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Abstract

Lethal disease caused by the fungus, Cryptococcus neoformans, is a consequence of the combined 

failure to control pulmonary fungal replication and immunopathology caused by induced type-2 

helper T (Th2) cell responses in animal models. In order to gain incites into immune regulatory 

networks, we examined the role of regulatory T (Treg) cells in suppression of Th2 cells, using a 

mouse model of experimental cryptococcosis. Upon pulmonary infection with Cryptococcus, Treg 

cells accumulated in the lung parenchyma independently of priming in the draining lymph node. 

Using peptide-MHCII molecules to identify Cryptococcus-specific Treg cells combined with 

genetic fate-mapping, we noted that a majority of the Treg cells found in the lungs were induced 

during the infection. Additionally, we found that Treg cells utilized the transcription factor, 

Interferon Regulatory Factor 4 (IRF4), to dampen harmful Th2 cell responses, as well as mediate 

chemokine retention of Treg cells in the lungs. Taken together, induction and IRF4-dependent 

localization of Treg cells in the lungs allow Treg cells to suppress the deleterious effects of Th2 

cells during cryptococcal infection.

Introduction

Cryptococcosis is an emerging infectious disease of humans caused by the fungus, 

Cryptococcus neoformans (1). Yeasts or spores are inhaled from the environment and enter 

the lower respiratory tract. Robust CD4+ helper T (Th) cell-mediated immunity controls this 
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initial pulmonary infection, and as a result, immune replete individuals rarely experience 

overt disease. However, Th cell deficiencies associated with solid organ transplantation, 

cancer chemotherapy, and HIV/AIDS dramatically increases susceptibility to invasive 

cryptococcosis. C. neoformans emigrates from the lung, enters the bloodstream, and 

traverses the blood-brain barrier to cause cryptococcal meningitis. Despite access to 

standard antifungal and antiretroviral therapies, patients receiving treatment for cryptococcal 

meningitis exhibit a wide range of adverse clinical outcomes, including: infection relapse, 

immune reconstitution inflammatory syndrome due to excessive reaction to persistent 

antigen, and/or death (2). The reasons why some individuals recover without experiencing 

complications and others perish remains enigmatic.

Differences in the quality of the impaired Th cell responses in HIV patients stratify the 

spectrum of clinical outcomes (3–5). IFN-γ production by Type-1 helper T (Th1) cells 

defends against invasive cryptococcal disease and promotes fungal clearance (6–8). 

Dysregulated reconstitution of protective immunity in patients with recent cryptococcosis 

can also cause harmful inflammation (9). In addition, C. neoformans (serotype A) subverts 

protective immunity and exacerbates disease by driving Th2 cell production of interleukin 

IL-4, IL-5, and IL-13 (10, 11). Therefore, therapies that dampen detrimental Th cell 

responses could be used to ameliorate disease.

One mechanism the immune system uses to dampen Th cell responses is by employing 

regulatory T (Treg) cells. Treg cells are a distinct subset of Th cells that uniquely express the 

transcription factor forkhead box P3 (Foxp3), which stabilizes the suppressive function of 

Treg cells. Genetic aberrations in Foxp3 (i.e. IPEX syndrome) cause fatal Th cell-driven 

autoimmunity in humans, highlighting the importance of Foxp3 in immune homeostasis 

(12). Treg cells also inhibit effector Th cell responses to microbial infections (13). In 

particular, conditional depletion of Foxp3+ Treg cells in mice infected with C. neoformans 

increases Th2 cell abundance in the lungs, indicating Treg cells limit the proliferation of Th2 

cells primed by cryptococcal infection (14, 15). Beyond these initial observations, little is 

known about the mechanism of Th2 cell suppression by Treg cells during cryptococcal 

infection.

Since Treg cell suppression of effector Th cells is contact dependent (16), Treg cells must 

colocalize with effector cells in order to function in tissues such as the lung (17). To 

accomplish this, Treg cells express chemokine receptors and integrins that allow them to 

home to and to be retained at sites of inflammation (18). Separate evidence indicates Treg 

cells that restrain mucosal Th cell responses exhibit highly specialized control of distinct Th 

cell subsets by expressing the same lineage-defining transcription factors as their effector Th 

cell counterpart (19–21). In particular, interferon regulatory factor 4 (IRF4) expression by 

Treg cells has been implicated in the suppression of Th2-driven autoimmunity (21).

Here, we utilized a mouse model of experimental cryptococcosis to investigate Treg cell 

responses to pulmonary fungal infection. Specifically, we explored the hypothesis that Treg 

cells utilize IRF4 and chemokine receptors to colocalize with Th2 cells in the lungs. While 

in proximity with Th2 cells, Treg cells are able to inhibit the expansion of deleterious Th2 

cell responses to cryptococcal infection.

Wiesner et al. Page 2

J Immunol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and Methods

Mice

All mice used in this study were derived from a C57BL/6 background. B6.129P2-

Ccr5tm1Kuz/J (22), B6.129P2(C)-Ccr7tm1Rfor/J (23), B6.Cg-Foxp3tm2Tch/J (24), B6.129(Cg)-

Foxp3tm3(DTR/GFP)Ayr/J (25), Foxp3tm9(EGFP/cre/ERT2)Ayr/J (26), B6.129S1-Irf4tm1Rdf/J (27), 

B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, B6.PL-Thy1a/CyJ mice were purchased from 

Jackson Laboratories (Bar Harbor, ME). Foxp3-cre/GFP mice were a kind gift from Calvin 

Williams (28). Foxp3-eGFP mice were crossed with Thy1.1 mice to generate congenic 

marked mice for transfer experiements. Foxp3-cre ERT2 mice were crossed with tdTomato 

mice for Treg fate-mapping studies. All mice were housed in specific pathogen–free 

conditions.

