
Symposium

Central Network Dynamics Regulating Visceral and Humoral
Functions

X Rita J. Valentino,1 X Patrice Guyenet,2 Xun Helen Hou,3 and Melissa Herman4

1Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, 2University of Virginia, Charlottesville, Virginia 22908,
3Harvard University, Boston, Massachusetts 02115, and 4University of North Carolina, Chapel Hill, North Carolina 27599

The brain processes information from the periphery and regulates visceral and immune activity to maintain internal homeostasis,
optimally respond to a dynamic external environment, and integrate these functions with ongoing behavior. In addition to its relevance
for survival, this integration underlies pathology as evidenced by diseases exhibiting comorbid visceral and psychiatric symptoms.
Advances in neuroanatomical mapping, genetically specific neuronal manipulation, and neural network recording are overcoming the
challenges of dissecting complex circuits that underlie this integration and deciphering their function. Here we focus on reciprocal
communication between the brain and urological, gastrointestinal, and immune systems. These studies are revealing how autonomic
activity becomes integrated into behavior as part of a social strategy, how the brain regulates innate immunity in response to stress, and
how drugs impact emotion and gastrointestinal function. These examples highlight the power of the functional organization of circuits at
the interface of the brain and periphery.
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Introduction
The maintenance of homeostasis requires complex reciprocal
communication between the brain and viscera as well as the im-
mune system. This allows for information from these peripheral
systems to be integrated with other sensory inputs to modulate
the state of arousal, focus of attention, and executive function.
This communication also allows the brain to regulate the auto-
nomic nervous system that controls visceral and immune func-
tion in response to internal and environmental challenges. In
addition to maintaining homeostasis, the same circuitry that un-
derlies reciprocal communication between the brain and periph-
ery also provides routes through which pathology at either end
can adversely influence the other.

Elucidating the complex interplay between the brain and pe-
ripheral systems that is involved in the coordination of behavior
with visceral activity requires the dissection of complex cir-
cuits and, in particular, the ability to specifically manipulate
them and to record neural activity and visceral endpoints simul-

taneously under natural conditions. Tools developed over the last
few years have enhanced our ability to achieve these goals and
advanced our knowledge in this area. Here we provide examples
of knowledge gained through these approaches that has led to a
better understanding of how the brain and periphery interact and
the importance of this interaction in health and disease.

The brain-bladder intersection and its role in social behavior
and disease
The pontine micturition center (PMC), also referred to as Bar-
rington’s nucleus, is an integral component of a circuit that reg-
ulates the descending limb of the micturition reflex. PMC axonal
projections extend to the lumbosacral spinal cord and terminate
within the preganglionic parasympathetic nucleus that provides
the parasympathetic input to the detrusor and distal colon (Loewy et
al., 1979; Hida and Shimizu, 1982) (Fig. 1). PMC lesions disrupt the
micturition reflex, whereas electrical or chemical stimulation of
this region elicits bladder contractions and micturition, the act of
passing urine (Barrington, 1925; Willette et al., 1988; Noto et al.,
1989; Pavcovich and Valentino, 1995). Although the PMC is
neurochemically heterogeneous, many neurons express the stress-
related neuropeptide, corticotropin-releasing factor (CRF) (Vincent
and Satoh, 1984; Valentino et al., 1994, 1996; Hou et al., 2016). This
makes the PMC amenable for manipulation by genetically driven
tools and provides an opportunity to probe this system with a
much higher specificity than was previously allowed using lesions
or chemical or electrical stimulation. The use of these tools is both
validating and refining our views of the neurophysiology and
function of micturition.

In male mice, the electrophysiological and molecular charac-
terization of CRF-positive (CRF �) PMC neurons reveals that
they are distinct from their CRF-negative neighbors and
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that they are sacral cord-projecting glutamatergic neurons (Hou
et al., 2016). Combining transgenic mouse lines with molecular
tools enabled genetic control over urine output, and it was dem-
onstrated with fiber photometry that the population activity of
CRF� PMC neurons correlates with micturition (Hou et al.,
2016). Selective activation of CRF� PMC neurons with light-
activated cation channel channelrhodopsin-2 is sufficient to trig-
ger bladder contractions. The fast time course of bladder
contraction following light onset supports the hypothesis that
glutamate release from CRF� PMC neurons in the spinal cord
drives contraction. Conversely, reversible chemogenetic silenc-
ing of CRF � PMC neurons with hM4Di, an engineered Gi protein-
coupled receptor, impairs micturition.

