; Philpot et al., 2009).
Emerging data also suggest that AIE has long-term

consequences on dopamine function. In adulthood,
tyrosine hydroxylase immunoreactivity was reduced
in the prelimbic PFC after an extended AIE (P28–
P53), and these rats also displayed a preference for risky
choice (Boutros et al., 2014). In one study, microdialysis

measurements of tonic dopamine in the accumbens
demonstrated that repeated alcohol exposure during
preadolescence and early adolescence decreased the
ability of acute alcohol challenge to induce dopamine
release in the nucleus accumbens (Philpot et al., 2009),
whereas another study reported no difference in the
effect of ethanol challenge after AIE, but an elevation in
basal dopamine levels in the accumbens (Pascual et al.,
2009). We recently reported that AIE during early to
mid-adolescence (P25–P45) blunted the effect of an
alcohol challenge to reduce the concentration of dopa-
mine released per impulse in adulthood compared with
controls (Shnitko et al., 2016). This finding suggests
that AIE exposure results in larger phasic dopamine
signals after an alcohol challenge, at least those phasic
signals arising from burst firing of dopamine neurons.
Consistent with this interpretation, rats that consumed
alcohol during adolescence exhibited high-risk prefer-
ence as adults as well as higher phasic dopamine release
in the accumbens to the risky choice (Nasrallah et al.,
2011). Moreover, this effect was specific to AIE, as a
comparable adult ethanol exposure regimen did not
alter risk preference (Schindler et al., 2014). Another
dopamine-associated behavior that is altered by AIE is
anhedonia, measured with intracranial self-stimulation.
AIE-exposed rats did not differ from controls in reward
current threshold at baseline, but were less likely to
exhibit reward deficits (increased reward current thresh-
olds) after a single or repeated alcohol challenge (Boutros
et al., 2014).

Fig. 4. Alcohol disrupts the basal forebrain cholinergic system in rats and humans. Top: Simplified schematic of the cholinergic system of the brain.
Animal studies have implicated the cholinergic system as important in a host of functions, including cognition and executive function, behavioral
control, reward processes, and sleep. AIE exposure causes a reduction of ChAT + IR neurons, which synthesize acetylcholine, throughout cholinergic
nuclei of the brain (Vetreno et al., 2014); this loss might contribute to persistent cognitive and emotive dysfunction in adulthood. Bottom left: Multi-site
analysis of data from the NADIA Consortium reveals that AIE exposure causes a 35% reduction of ChAT + IR neurons in the adult basal forebrain.
Bottom right: ChAT protein expression is reduced by 51% in the postmortem human alcoholic basal forebrain, relative to moderate drinking controls.
Furthermore, protein expression of vesicular acetylcholine transporter, which packages acetylcholine into synaptic vesicles, is reduced by 30% in the
postmortem human alcoholic basal forebrain, relative to moderate drinking controls. Multisite analysis was calculated by Dr. Margaret Burchinal from
five independent data sets (unpublished data from Crews’ laboratory; Ehlers et al., 2011; Boutros et al., 2014; Vetreno et al., 2014). Data are presented
as a mean 6 S.E.M. *P , 0.05, **P , 0.01, relative to CON.
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Less is known about consequences of AIE on meso-
cortical dopamine systems. AIE induced downregula-
tion of dopamine receptor expression in the medial PFC
(Pascual et al., 2009), and preliminary data suggest that
AIE impairs function of dopamine D1, but not D2-type,
receptors in the same region (Trantham-Davidson et al.,
2015). AIE impacts on mesocortical dopamine may be
postsynaptic rather than presynaptic, as one study
found that early to mid-adolescent ethanol exposure
(P25–P45) did not alter the response of electrically-
evoked dopamine release to an alcohol challenge (Shnitko
et al., 2014). However, negative data can be difficult to
interpret—it is possible that a later AIE exposure
targeting the mid-to-late adolescent period during which
the medial PFC matures might have a greater impact on
mesocortical dopamine release, or it is possible that
AIE alters some aspects of cortical dopamine release
(e.g., tonic levels) other than impulse-dependent release.
Indeed, there is much unknown about AIE alterations
in both striatal and cortical dopamine function, includ-
ing local regulation of dopamine release by D2 autore-
ceptors, cholinergic receptors, and glutamatergic receptors

at dopamine terminals and in microcircuits involving
interneurons.

In summary, AIE produces effects on dopamine-
associated behavior and neurophysiology that persist
into adulthood and may contribute to behavioral phe-
notypes such as risky choice and sensitivity to alcohol
reward that can lead to excessive alcohol intake in
adulthood.

B. 5-HT

5-HT is an important neuromodulatory neurotrans-
mitter synthesized in the raphe nucleus. It is one of the
first systems to develop in the mammalian brain
(Rubenstein, 1998), as 5-HT–immunopositive neurons
are generated during early embryonic development
(Wallace and Lauder, 1983). Although studies describ-
ing serotonergic system development during adoles-
cence are limited, the existent data suggest that this
system continues to mature during adolescence, similar
to other neurotransmitter systems. Levels of 5-HT
within the central nervous system are at approximately
68% of adult values by P32 inWistar rats (Loizou, 1972).