Pathogen

Cryptococcus neoformans var. grubii strain KN99α was streaked on yeast peptone dextrose 

(YPD) agar plates and incubated for 2 days at 30°C. YPD broth was inoculated with 

colonies from the aforementioned plate and incubated for 16 hours at 30°C with gentle 

agitation. The inoculum was prepared by pelleting the culture, washing 3 times with 

phosphate buffered saline (PBS), and resuspending in PBS at a concentration of 2×106 

cells/mL.

Infection

6–8 week old, sex-matched mice were anesthetized with pentobarbitol. 5×104 serotype A - 

KN99α (29) cryptococcal cells in 25 μL of PBS were placed on the nares of each mouse, 

and the mice aspirated the inoculum into the lower respiratory tract. Finally, the mice were 

suspended by their incisors for 5 minutes and subsequently placed upright in their cage until 

regaining consciousness. For survival studies, ten mice per group were infected as described 

above. Animals were monitored for morbidity and sacrificed when endpoint criteria were 

reached. Endpoint criteria were defined as 20% total body weight loss, loss of 2 grams of 

weight in 2 days, or symptoms of neurological disease.

Treatments

For intravital staining, 3 micrograms of anti-CD45.2 (104, BV421, Biolegend) was injected 

into the tail vein of mice or placed on the nares of sedated mice 3 minutes prior to sacrifice 

and whole blood/lung harvest (30). Foxp3-cre ERT2 tdTomato mice received 2mg/day 

tamoxifen IP for five consecutive days to induce endogenous fluorescence for Treg cell fate-

mapping. For transfer studies, 1×106 negatively-selected CD4+ Th cells from naïve mice 

were injected via tail vein into congenic mice infected 7 days previously, and lungs were 

harvested at 14 days post-infection for leukocyte isolation and flow cytometric analysis. For 

CCR5 blockade experiments, mice were treated IP with 500 μg/day maraviroc (R&D 

Systems, Minneapolis, MN) from 9–14 days post-infection. Lastly, wildtype mice were 

treated 5 and 10 days post-infection with 1 mg of IL-10R antibody (1B1-3A, Bio-X-Cell) to 

block IL-10 signaling.
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Pulmonary Leukocyte Preparation

Lung leukocytes were isolated as previously described (31). Briefly, lungs were excised and 

minced to generate approximately 1 mm3 pieces. The lung mince was incubated in HBSS 

(Invitrogen, Grand Island, NY) + 1.3 mM EDTA solution for 30 min at 37 °C with agitation, 

and then transferred to RPMI-1640 (Invitrogen) medium supplemented with 5% Fetal 

Bovine Serum (FBS) (Invitrogen) and 150 U/ml type I collagenase (Invitrogen) and 

incubated for 1 h at 37 °C with agitation. The cells were passed through a 70 μm filter, 

pelleted, and resuspended in 44% Percoll-RPMI medium (GE Life Sciences, Pittsburgh, 

PA). A percoll density gradient was created (44% top, 67% bottom), and the samples were 

centrifuged for 20 min at 650X g. The leukocytes at the interface were removed, washed 2 

times with RPMI medium, and resuspended in PBS + FBS at a concentration of 107 

cells/ml. CD4+ T cells were enriched using a Dynabeads CD4+ T Cell Negative Isolation 

Kit (Life Technologies, Grand Island, NY) per manufacture’s instructions. For intracellular 

cytokine analysis, ~106 CD4+ T cells were suspended in 200 μL of restimulation buffer 

(RPMI + 10% FBS + 1% penicillin/streptomycin + 5 μg brefeldin A) without (unstimulated) 

or with (stimulated) 10 ng phorbol myristate acetate (PMA) and 50 ng ionomycin. After 5 

hours, the cells were washed and immediately prepared for flow cytometry.

Flow Cytometry

Samples were incubated for 5 minutes with CD16/32 antibody (Biolegend) and LIVE/

DEAD Fixable Far Red stain (Invitrogen) to prevent nonspecific antibody binding, as well 

as mark dead cells. 25nM Cda2-tetramer was added to the sample and incubated at 25°C for 

1 hour in the dark. CCR3 (J07E35, PE, Biolegend), CCR4 (2G12, PE, Biolegend), and 

CCR5 (HM-CCR5, PE, Biolegend) were added 1:50 during tetramer staining when 

appropriate. Samples were surface-stained at 4°C for 30 minutes with the following 

antibodies: CD4 (RM4-5, BV605, Biolegend), CD11b (M1/70, PE-Cy5, eBioscience, San 

Diego, CA), CD11c (N418, PE-Cy5, eBioscience), B220 (RA3-6B2, PE-Cy5, eBioscience), 

CD25 (3C7, BV650, Biolegend), CD44 (IM7, Alexa Fluor 700, Biolegend) and/or Siglec F 