In addition to serving an essential physiological function of
waste elimination, micturition plays an important role in social
communication due to the distinguishing information about an
animal’s identity carried by the chemical components in urine
(Yamaguchi et al., 1981; Singer et al., 1997; Hurst and Beynon,
2004). As a result, voiding behaviors that determine where and
when adult animals micturate are tightly regulated by internal
and external sensory inputs and can be altered by experience and
context (Desjardins et al., 1973).

The interaction of olfactory cues and social rank regulates the
pattern of micturition in male mice. The presence of estrous
female urine in an open-field arena increased the frequency and
changed the spatial distribution of micturition selectively in
dominant male mice (Hou et al., 2016). That the average location

of the urine spots was not predicted by the
average location of the mouse supports
the existence of a central circuit that ac-
tively regulates micturition in a social
setting. Notably, social stress regulates
micturition in an opposing manner in
subordinate males, inhibiting micturition
frequency to the extent of producing pa-
thology (Desjardins et al., 1973; Henry et
al., 1982; Wood et al., 2009).

CRF� PMC neurons receive input
from multiple forebrain areas that can
relay diverse promicturition and antimic-
turition signals (Hou et al., 2016). Whole-
brain analysis of male mice reveals a
widespread micturition regulatory net-
work with a large degree of convergence
onto �500 CRF� PMC neurons. Candi-
date presynaptic neurons were found in ce-
rebral cortices, olfactory relay nuclei, and
hypothalamic and brainstem nuclei; among
them are areas that process olfactory and so-
cial hierarchical information.

Rabies virus tracing in male mice identi-
fied a robust putative input to CRF� PMC
neurons from the medial preoptic area
(MPOA) (Hou et al., 2016). The MPOA is a
heterogeneous structure previously shown
to be connected to multiple regions in-
volved in social behaviors (Simerly and
Swanson, 1986, 1988; Simerly et al., 1986).
MPOA neurons retrogradely labeled from
the PMC are homogeneously GABAergic,
and chemogenetic inhibition of GABAergic
MPOA neurons altered micturition pat-
terns and reduced differences in micturition

between subordinate and dominant males, indicating that GABAe-
rgic MPOA neurons normally modulate micturition in the marking
assay (Hou et al., 2016). These results are consistent with a model in
which silencing inhibitory MPOA inputs disinhibits CRF�/gluta-
matergic PMC neurons.

Together, these results in male mice indicate that CRF�/glu-
tamatergic neurons in the PMC comprise a brainstem command
output that controls urine release. These neurons have the capac-
ity, anatomically and functionally, to integrate promicturition
and antimicturition inputs from relevant brain areas and trans-
mit these signals into urine output, a process that exemplifies the
integrative capacity of brainstem nuclei to regulate visceral activ-
ity and behavior. The whole-brain analysis of candidate input
areas to CRF� PMC neurons in male mouse may reveal addi-
tional factors that regulate micturition. Future work involving a
detailed intranucleus cell type and connectivity characterization
of the PMC, combined with population recording and circuit
perturbation, will reveal the neural mechanisms by which specific
contextual cues, such as sensory stimuli, bladder pressure, social
hierarchy and past experience, are integrated to regulate micturition.

The descending limb of the micturition reflex described above
that regulates urine release must be coordinated with a central
limb that regulates voiding behaviors that determine when and
where micturition occurs. For micturition to occur in safe and
socially appropriate environments, arousal must be elevated
and attention focused on the visceral stimulus. Ongoing behavior
unrelated to voiding must be interrupted and replaced by voiding