Fig. 5. Adolescent binge ethanol exposure reduces cholinergic marker expression in the whole mouse brain. Adolescent mice received either water
(CON) or ethanol (EtOH; 5.0 g/kg, i.g.) once per day for 10 consecutive days from P28 to P37. Alcohol treatment ended on P37. Shown in (A–D) are
expression levels (mRNA) 1 day after the last AIE dose of ethanol and 50 days after the last dose in AIE animals (Coleman et al., 2011). Changes in
controls represent maturation from adolescence to adulthood. (A) mRNA levels of ChAT, the acetylcholine-synthesizing enzyme, were reduced by 55%
in adolescent mouse whole brain samples 24 hours after the conclusion of EtOH exposure (P38) as well as by 58% in adulthood (P88) compared with
CON. (B) Comparison of ChAT immunohistochemistry revealed an 8% reduction of ChAT–immunopositive cells in the posterior basal forebrain of
EtOH-treated adult mice, relative to CON. (C) mRNA expression of muscarinic acetylcholine receptor subtypes R1 and R5 was reduced 24 hours after
the conclusion of EtOH exposure by 62% and 54%, respectively, which persisted into adulthood (R1: ↓45%; R5: ↓50%). (D) Similarly, mRNA expression
of nicotinic acetylcholine receptor subtypes a4 and a7 was reduced by 30% and 56% at the conclusion of EtOH exposure, respectively, that persisted
into adulthood (a4: ↓48%; a7: ↓54%). These data reveal that adolescent binge ethanol exposure leads to long-term alterations in the cholinergic system
that might contribute to cognitive dysfunction in adulthood. Data are presented as mean 6 S.E.M. *p , 0.05, relative to CON, and are adapted from
Coleman et al. (2011).
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Furthermore, cortical serotonergic synapses increase
from birth into adolescence (P35) in theWistar rat (Dori
et al., 1996). The hippocampus, a target of serotonergic
innervation from the raphe nucleus (Hensler, 2006),
undergoes a modest developmental peak in expression
of 5-HT terminals at approximately P50 (late adoles-
cence) in rats (Xu et al., 2001). In humans, there is an
age-associated decline in 5-HT1A autoreceptor expres-
sion in the human dorsal raphe from approximately age
18 through adulthood (Dillon et al., 1991). Thus,
although the existing literature reports that serotoner-
gic projections and receptors undergo maturational
refinement across mammalian adolescence similar to
other neurotransmitter systems, more detailed studies
are needed.
The continued maturational refinement of the sero-

tonergic system most likely increases the vulnerability
of this system to the effects of adolescent binge drinking.
Recent work from the Crews laboratory found that
intragastric AIE exposure (single 5 g/kg dose on a
2-day-on/2-day-off schedule from P25 to P55, producing
mean BECs of 0.18 g/dL) reduced 5-HT–immunoreac-
tive cells in the dorsal, but not median, raphe nucleus
of adult male Wistar rats. AIE also reduced 5-HT–
immunoreactive terminal field densities by 38% in the
hypothalamus and 20% in the amygdala (see Fig. 6).
Another study in maleWistar rats, using low-dose, sole-
source ethanol exposure (6.6% ethanol continuously for
6 weeks from ;P45 to P87, producing mean BECs of
0.02 g/dL), found transient reductions of 5-HT immu-
noreactivity (;30%) in the dorsal, but not median,
raphe nucleus, that were no longer evident following a
10-week recovery period (Evrard et al., 2006). One
interpretation of these findings is that a persistent loss
of 5-HT neuronal markers requires binge alcohol expo-
sure asmodeled by AIE. In any case, these data indicate
an earlier age of ethanol exposure and/or binge doses of
ethanol, whichmodel human adolescent binge drinking,
is detrimental to the developing adolescent serotonergic
system.

XIV. Hippocampal Development and Effects
of AIE

The hippocampus is among the brain regions whose
development has been studied across mammalian spe-
cies, relating morphologic and physiologic maturation
during adolescence (Gogtay et al., 2006; Hunsaker et al.,
2014). In addition, hippocampal neurogenesis, wherein
newborn neurons are formed and functionally inte-
grated into the hippocampal circuits, is a unique process
that continues into adulthood (Zhao et al., 2006, 2008)
and has been implicated in hippocampal-mediated
cognitive and emotive function (Madsen et al., 2003;
McHugh et al., 2004). Relative to adults, adolescents
have greater levels of hippocampal neurogenesis (He
and Crews, 2007; Vetreno and Crews, 2015) that is

associated with increased levels of neuroplasticity. In
addition, there is concomitant refinement of hippo-
campal neurotransmitter innervation and receptor
expression across adolescence. Early in adolescence,
hippocampal expression of dopaminergic D1, D2, and
D4 receptors increases several-fold until approximately
P35, when levels stabilize and persist into adulthood in
the rat (Tarazi and Baldessarini, 2000). Expression of
the inhibitory GABAA receptor g2 subunit undergoes a
maturational decline beginning on P30 and progressing
into adulthood in the rat (Yu et al., 2006; Centanni et al.,
2014), whereas maturation of synaptic activity of
the GABAB receptor occurs during mid-adolescence
(i.e., P35–P45) (Nurse and Lacaille, 1999). In paral-
lel, expression of the excitatory glutamatergic receptor
NMDA undergoes substantial pruning during adoles-
cence, as indicated by an approximate 25% reduction of
NMDA receptors between P28 and P60 in rats (Insel
et al., 1990). The hippocampus is also a target of seroto-
nergic innervation from the raphe nucleus (Hensler,
2006), which is the principal source of 5-HT synthesis,
and undergoes a modest late-adolescent peak (about
P50) in the expression of 5-HT terminals in rats (Xu
et al., 2001). Activity of ChAT, the enzyme responsible
for acetylcholine synthesis, increases dramatically to
P18 in the hippocampus, followed by general stability
through adolescence, whereas activity of the high-
affinity choline transporter increases sharply at ap-
proximately P40 to levels observed at birth, followed
by a return to baseline levels at about P50 (Zahalka
et al., 1993). In addition to hippocampal neurotrans-
mitter systems, other neuromodulatory proteins un-
dergo maturation during adolescence. Phosphorylated
cAMP-response element-binding protein, which is the
transcriptionally active form of the protein and critical
for the induction of BDNF and other trophic factors, is
expressed at high levels in the hippocampus early in
postnatal development (P7) and at progressively lower
levels during adolescence and adulthood (Toscano et al.,
2003). Studies of human hippocampus GABAergic and
synaptophysin, an integral synaptic vesicle protein, find
increases between adolescence and adulthood that are
consistent with changes in rat hippocampus (Eastwood
et al., 2006; Hyde et al., 2011). Thus, the mammalian
hippocampus undergoes extensive maturation during
adolescence that is particularly sensitive to adolescent
alcohol abuse or exposure-induced pathology.