(E50-2440, PE, BD Biosciences). When applicable, the cells were then incubated in Foxp3 

Transcription Factor Buffer (eBioscience) at 4°C for 30 minutes. The cells were labeled with 

antibodes against the following intracellular antigens: Foxp3 (FJK-16s, FITC, eBioscience), 

IL-5 (TRFK5, APC, Biolegend), IL-13 (eBio13A, eFluor 450, eBioscience), GATA3 

(L50-823, PE-Cy7, BD Biosciences), and/or IRF4 (3E4, eFluor 450, eBioscience). 1:200 

antibody concentrations were used for most surface staining, and 1:100 antibody 

concentrations were used for intracelluar staining. For data acquisition, events from the 

entire sample (500,000–1,000,000) were collected on a BD FACSCanto II flow cytometer 

(BD Biosciences, San Jose, CA), and the data were analyzed with FlowJo X (Tree Star Inc., 

Ashland, OR).

Naïve Cda2+ Th cell Enrichment

Analysis of antigen-specific Th cells within the pre-immune repertoire was performed, as 

previously published (32). Briefly, thymi and secondary lymphoid organs were collected 

from uninfected Foxp3-GFP mice. Cell suspensions were labeled with Cda2-tetramer and 
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enriched using anti-PE MACS cell isolation kits (Miltenyi, San Diego, CA). Flow cytometry 

was performed as described above.

Lung Cytokines

Lungs from naïve mice or mice 14-days post-infection were excised, snap frozen in liquid 

nitrogen, and homogenized in 3 mL of T-PER (Thermo Fisher Scientific) with Complete 

Protease Inhibitor Cocktail (Roche, Indianapolis, IN). The lung homogenate was pelleted, 

and the supernatant was collected and stored at −80°C until analysis. Samples were diluted 

1:4 in assay buffer immediately before processing. Cytokines were quantified using 

Luminex technology according to manufacturer instructions (Bio-Rad, Hercules, CA).

Lung Histology

Lungs were removed from mice 14 days post-infection, perfused via the right ventricle with 

cold PBS, inflated with 10% formalin (Thermo Fisher Scientific, Rockford, IL), and placed 

in a container of 10% formalin. Tissues were dried with organic solvent, embedded in 

parafin, sectioned, and stained with hematoxylin and eosin, before images were captured.

Statistics

P-values for pairwise comparisions were by Mann-Whitney U with Bonferroni adjustments 

for multiple comparisons. Global tests were by Kruskal-Wallis ANOVA. Surival curves 

were compared with log-rank tests. Power calculations were performed to assess appropriate 

sample size for all experiments. P-values ≤ 0.05 were considered statistically significant. All 

statistics and graphs were processed with Prism 6 (GraphPad Software, La Jolla, CA).

Study Approval

All animal experiments were done in concordance with the Animal Welfare Act, U.S. 

federal law, and NIH guidelines. Mice were handled in accordance with guidelines defined 

by the University of Minnesota Institutional Animal Care and Use Committee protocol 

numbers 1010A91133 and 1207A17286.

Results

Regulatory and effector Th cells coexist in the lung parenchyma

Upon pulmonary infection with the pathogenic fungus, Cryptococcus neoformans (KN99α), 

mice develop lethal disease that results from a combination of unabated fungal replication 

and Th2-driven immunopathology. Importantly, these detrimental Th2 cells are primed and 

accumulate in the lungs (15). Since Treg cell suppression of effector cells requires these 

cells to be in close proximity (16), we hypothesized that Treg/effector cells colocalize within 

Cryptococcus-infected lungs.

Th cells are highly heterogeneous with respect to their T cell receptor and cognate functions. 

Thus, the use of Cryptococcus-specific reagents to track antigen-specific Th cells within a 

polyclonal repertoire facilitates direct comparisons of Th cell subsets responding to 

infection. We used a peptide from chitin deacetylase 2 (Cda2), an immunogenic 

cryptococcal protein (33), to construct a recombinant peptide-MHCII tetramer to track 
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Cryptococcus-specific Th cells by flow cytometry (15). The Cda2-MHCII tetramer not only 

identified Cda2+ Foxp3− effector Th cells in the lungs of infected mice, but the tetramer 

also labeled a sizable population of Cda2+ Foxp3+ Treg cells (Fig. 1A).

The lung consists of three physically separate compartments that may contain Th cells: 

blood vessels, airways, and lung parenchyma. To determine whether the Treg/effector cells 

were circulating in the blood vasculature or residing in the airways/lung parenchyma, we 

performed intravital antibody staining. Anti-CD45 antibody administered i.v. was used to 

label polyclonal Foxp3+ Treg cells and Foxp3− effector Th cells retrieved from the 

peripheral blood. The complete labeling of all Foxp3+ and Foxp3− cells in the blood 

indicates that the antibody completely penetrated the entirety of the blood vasculature (Fig. 