Figure 1. Schematic showing circuits linking specific brain nuclei with viscera that are discussed in this review. Based on dual
retrograde labeling, PMC axons putatively branch to the nearby LC (white arrowhead) and to the parasympathetic column of
preganglionic neurons in the lumbosacral spinal cord. The latter project through the pelvic nerve and major pelvic ganglion to
regulate pelvic visceral activity, including micturition. The LC projects to the cortex and limbic nuclei, where it can function in
central aspects of voiding behavior. The dorsal motor nucleus of the vagus (DMV, box at the bottom left with part of a transverse
section through the dorsal medulla) innervates the upper gastrointestinal tract and spleen. C1 neurons in the ventrolateral medulla
can regulate immune function through projections to spinal sympathetic ganglia that project to celiac/suprarenal ganglia that
innervate the spleen. Modified with permission from (Pavcovich and Valentino, 1995).
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behaviors that determine temporal and spatial aspects of mictu-
rition. All of this must occur in tune with changes in bladder
pressure and before micturition. The norepinephrine-containing
pontine nucleus, locus ceruleus (LC), is central in a circuit through
which bladder sensations can be transmitted to the cortex (Valen-
tino et al., 2011) (Fig. 1). The broad axonal projections arising
from LC neurons densely innervate the cortex (Swanson and
Hartman, 1976). In anesthetized rats, LC neurons are activated
by relatively low magnitudes of bladder or distal colon distention,
and this is associated with cortical desynchronization (Elam et al.,
1986; Svensson, 1987; Page et al., 1992; Lechner et al., 1997). LC
activation by salient sensory stimuli of diverse modalities has
been demonstrated to precede the motor response of orientation
to the stimulus (Aston-Jones and Bloom, 1981). Pelvic visceral
information could be transmitted to the LC from the PMC, as a
discrete population of PMC neurons are retrogradely labeled
from the LC (Valentino et al., 1996). Alternatively, the periaque-
ductal gray area, which is hypothesized to relay information
about urodynamic status to Barrington’s nucleus, may also com-
municate bladder sensory information to the LC (Bajic et al.,
2000; de Groat and Wickens, 2013).

Simultaneous recordings of LC single-unit activity, LC local
field potentials, and prefrontal cortical local field potential activ-
ity during cystometry in unanesthetized rats are revealing the
temporal relationship between urodynamic status and neural ac-
tivity within different nodes of the pontine-cortical micturition
circuit. Preliminary studies in female rats suggest that LC neu-
rons consistently increase their tonic discharge rate 10 –30 s be-
fore the point of peak bladder pressure and micturition. During
this premicturition period, LC local field potential recordings
reveal a shift from relatively high-amplitude, low-frequency ac-
tivity to a prominent theta oscillation and increased LC-PFC co-
herence. This shift in LC network activity triggers activation of
the PFC as indicated by a decrease in amplitude of power at all
frequencies, typical of a desynchronized cortical EEG. The desyn-
chronization of cortical activity before micturition has also been
reported in male rats (Kiddoo et al., 2006; Rickenbacher et al.,
2008). Because LC and cortical responses precede the onset of
micturition, it is speculated that these changes in LC-cortical
network activity serve to increase arousal and redirect behavior to
facilitate appropriate voiding behaviors before urination.

The same network that underlies the adaptive viscero-behavioral
response to bladder stimuli described above is also implicated in
central symptoms of bladder disorders. Male rats that have sur-
gery for partial bladder outlet obstruction, which has been used
to model the partial obstruction that occurs in benign prostatic
hypertrophy, develop abnormal urodynamic patterns (Ricken-
bacher et al., 2008). This model of chronic uropathology altered
neuronal firing patterns throughout the pontine-cortical mictu-
rition pathway. By 2 weeks after surgery, both PMC and LC
neurons became unresponsive to bladder distention, although
baseline LC neuronal discharge was elevated above that in sham-
operated controls, suggesting a state of hyperarousal in these an-
imals. Consistent with this, from 1 to 4 weeks after surgery, the
power spectrum of the cortical EEG shifted to the right toward
higher frequencies, indicative of increased arousal, and this effect
progressed with time after surgery. A cortical theta oscillation
developed in many subjects, particularly those exhibiting non-
micturition contractions, and this appeared to be temporally cor-
related to the contractions, suggesting that it may be a cortical
signature of urgency (Fig. 2). The theta oscillation is likely driven
by LC hyperactivity because chemical lesioning of LC-cortical
projections prevented its development while leaving the nonmic-
turition contractions intact. Notably, in this model of bladder
pathology, the temporal relationship between bladder pressure
and cortical activity becomes disrupted such that the cortical
desynchronization that typically precedes micturition is dimin-
ished or is not apparent because the cortex is either desynchro-
nized by default or is exhibiting prominent theta oscillations (Fig.
2). These neural alterations that develop in concert with urody-
namic alterations in this model of chronic pathology may be the
basis of central symptoms of this visceral disease. For example,
increased LC tone that contributes to cortical theta oscillations
and an enduring desynchronization of cortical EEG could under-
lie the sensation of urgency, sleep disruption, and anxiety that
characterize lower urinary tract disorders (Kirby, 2000; Huang et
al., 2017). Importantly, the loss of the cortical response that
should precede the micturition event to initiate voiding behav-
iors may underlie the decreased sensation of bladder fullness that
occurs in men with lower urinary tract symptoms and could
contribute to enuresis (Griffiths, 1998). This example highlights
how circuits that are the foundation of communication between