The hippocampal dentate gyrus is one brain region
known to form new neurons long into adulthood.
Multiple studies have found that both acute and chronic
alcohol inhibits hippocampal neurogenesis (e.g., Crews
and Nixon, 2009). Multiple NADIA Consortium labora-
tories have found that AIE exposure, whether adminis-
tered intragastrically, i.p., or through vapor inhalation,
diminishes hippocampal neurogenesis, as discussed
in detail below. AIE exposure also alters matura-
tional refinement of neurotransmitter systems in the
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hippocampus. Indeed, adolescent (P30–P40), but not
adult, binge ethanol exposure reduced tonic GABAA

receptor-mediated inhibition in the adult rat hippocam-
pus (Fleming et al., 2013). Similarly, Guerri and
colleagues found that AIE exposure (P25–P38) in rats
reduced expression of the dopamine D2 receptor and
phosphorylated NR2B protein expression in the hippo-
campus 24 hours after the last ethanol administration
(Pascual et al., 2009). In contrast, ethanol vapor
exposure during postweaning and early adolescence
(P23–P37) led to an increase in protein expression of
the NR1 and NR2A subunit of the NMDA receptor
2 weeks following the conclusion of exposure in rats
(Pian et al., 2010). In addition, AIE exposure leads to an
adult reduction of BDNF in the hippocampus that was
specific to the BDNF IV promoter (Sakharkar et al.,
2016). Although the mechanism underlying the persis-
tent loss of hippocampal neurogenesis remains to be
fully elucidated, the data implicate a shift in the innate

immune-neurotrophic balance. Binge-like AIE expo-
sure upregulates innate immune genes in the adult
hippocampus (Vetreno and Crews, 2015) while reducing
expression of BDNF (Sakharkar et al., 2016). Interest-
ingly, treatment with the histone deacetylase inhibitor
trichostatin A reversed the AIE-induced reduction of
BDNF and recovered the loss of neurogenesis (Sakharkar
et al., 2016). Together, these data show that the matur-
ing adolescent hippocampus is vulnerable to develop-
mental modifications as a consequence of binge ethanol
exposure.

A. Neurogenesis in Development and Adulthood

Neurogenesis is a conserved process observed in
mammals (Kuhn et al., 1996; Gould et al., 1999),
including humans (Eriksson et al., 1998). Although
neurogenesis is primarily associated with prenatal
and early postnatal development, this process continues
to occur in the subventricular zone of the lateral

Fig. 6. AIE reduces 5-HT neurons in dorsal raphe nucleus, leading to alterations in terminal field projection densities. Top: Simplified schematic of the
serotonergic system of the brain. The serotonergic system innervates the entire brain and plays a neuromodulatory role in mood regulation, memory,
behavioral control, and reward processes. Dysregulation of this system has been identified as an etiological factor underlying several psychiatric
disorders, including depression, impulsivity, and alcohol dependence (Michelsen et al., 2007; Donaldson et al., 2013; Muller and Homberg, 2015;
Nautiyal et al., 2015). Bottom: Adult rats with a history of AIE exposure (5.0 g/kg, i.g., 2 days on/2 days off from P25 to P55) exhibit a 20% reduction of
5-HT–immunoreactive neurons in the adult (P80) dorsal raphe nucleus (DRN), whereas those in the median raphe nucleus (MRN) are spared.
Quantification of serotonergic terminal field densities revealed reductions of 20% and 38% from control (CON) in both the amygdala and
hypothalamus, respectively. The loss of 5-HT + IR neurons might contribute to AIE-induced cognitive and emotive dysfunction as well as increased
alcohol self-administration in adulthood. Data are presented as a mean 6 S.E.M. *p , 0.05, **p , 0.01, relative to CON.
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ventricles and the hippocampus of adults (Altman and
Das, 1965; Eriksson et al., 1998). Hippocampal neuro-
genesis is restricted to the mitotically active subgranu-
lar zone of the dentate gyrus (Abrous et al., 2005), and is
modulated by internal and external factors, such as
neurotransmitter systems (e.g., acetylcholine) (Cooper-
Kuhn et al., 2004), enriched environments (Cotman and
Berchtold, 2002), traumatic brain injuries and other
pathologies (Richardson et al., 2007), and drugs of abuse
(He et al., 2005). The generation and integration of
nascent neurons into established hippocampal neural
circuitry are thought to underlie adaptation to novelty
(Kempermann, 2002) and contribute to both cognitive
processes (e.g., Shors et al., 2001) and affective states
(e.g., Malberg et al., 2000).
Although the role of neurogenesis in adolescent brain