1B). Cells collected from whole lung digests had a mixture of i.v. stained and unstained 

cells, showing the lung was composed of circulating and lung-resident Treg/effector Th cells 

(Fig. 1B). In contrast, nearly all antigen-specific cells were unstained, showing that 

infection-induced Th cells resided outside of the blood vasculature (Fig. 1B). To distinguish 

Treg/effector Th cells in the lungs from the airways, we sedated infected mice and instilled 

fluorescent-coupled anti-CD45 antibody into the nares. Airway-resident alveolar 

macrophages collected by lavage were fully labeled by this intranasal antibody treatment, 

showing this method of antibody delivery was effective (Fig 1C). Conversely, Th cells in the 

peripheral blood remained unlabeled, indicating the antibody did not leak from the airways 

into blood circulation (Fig 1C). A majority of polyclonal and antigen-specific Treg/effector 

Th cells obtained from lung digests did not stain with this inhaled antibody (Fig. 1C). 

Therefore, most of the Treg/effector Th cells were not resident in the airways. By extension, 

these data collectively demonstrate that Treg and effector Th cells responding to infection 

coexist in the lung parenchyma.

Treg cell induction does not depend on lymphoid priming

We next sought to determine the location of Treg cell induction. The mediastinal lymph 

node (MLN) is the principle origin of Th cell priming to most microbes that breech the 

airway mucosa. However, we previously showed that effector Th cells gather in the lungs in 

the absence of dendritic cell trafficking and subsequent T cell activation in the lung-draining 

lymph node (15). Thus, we compared the presence of Treg cells at the location of traditional 

Th cell priming in the MLN and the site of C. neoformans infection in the lungs. 

Cryptococcus-specific Foxp3-expressing Treg cells existed in the MLN and spleen, yet these 

populations remained relatively small compared to the large population of Cryptococcus-

specific Treg cells that accumulated in the lungs (Fig. 2A, Fig. S1).

The relatively small Treg cell response in the MLN suggests that either Treg cells 

immediately migrate after activation in the lymph node to the site of infection or Treg cell 

induction occurs autonomously in the lungs. We used CCR7 −/− mice (23) to answer this 

question. CCR7 is required for naïve T cell entry into lymph nodes, thus CCR7 deficiency 

expectedly inhibited naïve Th cells (i.e. CD44 low) from accumulating in the MLN (Fig. 

2B). Likewise, the MLN of infected CCR7 −/− mice exhibited decreased swelling compared 

to wildtype mice (Fig. 2C), further indicating dysfunctional Th cell priming in the MLN of 

CCR7-deficient mice. Despite the aberrant MLN response, bulk and Cryptococcus-specific 
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Treg cells accumulated in the lungs of CCR7 −/− mice similar to levels in wildtype mice 

after C. neoformans infection (Fig. 2D). Thus, Treg cell induction and accumulation in the 

lungs does not require mediastinal lymph node priming during pulmonary cryptoccocal 

infection.

Cryptococcus-specific Treg cells are induced in the lungs upon pulmonary infection

Treg cells develop along two ontologically distinct lineages: “peripheral” Treg (pTreg) cells 

and “thymic” Treg (tTreg) cells. Upon receiving secondary cues of excessive inflammation, 

naïve Th cells can differentiate in the periphery into pTreg cells. Conversely, tTreg cells 

become regulatory cells during thymic selection based on T cell receptor affinity for self-

antigens (34). Of note, tTreg cells emigrate from the thymus with full suppressive potency 

and do not need to undergo further activation in lymphoid tissues (35). Therefore, we asked 

whether the Treg cells in cryptococcal infected lungs are tTreg cells that populate the lungs 

independently of lymph node priming or pTreg cells autonomously induced in the lungs.

Cryptococcus-specific tTreg cells must exist in the pre-immune, naïve Th cell repertoire, if 

these cells are the dominant source of Treg cells in the lungs of infected mice. Therefore, we 

examined the thymus and secondary lymphoid organs of uninfected mice for the presence of 

Cda2+ Foxp3+ Treg cells. Cda2-specific Treg cells were present in the pre-immune 

repertoire contained in the thymus and secondary lymphoid organs, albeit at lower Treg/

effector proportions compared with polyclonal Th cells (Fig. 3A). Therefore, a small number 

of Cryptococcus-specific tTreg cells can be found in uninfected mice, and these cells could 

migrate to the lung and proliferate in response to cryptococcal infection.

To further address the question of whether the Treg cells accumulating in lungs of infected 

mice migrated from the thymus or were induced in the lungs, we developed a genetic fate-

mapping system to distinguish where these cells developed. Mice containing a Foxp3-cre 

Estrogen Receptor 2 (ERT2) transgene (26) were crossed with mice that had a Rosa26 stop 

codon-floxed tdTomato allele to make Foxp3-i-cre tdTomato mice. Effectively, the 

combination of these transgenes allows for inducible fluorescent marking in vivo of Treg 

cells and all of the progeny of these cells. Similarly, when tamoxifen is removed, Treg cells 

produced de novo will not have any detectable fluorescence reporter activity. Ultimately, 

this allowed us to label tTreg cells (and all cells derived from this progenitor) within the pre-

immune repertoire, halt new reporter induction by stopping tamoxifen administration, and 

determine whether the lung-resident Treg cell progenitors existed prior to infection (i.e. 

tdTomato+) or were produced post-infection (i.e. tdTomato−) (Fig. 3B). Less than 1% of 

Treg cells from Foxp3-i-cre tdTomato mice that did not receive tamoxifen were fluorescent 

(Figure 3B), and tamoxifen administered during the peak Th cell response, 9–14 days post-

infection, induced fluorescence in more than 90% of the Treg cells (Figure 3B). Thus, the 

genetic fate-mapping system is not leaky and suitably penetrant. When tamoxifen was given 

12–7 days prior to infection to label the pre-immune Treg cells, a minor fraction of Treg 

cells retained fluorescence when harvested at 14 days post-infection (Figure 3B). Therefore, 

a small proportion of Treg cells in the lungs came from tTreg cells in the pre-immune 

repertoire, and instead, the majority were pTreg cells that acquire a regulatory phenotype as 

a consequence of fungal infection.