Figure 2. Relationship between bladder pressure and cortical (CTX) activity in rats exposed to partial bladder outlet obstruction (PBOO) or sham surgery. Middle, Mean bladder pressure over
5– 6 micturition cycles and centered at the micturition threshold (time � 0). Heat map above each trace represents bladder pressure for each micturition cycle. For sham, bladder pressure increases
gradually and uniformly up to micturition threshold. PBOO1 shows nonmicturition contractions as sporadic episodes (lighter blue blocks interspersed within darker blue) that occur up to micturition
threshold. PBOO2 does not exhibit a gradual increase in pressure or nonvoiding contractions. Bottom, Corresponding heat maps represent the mean relative power in different EEG frequency bands
(0 –20 Hz, ordinate) over the same time period as the bladder pressure recording. In sham rats, a decrease in power in all frequencies (i.e., desynchronization) precedes the micturition threshold and
is maintained. PBOO disrupts the relationship between bladder pressure and cortical EEG activity. PBOO1 CTX activity exhibits greater power in higher frequencies (7–10 Hz and 14 –15 Hz) that
fluctuate like the contractions. CTX activity in PBOO2 is desynchronized throughout the session, and increases in bladder pressure up to the micturition threshold are without further effect. Modified
with permission from Rickenbacher et al., 2008).
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the brain and viscera support both ongoing physiological func-
tions as well as the expression of comorbid cognitive and visceral
symptoms. Dysfunctions of this circuit may be common to other
pelvic visceral disorders that are characterized by both central
and visceral symptoms, such as irritable bowel syndrome.

Acute stress and inflammation: role of the autonomic nervous
system (ANS) and C1 neurons
The C1 neurons are catecholaminergic/glutamatergic/peptider-
gic cells located in the rostral ventrolateral medulla that regulate
both divisions of the ANS via direct projections to preganglionic
neurons (Abbott et al., 2013; Guyenet et al., 2013). During hyp-
oxia, general anesthesia, or hypoglycemia, activation of the pre-
sympathetic C1 neurons has a homeostatic function that includes
minimizing hypotension or restoring blood glucose (Madden et
al., 2006; Wenker et al., 2017). C1 cell activation has an allostatic
role during pain, fear, restraint, or exercise, increasing glycemia,
blood pressure, and respiration (Barna et al., 2012; Chen et al.,
2012; Guyenet et al., 2013; Burke et al., 2014; Zhao et al., 2017).
The C1 cells may operate as a switchboard for the elaboration of
autonomic response patterns. Subsets of presympathetic C1 neu-
rons differentially activate specific groups of preganglionic neu-
rons, thereby producing patterns of sympathetic nerve activation
best suited to assist a given behavior or to mitigate the adverse
effects of a given stressor (Guyenet et al., 2013). A subset of C1
neurons contribute to the activation of the hypothalamic-pituitary-
adrenal axis via direct, and probably indirect, projections to the para-
ventricular hypothalamic nucleus (Tucker et al., 1987; Schiltz and
Sawchenko, 2007). The C1 cells that innervate parasympathetic
preganglionic neurons (Loewy et al., 1994; DePuy et al., 2013)
must also shape the autonomic responses to stressors, but their
exact contribution is unexplored. The activity of C1 neurons is
reflexly regulated and under the control of nuclei distributed
throughout the brain (Janig, 2006).

The ANS regulates innate immunity. For example, vagal para-
sympathetic efferent neurons are the efferent arm of an anti-
inflammatory reflex mediated by the spleen (Pavlov and Tracey,
2017). Anti-inflammatory reflexes can also be elicited via the sym-
pathetic system. In anesthetized rats, splanchnic nerve section en-
hances the production of TNF� elicited by lipopolysaccharide
injection, suggesting that the production of this inflammatory cy-
tokine is normally restrained by ongoing sympathetic tone (Mar-
telli et al., 2014). Also, sympathetic hyperreflexia following high
spinal cord lesions depresses the immune system of mice (Ueno
et al., 2016). The central pathways mediating these reflexes are
unexplored as are the brain structures that modulate them. In the
remainder of this section, we summarize recent evidence that
acute stress reduces inflammation and tissue damage via activa-
tion of C1 neurons and sympathetic nerves but independently of
corticosterone release. This work was done in male mice using
renal ischemia-reperfusion (IR) as a model of organ damage.