refinement and behavior has not been fully elucidated,
neurogenesis is more pronounced in the adolescent
hippocampus relative to adults (He and Crews, 2007;
Vetreno and Crews, 2015) and is highly vulnerable to
dysregulation by alcohol (Crews et al., 2006b). The
increase in neurogenesis in the adolescent hippocampal
dentate gyrus could reflect increased neuroplastic
processes. Whereas the link between hippocampal
neurogenesis and learning has not been fully explained
(Leuner et al., 2006), data support the hypothesis that
neurogenesis contributes to hippocampal-dependent
cognitive processes (Shors et al., 2001; Kempermann,
2002). Animals exposed to environmental enrichment
exhibit both increased learning skills and hippocam-
pal neurogenesis (Kempermann et al., 1997), whereas
neurogenesis inhibition impairs associative memory
(Shors et al., 2001). An age-associated decline in
hippocampal neurogenesis has been observed in hu-
mans (Spalding et al., 2013) and rodents (Kuhn et al.,
1996; Broadwater et al., 2014b), whichmight contribute
to age-associated cognitive decline (van Praag et al.,
2005). The Crews laboratory observed that expression
of the immature neuron marker doublecortin (Brown
et al., 2003) was significantly decreased from the end
of adolescence (P56) into adulthood (P220) throughout
the dentate gyrus (Vetreno and Crews, 2015). Simi-
larly, Broadwater et al. (2014b) found a similar age-
associated reduction of neurogenesis from P74 to P116
in the hippocampal dentate gyrus. The reduction in
neurogenesis with age could contribute to maturation of
cognitive and emotive factors as well as the deficits
observed in senescence. Models of depression in mice
find reduced neurogenesis related to neuroimmune gene
induction. These models show that antidepressants
reverse both stress-induced inhibition of neurogenesis
and depression-like behavior, linking antidepressant
mechanisms to increased adult neurogenesis (Banasr
and Duman, 2007; Iwata, et al., 2013). Indeed, reduc-
tions of plasticity and neurogenesis early in life may
manifest as vulnerability to psychopathologies such as
depression later in life (Klempin and Kempermann,

2007). Although the precise role of adult neurogenesis is
complex and poorly understood, studies of hippocampal
neurogenesis provide insight into hippocampal plastic-
ity, neuronal health, and growth as well as psychologic
and cognitive functions.

B. Long-Lasting Loss of Neurogenesis after AIE

As mentioned above, new neurons derived from
neural stem cells are continuously produced in the
hippocampal dentate gyrus (Altman and Das, 1965;
Eriksson et al., 1998; Alvarez-Buylla and Garcia-
Verdugo, 2002). As described above, adolescent hippocam-
pal neurogenesis is far greater than adult neurogenesis,
with neurogenesis declining with age across mamma-
lian species (He and Crews, 2007; Chesnokova et al.,
2016). The Crews laboratory and many others have
found that both acute and chronic ethanol exposure
reduces neurogenesis in the adult hippocampus (Jang
et al., 2002a,b; Nixon and Crews, 2002; Herrera et al.,
2003; He et al., 2005). Furthermore, ethanol exposure
during adulthood blunts the growth of the progenitor’s
dendritic arbor (He et al., 2005). Interestingly, adult
hippocampal neurogenesis is resilient, recovering over a
30-day period from the 4-day binge alcohol model
(Nixon and Crews, 2002) and a 7-week chronic, re-
lapsing model of alcohol dependence (Hansson et al.,
2010). In contrast to adult recovery from chronic ethanol
inhibition of hippocampal neurogenesis during with-
drawal and abstinence, AIE exposure causes a persis-
tent loss of hippocampal neurogenesis (Ehlers et al.,
2013b; Broadwater et al., 2014b; Sakharkar et al., 2016;
Vetreno et al., 2016b). For example, Vetreno et al.
(2015) found that AIE exposure in rats led to reduced
neurogenesis (i.e., loss of doublecortin-immunoreactive
neurons) in late adolescence (P56) that persisted
through to adulthood (P220) in both dorsal and ventral
dentate gyrus of the hippocampus (Fig. 7). AIE-induced
loss of neurogenesis most likely occurs due to both
reduced neuroprogenitor proliferation and increases in
cell death. AIE in rats results in loss of cells immuno-
positive for Ki-67, amarker of proliferating cells (Ehlers
et al., 2013b; Broadwater et al., 2014b; Sakharkar
et al., 2016; Vetreno et al., 2015), and similar decreases
are reported in nonhuman primate models of AIE
(Taffe et al., 2010). Furthermore, AIE in rodents
increases in hippocampal dentate gyrus expression of
the cell death markers cleaved caspase-3 (Broadwater
et al., 2014b; Vetreno and Crews, 2015) and Fluoro-
Jade (Ehlers et al., 2013b), consistent with loss of
neurogenesis due to decreased progenitor prolifera-
tion and increased death. The rodent subventricular
zone has a neurogenic region along the lateral ventri-
cles that also forms oligodendroglia progenitors,
and preliminary studies suggest that AIE reduces
subventricular zone progenitors (unpublished data).
Broadwater et al. (2014b) found that the persistent
loss of neurogenesis was specific to binge ethanol
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exposure during adolescence and not adulthood, in-
dicative of a unique vulnerability of the adolescent
hippocampal dentate gyrus to the neurotoxic effects of
alcohol. AIE exposure in nonhuman primates also
causes persistent reductions of neuroprogenitor markers
NeuroD and polysialylated neural cell adhesion mole-
cule in the hippocampal dentate gyrus as well as
increased FluoroJade markers of cell death (Taffe
et al., 2010). Thus, binge levels of alcohol exposure in
adolescents and adults reduce new neuron formation in
hippocampal dentate gyrus. Whereas adult hippocam-
pal neurogenesis recovers from alcohol with weeks of
abstinence, adolescent intermittent binge-drinking
models repeatedly find a loss of neurogenesis that per-
sists long into adulthood. As the adolescent brain is
uniquely sensitive to alcohol neurotoxicity (Crews et al.,
2007), decreased adult neurogenesis could contribute to
increased risks of adult psychopathology and cognitive
dysfunction.
Although animal models have consistently found that