Wiesner et al. Page 7

J Immunol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Interferon Regulatory Factor 4 expression by Treg cells is required to efficiently suppress 
the pathologic Th2 cell response to pulmonary fungal infection

Treg cells generated during cryptococcal infection are poised to uniquely suppress Th2 cells 

(14, 15). Additionally, our data indicating that Treg cells are induced and reside in the lungs 

of infected mice led us to investigate features consistent with Treg cells that develop 

extrathymically, accumulate at mucosal surfaces, and target Th2 cells for suppression (36–

38). A prominent feature of pTreg cells that suppress distinct Th cell subsets in mucosal 

tissues is the expression of transcription factors that mirror the lineage of the effector Th cell 

populations targeted for suppression (19, 21). Therefore, we examined the expression 

kinetics of the Th2 cell transcription factor, IRF4, by both antigen-specific Foxp3+ Treg 

cells and cognate Foxp3− effector Th2 cells from mice infected with C. neoformans. As 

hypothesized, IRF4 expression increased in Treg cells and effector Th cells throughout the 

course of infection (Fig. 4A). This raised the possibility that IRF4 is utilized by Treg cells to 

suppress the Th2 cell response to pulmonary fungal infection.

To test whether IRF4 expression by Tregs was important for Th2 suppression, we bred 

Foxp3-cre mice (28) with IRF4 floxed mice (27) to generate mice with a conditional IRF4 

gene deletion in Treg cells (Foxp3-cre IFR4 fl/fl) (Fig. 4B). Cryptococcus-specific Th2 cells 

increased >5-fold in the lungs of Foxp3-cre IRF4 fl/fl mice, and this impaired suppression of 

Th2 cells resembled the situation observed with complete Treg abrogation (25) (Fig. 4C). 

Consistent with the increase in Th2 cell numbers, Foxp3-cre IRF4 fl/fl mice also had 

significantly elevated amounts of IL-5 and IL-13 from infected lung homogenates compared 

with both wildtype animals and Treg cell depleted mice (Fig. 4D). Importantly, Foxp3-cre 

IRF4 fl/fl mice did not experience a concomitant increase in Th17 and Th1 cell cytokine 

production (Fig. S2). Altogether, IRF4 is utilized by Treg cells to suppress Th2 cell 

responses to pulmonary cryptococcal infection.

The failure to efficiently suppress Th2 cell proliferation and effector function in mice with 

IRF4-deficient Treg cells also correlated with exacerbation of Th2-mediated disease. IRF4-

deficiency in Treg cells aggravated gross lung pathology (Fig 4E), as well as enhanced 

pulmonary accumulation of macrophages, multinucleate giant cells, and polymorphonuclear 

cells (Fig. 4E). Foxp3-cre IRF4 fl/fl mice had elevated fungal burden and accelerated 

cryptococcal disease (Fig. 4F&G). While lethal disease onset appeared to be more rapid in 

Foxp3-DTR mice relative to Foxp3-cre IRF4 fl/fl mice, naïve Foxp3-DTR mice receiving 

DT experienced fatal autoimmunity (Fig. 4G). DT treatment also negatively impacted the 

survival of infected wildtype mice independently of Treg cell ablation by potentially 

augmenting fungal burden (Fig. 4F&G). Thus, DT treatment and autoimmunity additionally 

contributed to the faster disease experienced by Foxp3-DTR mice. Taken together, IRF4-

deficient Treg cells exhibited a profound Th2 suppression defect that was comparable to 

complete Treg cell deficiency.

Interferon Regulatory Factor 4 is needed for localization of Treg cells in cryptococcal 
infected lungs

How Treg cells utilize IRF4 to suppress Th2 cells remains incompletely understood. 

Existing evidence suggests that IRF4 may dictate expression of suppressive factors 
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employed by Treg cells. For example, IRF4 interacts with Blimp-1 to mediate transcription 

of the suppressive cytokine, IL-10 (39). Chromatin immunoprecipitation of IRF4 confirms 

that IRF4 binds to the IL-10 locus, and IRF4 has been shown to mediate IL-10 production 

by Th2 cells (40, 41). However, IL-10 in lung homogenates of cryptococcal infected mice 

was unaffected by IRF4-deficiency in Treg cells and actually increased in mice with 

complete Treg cell abrogation (Fig. S3A). Furthermore, blockade with substantial quantities 

(i.e. 2 mg/mouse over the course of 9 days) of anti-IL-10R antibody did not alter Th2 cell 

production (Fig. S3B) or IL-5 and IL-13 secretion in lungs of infected mice (Fig. S3C). 

Finally, in other systems, IRF4-deficient Treg cells still suppress effector Th cells in an in 

vitro assay, indicating that IRF4 is dispensable for the direct suppression of effector Th cells 

by Treg cells (21).