Renal IR carries a major risk of permanent injury to these
organs; the damage is caused or at least exacerbated by inflam-
mation (Inoue and Okusa, 2015). Restraint stress, 24 h before IR,
substantially reduced renal damage in mice (Abe et al., 2017).
This protective effect was transferable to naive mice by injecting
splenocytes harvested from stressed mice and could also be in-
duced by injection of CD4 splenic T cells harvested from control
mice and incubated with noradrenaline in vitro (Abe et al., 2017).
Protection against IR damage was also elicited by moderate op-
togenetic activation of C1 cells in conscious mice. The protective
effect of restraint stress was greatly attenuated in mice with selec-
tive C1 cell lesions or if restraint was applied while C1 neurons

were selectively inhibited (Abe et al., 2017). The protective effect
of C1 stimulation disappeared after splenectomy or by silencing
the ANS with a ganglionic blocker during C1 stimulation but
could not be explained by corticosterone elevation. Finally, the
protection persisted after subdiaphragmatic vagotomy. Thus, re-
straint stress activates a splenic anti-inflammatory mechanism
that protects the kidneys from IR injury (Pavlov and Tracey,
2017). In this particular instance, the splenic noradrenergic in-
nervation was activated predominantly via preganglionic sympa-
thetic rather than parasympathetic neurons.

In short, acute stress activates C1 cells causing anti-inflammation
and tissue protection. This effect, along with other potentially
beneficial consequences of C1 cell stimulation, such as increased
vigilance, cardiorespiratory and metabolic stimulation, presum-
ably enhance the chances of surviving an injury.

Anti-inflammatory effects can be elicited by a host of seem-
ingly unrelated interventions, such as stimulation of the vagal
nerve, the auricular nerve or somatic nerve afferents via acupunc-
ture (Inoue et al., 2016; Abe et al., 2017; Pavlov and Tracey, 2017).
Vagal nerve stimulation attenuates selected signs (circulating
cytokines) and symptoms (pain) of rheumatoid arthritis in hu-
mans, although the underlying mechanism is not completely elu-
cidated (Koopman et al., 2016). It is possible that the discharge
pattern produced by nerve stimulation is distinctly unphysiolog-
ical and may be interpreted by the CNS as untoward regardless of
its origin in the body. A shared effect of peripheral nerve stimu-
lation could be the recruitment of C1 neurons with one of the
consequences being activation of the splenic anti-inflammatory
pathway via a sympathetic or vagal efferent route or both. In
support of this speculation, C1 neurons receive most of their
input from the pontomedullary reticular core and respond to
innumerable noxious or innocuous stimuli, including restraint
stress, infection (lipopolysaccharide, interleukin-1), hypoglyce-
mia, hypotension, and electrical activation of subsets of vagal or
somatic sensory afferents (Guyenet et al., 2013; Stornetta et al.,
2016; Dempsey et al., 2017).

Nucleus tractus solitarius (NTS)-central amygdala circuitry:
target of ethanol
Central regulation of gastric function occurs through sensory
vagal afferent projections into the NTS, which synapse onto the
dorsal motor nucleus of the vagus to regulate motor vagal efferent
signals back to the gut (Travagli et al., 2006). Local GABAA recep-
tor activity in this circuit is a critical regulator of gastric function,
as GABAA receptor blockade in the NTS of male rats reduced gastric
tone and motility (Herman et al., 2009). Gastric-projecting as well as
unlabeled NTS neurons receive local GABAergic input that modu-
lates vagal afferent transmission and NTS neuronal excitability in
rats and mice (Davis et al., 2004; Glatzer et al., 2007; Herman et
al., 2009, 2012). The NTS also makes reciprocal connections with
the central amygdala (CeA) (Geerling and Loewy, 2006) and thus
is poised to integrate peripheral viscero-sensory input with cog-
nitive emotional state. This may be relevant to diseases with co-
morbid affective and gastrointestinal symptoms (Folks, 2004).
However, little is known regarding how alterations in NTS cir-
cuitry contribute to neurobehavioral pathology. Here we discuss
how ethanol can target this circuitry to influence gastric function
and affect.