AIE reduces neurogenesis within the adult hippocam-
pal dentate gyrus, the underlying mechanism remains
to be illuminated. However, studies from the Crews
laboratory using hippocampal-entorhinal cortex (HEC)
slice culture suggest that upregulation of the innate

immune system contributes to the detrimental effects of
ethanol on neurogenesis. Specifically, 100 mM ethanol
applied to HEC slices for 4 days diminished expres-
sion of neurogenesis markers, including 5-bromo-2-
deoxyuridine (an S-phase cell cycle mitotic marker),
Ki-67, and doublecortin, that was paralleled by elevated
expression of cytokines and the inflammasome IL-1b/
IL-18 complex (Zou and Crews, 2012). In addition, HEC
slices treated with either the proinflammatory cytokine
IL-1b or anti-inflammatory drugs decreased and in-
creased doublecortin expression, respectively. In the
AIEmodel, Vetreno and Crews (2015) found a long-term
upregulation of proinflammatory cytokines (i.e., TNF-a,
MCP-1, and HMGB1), TLR4, the TLR4 adaptor protein
CD14, and nuclear factor k-light-chain enhancer of
activated B cells (NF-kB) p65. NF-kB p65 mediates
nuclear translocation of NF-kB, where it modulates the
generation of proinflammatory cytokines. The subse-
quent release of proinflammatory cytokines induces
further synthesis and activation of NF-kB, thereby
providing support for the generation of positive-
feedback loops of innate immune activation (Crews
et al., 2011). Although the mechanism of innate
immune-induced reductions of hippocampal neurogen-
esis in the AIE model remains to be fully understood,

Fig. 7. Hippocampal neurogenesis is highly vulnerable to the neurodegenerative effects of adolescent binge ethanol exposure. Representative
photomicrographs of doublecortin (DCX) immunoreactivity, a neuroprogenitor microtubule-associated protein expressed by immature neurons, in the
adult dorsal and ventral hippocampal dentate gyrus following control (CON) and AIE (5.0 g.kg, i.g., 2 days on/2 days off from P25 to P55). Scale bars,
100 mm. The middle bar graph depicts multisite analyses of data from the NADIA Consortium. In adulthood (e.g., P80) following AIE, DCX +
immunoreactive (+IR) cells are reduced by 36%, which is accompanied by a concomitant 25% reduction in Ki-67 + IR, which is an endogenous marker of
progenitor cells (Vetreno and Crews, 2015). In parallel, cleaved caspase-3, which is a marker of cell death, was increased by 31% in the adult
hippocampal dentate gyrus of AIE-exposed animals. These data reveal that AIE leads to long-term reductions of hippocampal neurogenesis that could
contribute to cognitive deficits in adulthood. Multisite analysis was calculated by Dr. Margaret Burchinal from four independent data sets (Ehlers et al.,
2013b; Broadwater et al., 2014b; Swartzwelder et al., 2015; Vetreno et al., 2015). Data are presented as a mean 6 S.E.M. **p , 0.01, relative to CON.
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Rolls et al. (2007) reported that neurogenesis levels are
increased in TLR4 transgenic knockout mice. Further-
more, reduced levels of neurogenesis were found in
hippocampal precursor cell cultures treated with either
recombinant IL-6 or TNF-a (Monje et al., 2003). Treat-
ment with the TLR4 agonist lipopolysaccharide, which
causes proinflammatory innate immune gene induc-
tion, reduced hippocampal neurogenesis comparable to
adult animals exposed to AIE (Vetreno and Crews,
2015). In vitro studies of neurogenesis in hippocampal
slice cultures found inhibition of ethanol induction of
IL-1b and inflammasome proteins; for example, NLRP,
a protein involved in IL-1b synthesis, reduced ethanol
inhibition of neurogenesis (Zou and Crews, 2014). In-
creased inflammasome proteins and IL-1B were also
found in the postmortem hippocampus of individuals
with alcohol-use disorder (Zou and Crews, 2014). Al-
though a direct mechanistic relationship between in-
nate immune genes and loss of neurogenesis remains to
be established in the AIE model, findings from the
NADIA Consortium of persistent upregulation of hip-
pocampal innate immune markers, coupled with data
implicating innate immune involvement in the loss of
neurogenesis (Monje et al., 2003; Crews et al., 2006b;
Rolls et al., 2007; Zou and Crews, 2012), support the
hypothesis that the innate immune system contributes
to the AIE-induced loss of neurogenesis.
Although induction of innate immunity in adolescent

binge drinking models most likely contributes to the
observed loss of neurogenesis, AIE-induced loss of
cholinergic inputs to the hippocampus might also
contribute to the reductions of hippocampal neuro-
genesis. Basal forebrain cholinergic neurons regulate
hippocampal neurogenesis through direct projections to
neural progenitor cells. Indeed, specific lesions of
cholinergic neurons and cholinergic agonists inhibit
and facilitate neurogenesis, respectively (Kaneko
et al., 2006; Van Kampen and Eckman, 2010). The
NADIA Consortium has consistently reported reduc-
tions of cholinergic cell markers in the rodent basal
forebrain (Coleman et al., 2011; Ehlers et al., 2011;
Vetreno et al., 2014), an effect that was replicated in the
postmortem basal forebrain of individuals with alcohol-
use disorder (Vetreno et al., 2014). Intriguingly, cholin-
ergic neurons of the basal forebrain also regulate the
innate immune system (Su et al., 2010; Zhou et al.,
2011; Sitapara et al., 2014), as studies employing
specific lesions of cholinergic neurons find increased
innate immune gene induction and microglial activa-
tion in hippocampus, whereas administration of cholin-
ergic agonists reduces proinflammatory innate immune
gene induction (Su et al., 2007, 2010; Lim et al., 2011;
Field et al., 2012). Although further research is needed
to fully elucidate the anti-inflammatory effects of the
basal forebrain cholinergic system, animal studies
suggest that these are mediated, in part, through
activation of the a-7 nicotine receptor on microglia that

reduce HMGB1 release (Sitapara et al., 2014). Thus, it
is likely that both reduced cholinergic innervation and
induction of innate immunity in the hippocampus play
mechanistic roles in the long-lasting AIE-induced re-
duction of neurogenesis.