An alternative hypothesis is IRF4 promotes the retention of Treg cells at the site of 

inflammation. Although IRF4-deficiency in Treg cells did not alter the proportion of Foxp3+ 

Treg cells among total CD4+ Th cells in the spleen and MLN (Fig. S4A), it significantly 

decreased Treg cell proportions in the lungs of infected mice (Fig. 5A). Furthermore, Foxp3-

cre IRF4 fl/fl mice had substantially fewer antigen-specific Treg cells in the lungs in 

comparison to wildtype mice (Fig. 5B). However, these studies could not determine whether 

the decreased Treg cell proportions were due to biased effector Th cell accumulation or 

defective Treg cell retention in the lungs.

To test the hypothesis that IRF4 promotes Treg cell localization in the lungs, we performed 

a set of adoptive transfers. Naïve CD4+ Th cells from Foxp3-cre IRF4 fl/fl mice were 

transferred into congenic wildtype recipients, as well as the reciprocal transfer of wildtype 

Th cells into Foxp3-cre IRF4 fl/fl mice. After resting in infected mice for 5 days (9–14 days 

post-infection of recipient), the donor cells were identified using the congenic markers. 

Transferred Th cells from Foxp3-cre IRF4 and wildtype mice parked equivalently in the 

lungs of their respective hosts (Fig. 5C), yet the transferred cells remained vastly 

outnumbered by the recipient cells. This allowed us to observe the behavior of transferred 

cells in the context of a recipient dominated inflammatory milieu. Despite a fully competent 

wildtype suppressive response that should suppress Th2 cell proliferation, we still observe a 

blunted Treg cell response skewed towards effector Th cells in Foxp3-cre IRF4 fl/fl 

transferred cells (Fig. 5C), indicating Treg cells lacking IRF4 were inefficiently retained in 

the lungs. IRF4-deficient Treg cells deposited normally in the MLN and spleens of infected 

mice (Fig. S4B). Thus, a generalized defect in Treg induction of the Foxp3-cre IRF4 cells 

was not apparent. Finally, Treg cells from Foxp3-cre IRF4 fl/fl mice were over-represented 

in the blood vasculature of infected lungs (Fig. 5D), correlating the decrease in pulmonary 

retention of Treg cells with the diffusion of these cells into the local bloodstream. These data 

demonstrate that IRF4 intrinsically regulates Treg cell localization in the lungs of 

cryptococcal infected mice.

Treg cell accumulation in the lungs is dependent on Chemokine Receptor 5

Th cells follow chemokine gradients to traffic to the site of inflammation (18). Therefore, 

we investigated chemotactic signals that may influence pulmonary localization of Treg cells. 

CCL3, CCL4, and CCL5 are involved in type-2 immunity (42), and these chemokines 
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increased 5–100-fold in the lungs of infected mice compared with naïve controls (Fig. 6A). 

To determine if the Treg cells could recognize these chemokines, we examined expression 

of the cognate chemokine receptors by Treg cells in the lungs of infected mice (Fig. 6B). 

CCR4 and CCR5 were highly expressed by Treg cells, and expression of these receptors 

decreased in IRF4-deficient Treg cells (Fig. 6B). In contrast, CCR3 was minimally 

expressed by Treg cells (Fig. 6B). Thus, CCL3, CCL4, and CCL5 were highly abundant in 

the lungs of infected mice, and the ability to detect these chemokine signals by Treg cells 

would require IRF4-dependent expression of CCR4 and CCR5.

Due to the elevated expression of CCR5, abundance of cognate chemokine ligands, and the 

high dependence of CCR5 on IRF4, we tested the causal relationship between CCR5 and 

pulmonary retention of Treg cells during fungal infection. Maraviroc is a selective inhibitor 

of CCR5 that is used in HIV patients to block CCR5-mediated entry of HIV into leukocytes 

(43). Mice that received 500 micrograms of maraviroc every day from 9 days to 14 days 

post-infection had significantly reduced accumulation of pulmonary Treg cells compared to 

similarly infected, vehicle treated controls (Fig. 6C). To further test the requirement of 

CCR5 for Treg localization in the lungs. CD45.1/CD90.2 congenic Foxp3-DTR mice were 

infected, and Treg cells were eliminated at 7 days post-infection by administering DT. 1 

million naïve CD4+ Th cells from uninfected CD45.2/CD90.1 wildtype and CD45.2/CD90.2 

CCR5 −/− mice (22) were transferred into the Foxp3-DTR mice. At 14 days post-infection 

the lungs were harvested and analyzed for Treg accumulation in the lungs. Strikingly, while 

wildtype Tregs readily accumulated in the lungs, the Tregs transferred from CCR5 −/−, mice 

were absent from the lungs of infected mice (Fig. 6D). Thus, Treg cell induction and 

retention in the lungs requires CCR5.

Discussion

Th cells are central to immunity and immunopathology associated with cryptococcal 

infection. While Th1 cells correlate with protection, Th2 cells exacerbate cryptococcal 

disease. Therefore, a deeper understanding of how the diseased host regulates Th cell 

responses could lead to development of interventions that ameliorate disease in predisposed 

individuals. One promising target of immune modulation is the Foxp3+ Treg cell 

population. Previously, Treg cells were found to counterbalance pathologic Th2 cell 

inflammation following pulmonary cryptococcal infection (14, 15). Yet, the mechanism 

behind this suppression was largely unexplored. Herein, we tracked Cryptococcus-specific 

Th cell responses with multi-parameter flow cytometry and manipulated host immune 

responses to unravel the mechanism of Treg-mediated suppression of Th2 cells during 

cryptococcal infection. We showed that Treg cells are induced in the tissues and utilize 

CCR5 and IRF4 to colocalize with and suppress Th2 effector cells in the lung parenchyma.