Given its role in peripheral gastric function, NTS circuits are
vulnerable to the effects of ethanol through direct actions in the
brain as well as direct effects on the gastrointestinal system. Acute
ethanol has been shown to increase local inhibitory transmission
and decrease the firing of the majority of NTS neurons (Aimino et

Valentino et al. • Central Network Dynamics Regulating Visceral and Humoral Functions J. Neurosci., November 8, 2017 • 37(45):10848 –10854 • 10851



al., 2017). Acute ethanol has also been shown to increase c-fos
expression in the NTS (Thiele et al., 1996). Preliminary data sug-
gest that chronic intragastric administration of ethanol and acute
withdrawal in male rats increase inhibitory transmission but also
result in increased baseline excitability in NTS neurons, suggest-
ing cell-type specific neuroadaptations and/or the recruitment
of other signaling systems. Genetically selective manipulation of
NTS neurons is necessary to dissect the effects of acute and
chronic ethanol on specific components NTS circuitry.

Reciprocal projections link the NTS and the central nucleus of
the amygdala (CeA) (Saper, 2002; Geerling and Loewy, 2006),
and these are activated by visceral afferent stimulation (McDou-
gall et al., 2017). The CeA functions as an integrative hub that
converts emotionally relevant sensory information about the ex-
ternal environment and internal milieu into appropriate behav-
ioral and physiological responses (Gilpin et al., 2015). Although
the amygdala is involved in appetitive conditioning processes, it
plays a major role in aversive conditioning and negative emo-
tional states. It has been implicated in fear, the behavioral conse-
quences of stress, and alcohol dependence. The CeA is primarily
a GABAergic nucleus (Pitkänen and Amaral, 1994; Veinante and
Freund-Mercier, 1998), and evidence suggests an involvement of
neuroadaptations in CeA GABAergic transmission in the effects
of acute ethanol and in the development of alcohol dependence
(Roberto et al., 2004, 2010). Acute and chronic ethanol disinhib-
its CeA output neurons through effects on a local inhibitory mi-
crocircuit (Herman et al., 2013; Herman and Roberto., 2016;
Herman et al., 2016). Chronic ethanol exposure increases ambi-
ent GABA in the CeA (Roberto et al., 2004), although the specific
source of this GABA is not yet identified. Whereas attention has
focused on forebrain afferents to the CeA (PFC and adjacent
amygdala structures), the role of brainstem afferents, such as the
NTS, has been relatively neglected.

Preliminary studies, examining the effects of acute and chronic
ethanol on CeA-projecting NTS neurons from male rats, suggest
that these neurons are under a significant amount of inhibitory
control that is enhanced by ethanol exposure. Acute ethanol de-
creased the firing of most CeA-projecting NTS neurons, consis-
tent with previous work (Aimino et al., 2017). Chronic ethanol
increased the baseline inhibitory tone of CeA-projecting NTS
neurons; however, this appeared to occur in parallel with a para-
doxical increase in basal firing, suggesting the possibility of neg-
ative feedback and/or compensatory mechanisms. Collectively,
these preliminary data suggest that acute and chronic ethanol
exposure alters the function of the NTS and NTS-CeA circuits.
Increased inhibitory tone in the NTS could dampen the impact of
afferent signals important for the maintenance of physiological
gastric control. Increased excitability of NTS neurons following
chronic ethanol exposure would simultaneously result in re-
duced central control over the gastrointestinal system, via in-
creased inhibition of dorsal motor nucleus of the vagus motor
neurons, and increased inhibitory drive to the CeA. This has
potentially negative consequences for the central control of gastric
function and the relay of visceral input to the amygdala, which could
collectively enhance the aversive outcomes of chronic ethanol expo-
sure and contribute to the development of alcohol dependence.

Conclusions
In conclusion, here we highlighted examples of circuits that sup-
port the interdependence between the brain and specific peripheral
organs, with the functional endpoint of one organ (spleen) being
regulation of an immune response. These circuits allow for the
integration of visceral information with ongoing multimodal

sensory signals and the computation of a response that coordi-
nates visceral activity with motor activity, behavior, and cogni-
tion. The examples presented here demonstrate how the ongoing
activity of these circuits assures optimal functioning of the whole
organism but can also be conduits for the synchronized expres-
sion of pathology at central and peripheral sites. Continuing ad-
vances in circuit dissection, manipulation, and neural network
recordings will provide the necessary information to extend the
brain atlas to the periphery.
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