As outlined above, neurogenesis in the adolescent
hippocampus is especially vulnerable to the deleterious
effects of alcohol (Crews et al., 2006a). Multiple models
of AIE have produced reductions in hippocampal neuro-
genesis (Crews et al., 2006b; Ehlers et al., 2013b;
Broadwater et al., 2014b), which is consistent with
reports of enhanced sensitivity of hippocampal-
dependent behaviors to ethanol during adolescence
(White and Swartzwelder, 2004). Reductions in neuro-
genesis were found to be associated with more disinhi-
bitory behavior in the open-field conflict test at 2 and
8 weeks following termination of AIE vapor exposure
(Ehlers et al., 2013b). Vetreno and Crews (2015) found
that AIE-induced loss of doublecortin-immunopositive
cells in the dorsal hippocampal dentate gyrus was
positively correlated with performance on the novel
object recognition task, such that lower expression
levels of doublecortin were associated with diminished
object recognition memory. Thus, the AIE-induced loss
of hippocampal neurogenesis persists into adulthood
and is unique to adolescent exposure. A variety of adult
cognitive and affective changes could result from the
AIE-induced loss of neurogenesis.

XV. Adolescent Alcohol-Induced Epigenetic
Alterations in Gene Expression

Epigenetics is an emerging area in neuroscience
focused on processes such as methylation and acetyla-
tion that change gene transcription without changing
the DNA sequence, leading to modifications that can be
transmitted to daughter cells. Recent findings indicate
that epigenetic mechanisms contribute to alcohol and
other addictions (Renthal and Nestler, 2008; Krishnan
et al., 2014). For example, recent studies indicate
epigenetic inheritance through the male germline dur-
ing alcohol exposure (Rachdaoui and Sarkar, 2014).
Epigenetic modifications, such as histone and DNA
methylation and acetylation, contribute to both neuro-
development directly and the influence of environment
on neurodevelopment (Kofink et al., 2013; Szyf, 2013).
Gene expression can be dynamically changed by histone
acetylation through histone acetyltransferase and his-
tone deacetylase (Kalkhoven, 2004; Lilja et al., 2013;
Valor et al., 2013; Sheikh, 2014; Swaminathan et al.,
2014). Acetylation of lysine by histone H3 alters tran-
scription and has been implicated in ethanol-induced
alterations to synaptic plasticity that contribute to
anxiety and alcohol self-administration (Pascual et al.,
2012; Moonat et al., 2013; Krishnan et al., 2014;
Sakharkar et al., 2014). Notably, epigenetic mecha-
nisms can impact both neurons and glia.
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Using various adult animal models, the Pandey
laboratory found that ethanol alters expression of the
neurotrophic factor BDNF and neuropeptide Y, whose
expression is mediated by histone H3 acetylation
through histone deacetylase and cAMP-response element-
binding protein in the amygdala (Pandey et al., 2008;
Sakharkar et al., 2012, 2014; Moonat et al., 2013). In
adult rats, chronic ethanol exposure also alters expres-
sion of BDNF in the hippocampus (Tapia-Arancibia
et al., 2001; Hauser et al., 2011). Adolescent binge-like
exposure to ethanol has also been found to reduce
hippocampal expression of BDNF and neurogenesis
markers that is reversed by a BDNF agonist (Briones
and Woods, 2013). Hippocampal BDNF is thought to
play a regulatory role in synaptic plasticity and neuro-
genic processes, and aberrations in these biologic
processes have been implicated in neurologic disorders
(Duman, 2004; Duman and Monteggia, 2006; Taliaz
et al., 2010; Andero et al., 2014; Schoenfeld and
Cameron, 2015). The decrease in BDNF expression is
complex, but appears to be due to epigenetic mecha-
nisms that reduce BDNF expression in neurons. AIE
exposure reduces phosphorylated cAMP-response
element-binding protein plus IR, consistent with re-
duced BDNF transcription (Pandey et al., 2015) and
with studies finding that alcohol reduces cAMP re-
sponse element-binding protein and increases NF-kB
through complex signaling mechanisms (Zou and
Crews, 2006). AIE also reduced protein levels of the
epigenetic marker H3-K9Ac in hippocampus in associ-
ation with decreased BDNF in CA1, CA2, and CA3
regions, but not in the dentate gyrus (Sakharkar et al.,
2016). Thus, the loss of dentate neurogenesis may be
associated with the AIE-induced increased neuroim-
mune signals in the dentate gyrus rather than reduced
BDNF. However, neuroimmune signaling and BDNF
expression interact in a reciprocal manner, such that
epigenetic reductions in BDNF might contribute to
increased neuroimmune gene expression, or more likely,
increased neuroimmune signaling might contribute to
epigenetic decreases in BDNF expression (Fig. 8). The
complex effects of AIE on neuroimmune signaling and
trophic factor expression require additional research
to define how these signaling mechanisms contribute
to the lasting effects of adolescent binge-like alcohol
exposure.