Many fungal pathogens elicit Treg cell responses. In most cases, Treg cells control the axis 

of Th17 cell responses and fungal clearance (44–47). In contrast, the primary function of 

Treg cells generated during cryptococcal infection is Th2 cell suppression. This clearly 

benefits the host, as disease is enhanced when Treg cells fail to adequately control Th2 cell 

proliferation. The signals the host uses to detect host damage and elicit Treg cell induction 

are unknown in the case of pulmonary cryptococcal infection. Additional insight into these 
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processes could lead to the identification of potent biomarkers to predict immune 

dysfunction in patients stricken with cryptococcal disease. Furthermore, therapeutic 

targeting of these pathways could be used to prompt the host to dampen harmful Th2 cell 

production.

We report that Treg cells are induced in substantial quantities during cryptococcal infection, 

even in the absence of CCR7-mediated entry of naïve Th cells into the MLN. Th2 cells also 

accumulate in the lungs independently of dendritic cell trafficking to the MLN and 

subsequent Th cell priming (15). This begs the question as to the precise location of T cell 

priming during cryptococcal infection. Bronchus-associate lymphoid tissue (BALT) is 

comprised of stochastically distributed clusters of lymphocytes in proximity to high 

endothelial venules and tissue-resident dendritic cells (48). These structures exist under 

homeostatic conditions and readily increase in size and number (known as “inducible” 

BALT) in individuals with chronic inflammatory conditions (49, 50). BALT sufficiently 

supports T cell priming in the absence of canonical lymphoid responses (51, 52). It is 

plausible that the BALT is responsible for T cell priming in cryptococcal infection. Fungi 

may not freely diffuse through the lymphatics to reach the lymph nodes due to the relatively 

large size of individual fungal cells. Consequently, during early cryptococcal infection in 

mice, an overwhelming majority of antigen is contained in the lungs. The lung is a high 

blood flow organ, so circulating naïve Th cells have consistent access to the depot of 

cryptococcal antigen. Naïve Th cells could be coaxed into the lungs via high endothelial 

venules in a chemokine/integrin-mediated process, and the BALT could direct naïve Th cell 

activation, proliferation, and differentiation.

Treg cells are required for the suppression of Th2 cells in this model of pulmonary 

cryptococcal infection. However, the mechanism of Treg cell-mediated suppression was 

unknown. IL-10 production by Treg cells is a well-known pathway by which Treg cells 

inhibit pulmonary Th cell responses (53). IL-10 signaling reduces the proliferative potential 

of Th cells (54), as well as amplifies the suppressive potency of Treg cells (55). However, 

IL-10 blockade had minimal impact on Th2 cell responses to cryptococcal infection. 

Previous studies have shown IL-10-independent Treg cell suppression of effector Th cells 

involves close contact (56). Thus, mechanistically, the colocalization of Treg cells with 

effector Th2 cells during cryptococcal infection is an important observation, and the ability 

of Treg cells to inhibit effector Th cell niches affords unique functional opportunities.

Perhaps, the most interesting regulatory pathway concerns the potential ability of Treg cells 

to mediate suppression by starving Th cells of local growth factors. In particular, Treg cells 

scavenge IL-2 via their high affinity IL-2 receptor (57). This competition limits IL-2 growth 

factor availability and restricts Th cell proliferation (58). There is some evidence to suggest 

this might occur in the context of pulmonary cryptococcal infection. First, IL-2 complexes 

administered to infected mice massively augment Th2 cell accumulation (15). Thus, IL-2 is 

not only an important signal for Th2 cell proliferation, but IL-2 is also a limited resource in 

this setting. Additionally, Signal Transducer and Activator 6 (STAT6) and IRF4 are each 

individually required for Th2 cell generation during cryptococcal infection (unpublished 

observations). However, the requirement for these transcription factors can be bypassed by 

treating infected knockout mice with IL-2 complexes (unpublished observations). Local IL-2 
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starvation by Treg cells leading to Th2 cell suppression is an intriguing, but still untested 

hypothesis in this model of pulmonary fungal infection.

Collectively, our data unify several emerging concepts regarding Treg cell suppression of 

Th2 cells. Peripherally induced Treg cells inhibit Th2 cells at mucosal surfaces (38), and 

Treg cells utilize effector cell programs like IRF4 to mediate specific suppression of Th2 

cells (21). IRF4 functions as a rheostat for T cell receptor signaling (59), and TCR signaling 

is required to maintain a portion of the suppressive program of Treg cells (60). Additionally, 

chemokines promote the migration and retention of Treg cells in inflamed tissues (18), and 

CCR5 is important for Treg cells to suppress Th cell responses to pulmonary fungal 

infections (61). In our model, Treg cells were induced in the periphery and IRF4 expression 

by Treg cells was required for efficient Th2 suppression. Treg cells in the lungs of 

cryptococcal infected mice expressed high levels of CCR5, and the few remaining IRF4-

deficient Treg cells in the lungs had significantly decreased expression of CCR5. IRF4 does 

not directly interact with the promoter region of CCR5 (41) and does not likely influence 

CCR5 gene transcription. Thus, we favor a model where diminished T cell receptor 

signaling in Treg cells due to IRF4 deficiency reduces CCR5 expression. This prevents 

Treg/effector cell colocalization and hinders Treg suppression of Th2 cells. Thus, our data 

provide a logical connection between the hitherto disjointed observations of extrathymically 

induced Treg cells, IRF4-dependent suppression, chemokine-mediated localization, and 

Th2-specific inhibition.