XVI. Conclusions

Accumulating evidence indicates that adolescence is
a unique developmental period of malleable brain and
body maturation that includes puberty, socialization,
improvements in abilities, and the transition to in-
dependence. Neurodevelopmental programs in early
life and adolescence are uniquely responsive to activi-
ties, both enriching and dampening. Across species,
adolescent emergence of sexual identity and puberty

are developmental processes controlled by brain matu-
ration. Also across species, adolescent characteristic
risk taking, thrill seeking, and peer social motivations
subside with brain frontal cortical development, myelin
growth, and increased functional connectivity. Frontal
cortical maturation coincides with the emergence of
prefrontal executive functions that underlie the matu-
ration of adult self-control and reflection on the future
consequences of actions. Cortical maturation includes
both within-cortical refinements as well as increased
frontal cortical connectivity to neuronal networks
across the brain. Increasing myelination and brain
regional connectivity during adolescence most likely
contribute to long-lasting adult motivation, planning,
reflecting on consequences of actions, and successful
independence within society.

The immature adolescent brain has unique responses
to alcohol and possibly other drugs of abuse. Adoles-
cents have a low sensitivity to alcohol-induced motor
incoordination and sedative/hypnotic responses. This
low physical sensitivity coupled with thrill seeking and
peer/social factors can promote extreme binge drinking
and very high blood alcohol levels. Adolescents aremore
sensitive to alcohol disruption of cognition than adults,
further increasing risks of accidents, heavy binge
drinking, and unwanted consequences. Blackouts are
common among adolescents, consistent with heavy
binge drinking. Compared with adults, the developing
adolescent cortex is more sensitive to alcohol-induced
neuronal death, and adolescent hippocampal neuro-
genesis is more sensitive to alcohol toxicity. Immature
brain connections and synapses most likely contribute to
the adolescent low-sedative sensitivity, increased neuro-
toxic sensitivity, and cognitive disruption to ethanol.

The association of an early age of drinking onset with
lifelong risks of alcoholism and alcohol-related violence
and trauma could be due to neurodevelopmental insult
due to high levels of alcohol exposure. Alternatively, it
could represent individuals with emerging mental
disorders, genetic, and/or other factors leading to early
onset drinking as an identifier of those of high innate
risks of developing alcohol dependence. The relative
contributions of these intertwined factors are con-
founded in human studies. For example, it is difficult
to untangle inherited genetic factors in families with a
history of alcohol dependence from the increased avail-
ability of alcohol, expectations of positive responses to
alcohol drinking, poor parental interaction, and sibling–
peer factors in families of alcoholics that encourage and
facilitate drinking alcohol. Studies of adopted twins
were needed to clearly establish a genetic component
that is now accepted to be between 40 and 60% of the
risks of alcohol dependence. Likely individual responses
vary due to a diversity of innate predisposing and
protective factors that are influenced by familial–
environmental circumstances that combine in a dy-
namic manner to influence the trajectory of maturation
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of brain and behavior to adult abilities and character. A
clear understanding of the impact of adolescent alcohol
abuse on brain development and function also requires
preclinical studies that focus on the impact of alcohol
while keeping genetic and other influencing factors
constant. The nature of adolescent drinking (e.g.,
periodic extreme binge drinking, followed by periods of
abstinence) differs from drinking patterns of most adult
drinkers and alcohol-dependent individuals. AIE mod-
els of adolescent drinking support the hypothesis that
adolescent binge drinking changes adult brain struc-
ture and function. Preclinical controlled studies provide
insight to human investigators in the hope that focused
specific hypotheses based on the preclinical discoveries
will bemore easily confirmed than elucidated de novo in
human studies.
AIE models have found long-lasting changes in adult

brain (Fig. 9). Two persistent molecular changes in
adult brain following AIE are increased neuroimmune

gene expression and reduced expression of the neuronal
trophic factor BDNF. A reciprocal, complex relationship
between BDNF and neuroimmune genes most likely
involves neuronal–glial signaling. Current studies of
neuroimmune gene induction have focused on PFC and
hippocampus, whereas BDNF has been investigated
primarily in amygdala, but more recently in hippocam-
pus. In hippocampus, parallel but distinct studies find
that reversing the AIE-induced loss of BDNF or pre-
vention of the AIE induction of neuroimmune genes can
prevent and/or reverse the AIE-induced loss of adult
neurogenesis. The AIE-induced reduction in adult
BDNF is linked to epigenetic acetylation–methylation
changes in neuronal BDNF, whereasmicroglial priming
is linked to persistent increases in brain neuroimmune
gene expression. Microglial and neuronal signaling
changes lead to a loss of trophic resilience combined
with increasing innate immune signals that can be
toxic. Microglia are involved in innate immune gene

Fig. 8. Duality of stressors and enrichment on neuronal–glial signaling. Neuronal–glial communication lies along a continuum with devitalization-
malaise on one end and vigor-endurance on the other end. Stimuli such as alcohol, stress, and endotoxins activate neurons and glia to release
proinflammatory signals. As a consequence of innate immunity-system activation, neurotrophic support is reduced, leading to neurotransmitter system
disruption as well as increased anxiety and cognitive dysfunction. In contrast, stimuli such as exercise and enrichment induce neuronal–glial
communication to increase neurotrophin expression, such as BDNF, that blunts the innate immune system, creating an environment that facilitates
neurotransmitter system survival and increases mood and cognition.
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induction by alcohol that includes cytokines, chemo-
kines, HMGB1, TLRs, and other signaling molecules.
Microglia respond to and regulate synapses, particu-
larly during development. Innate immune signaling
clearly contributes to brain development; however, it
is poorly understood. Microglial signaling between
neurons, astrocytes, oligodendrocytes, and other micro-
glia is unique to brain, although the signalingmolecules
are common to other tissues and cells. Induction of
innate immune-signaling molecules by AIE persists
long into abstinent adulthood, perhaps for life. Inter-
estingly, multiple innate immune-signaling proteins
are increased in postmortem human alcoholic PFC
and positively correlate with age of drinking onset.
Supporting a role of innate immune gene activation are
studies finding that endotoxin treatment of rats, a
known activator of innate immune signaling, mimics
AIE-induced changes in brain. Additional studies
are needed to understand how trophic signals or micro-
glial sensitization mechanisms vary across brain
regions; however, emerging studies suggest that anti-
inflammatory agents and reversal of epigenetic sup-
pression of BDNF can also reverse AIE-induced
neuropathology. Thus, neuroimmune-trophic balance
mechanisms appear to underlie AIE-induced adult
molecular neuropathology.
Evidence indicates that brain structure continues to

change across adolescence in parallel with maturation
of adult characteristics. AIE changes adult global brain
morphology, causing subtle and diffuse degeneration-
like changes that are consistent with the diffuse neuro-
degeneration found in adult alcoholism. More robust
evidence indicates that AIE alters specific neuronal
subtypes and that these effects can last into adulthood.
In some cases, AIE-induced structural changes have

been linked to neuroimmune gene induction or reduced
BDNF. Hippocampal neurogenesis and forebrain cho-
linergic neurons are persistently decreased by AIE, but
not by comparable adult treatment, consistent with
high adolescent sensitivity to binge alcohol exposure.
Serotonergic neurons and dopaminergic neurons are
also sensitive to AIE, and alterations in these broadly
projecting regulatory neurotransmitter systems would
be expected to influence many adult brain functions.
AIE also changes adult synaptic inhibitory and excit-
atory synaptic responses and synaptic spine morphol-
ogy, microscopic changes that would alter local and
regional neuronal connectivity and function. These and
other to-be-discovered AIE-induced structural changes
in adult brain are likely to underlie the impact of AIE on
adult characteristics and alcohol responses.

Adolescent alcohol exposure also causes long-lasting
changes in adult brain function and responses to
alcohol, many of which appear to be retention of certain
adolescent-like characteristics (Fig. 9). Indeed, physio-
logic findings from a large number of studies and
multiple endpoints support the hypothesis that AIE
causes a lock-in or retention of some adolescent charac-
teristics into adulthood. Both hippocampal slice and
whole rat brain electrophysiological studies suggest
that AIE causes a persistence of adolescent-like phys-
iology in adults as well as a retention of adolescent-like
behavioral responses to an ethanol challenge. AIE-
induced changes in adult P3ERP,wakingEEG, and sleep
EEG are consistent with a persistence of adolescent-like
brain information processing and brain regional connec-
tivity. AIE-induced changes in hippocampal tonic current
are consistent with alterations in inhibitory synaptic
maturation and altered adult excitatory/inhibitory
synaptic balance. Persistent adolescent-like behavioral

Fig. 9. Schematic summary of preclinical findings on the lasting consequences of adolescent binge drinking in adulthood. Shown are the summarized,
consensus findings of persistent adult pathologies from across the NADIA Consortium as well as other investigators, as described in this review.
Multiple studies find that AIE leads to adult impairments in cognitive and executive functioning, increases depressive- and anxiety-like behaviors as
well impulsivity, and increases alcohol self-administration in adulthood. Potential mechanisms of AIE disruption of maturation include increased
expression of brain cytokines and other innate immune genes, loss of cholinergic and serotonergic neurons, and epigenetic changes that continue into
adulthood following AIE treatment. Many of these changes are not found after similar treatment of adults, as outlined in the review. Additional studies
are needed to clearly link mechanisms to adult behavioral pathologies; however, the persistent changes found are consistent with human studies,
indicating that adolescent binge drinking is associated with lifelong risks for alcohol-related problems.
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characteristics found in adult rodents after AIE include
increased risk taking, increased reward seeking, and
enhanced disinhibition. AIE-induced changes in adult
responses to an alcohol challenge also suggest a persis-
tence of adolescent-like responses, including lessened
sensitivity to aversive response, anxiolytic response, and
withdrawal from ethanol as well as increased sensitivity
to ethanol-induced social facilitation, rewarding effects,
and memory impairment. Another adolescent-like char-
acteristic is high alcohol consumption, and AIE increases
adult alcohol self-administration and preference for alco-
hol. Although there are many adolescent-like character-
istics that have not been tested after AIE exposure, the
adolescent-like characteristics discussed above that per-
sist in adulthood after AIE exposure converge as risk
factors for the development of adult alcoholism, consistent
with the hypothesis that an early age of drinking onset
blunts maturational mechanisms and increases risks.
The maturation of adult characteristics parallels

frontal cortical development of executive functions.
Executive functions reduce impulsivity and are needed
to adjust and/or extinguish habitual responses when
rewards or circumstances change. Multiple studies of
various endpoints find no effect of AIE on initial
learning in adults, but deficits in behavioral flexibility
when reward contexts are altered, suggestive of a loss of
frontal cortical control. Together, these studies find that
AIE can cause molecular, structural, and functional
changes in brain that increase risks for the develop-
ment of adult alcohol dependence and a persistence
of adolescent-like characteristics in adulthood. These
findings support the proposal that eliminating adoles-
cent alcohol abuse could significantly improve adult
brain health as well as possibly decrease risks for adult
alcoholism and alcohol dependence. Continuing inves-
tigations into the mechanisms of the persistent changes
associated with adolescent binge drinking will allow
better prevention and treatment of risks that contrib-
ute to adult neuropathology and the development of
alcoholism.
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