Skewed type-2 cytokine responses in the peripheral blood and cerebral spinal fluid of 

patients with cryptococcal meningitis are associated with early mortality and onset of 

immune reconstitution inflammatory syndrome (5, 62). CCR5+ T cells are recruited to the 

CSF of patients experiencing cryptococcal meningitis and increased presence of CCR5+ T 

cells is associated with poor clinical outcome (63). HIV infects and lyses CCR5+ and 

CXCR4+ Th cells equally (64), and the in vivo evolution of CXCR4-tropic virus is assisted 

by efficient elimination of CCR5+ Th cells (65). Moreover, maraviroc treatment selectively 

eliminates Treg cells in HIV patients (66). Taken together with our findings that Treg cells 

require CCR5 to colocalize and suppress detrimental Th2 cell responses, these observations 

unveil a novel potential etiology of cryptococcal pathogenesis. Perhaps, HIV-directed lysis 

of CCR5+ Treg cells and/or therapeutic targeting of CCR5 in people living with HIV could 

exacerbate Th2-driven disease experienced by patients with cryptococcal meningitis.
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Abbreviations used in this article

BALT Bronchus associated lymphoid tissue

Cda2 Chitin deacetylase 2

DTR Diptheria toxin receptor

ERT2 Estrogen receptor 2

Foxp3 Forkhead box P3

Th Helper T

IRF4 Interferon regulatory factor 4

MLN Mediastinal lymph node

pTreg Peripheral regulatory T

Treg regulatory T

STAT6 Signal transducer and activator 6

tTreg Thymic regulatory T
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Figure 1. Antigen-specific Treg and effector Th cells colocalize in the lung parenchyma
(A) Flow plots (left) and composite graph (right) of antigen-specific Cda2+ CD4+ Treg and 

effector Th cells in naïve and infected mice. (B) Cytometry plots of CD4+ Th cells in 

peripheral blood (left) or whole lung (center), and antigen-specific CD4+ Th cells in whole 

lungs (right) all treated with intravital/intravenous (IV) fluorescent CD45 antibody 3 

minutes prior to euthanasia and tissue harvest. (C) Cytometry plots of CD11c+ Siglec F+ 

alveolar macrophages (far left), polyclonal Th cells in the blood (left), or CD4+ polyclonal 

Th cells (left) and antigen-specific Th cells (right) from whole lung digests after intravital/

intranasal (IN) instillation of fluorescent CD45 antibody 3 minutes prior to euthanasia and 

tissue harvest. Plots represent two independent experiments.
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Figure 2. Lymph node priming is dispensable for Treg cell accumulation in the lungs
(A) Cryptococcus-specific (Cda2) Foxp3+ Treg cells in the lungs and mediastinal lymph 

nodes (MLN). (B) Histogram of CD44 expression by CD4+ Th cells from lymph nodes of 

wildtype and CCR7 −/− mice 14 days post-infection. (C) MLN of naïve wildtype, as well as 

14 days post-infection wildtype and chemokine receptor 7 (CCR7) deficient mice. Scale bar 

= 2 mm (D) Cytometry plot (left) and composite graph (right) of Foxp3+ Treg cells from 

lungs of naïve wildtype and 14 days post-infection wildtype and CCR7 −/− mice. Filled 

symbols indicate polyclonal Treg cells and open symbols are Cryptococcus-specific Treg 

cells. Pairwise comparisons were made by Man-Whitney U with Bonferoni adjustments for 

multiple comparisons. *** = P<0.0005, n.s. = non-significant. All data are presented as the 

mean +/− standard error of the mean and represent two independent experiments.

Wiesner et al. Page 19

J Immunol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Treg cells in the preimmune repertoire are not the dominant source of Treg cells that 
accumulate in the lungs of fungal infected mice
(A). Foxp3+ Treg cells as a proportion of Th cells in the thymus or secondary lymphoid 

tissue of naïve mice. Representative cytometry plots of polyclonal and antigen-specific Th 

cells (left) and composite graph of antigen-specific Th cells (right). (B) In vivo genetic fate-

mapping strategy of Treg cells using Foxp3-cre ERT2 x Rosa26 stop-floxed tdTomato mice 

(left). Cytometry plots of fluorescent reporter activity in antigen-specific Treg cells from 

lungs with or without tamoxifen (Txfn) (right). All data are presented as the mean ± 

standard error of the mean and represent two independent experiments.
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Figure 4. IRF4 is required by Treg cells to efficiently suppress the detrimental Th2 cell response 
to pulmonary cryptococcal infection
(A) Flow cytometry histogram (left) and composite graphs (right) of Interferon Regulatory 

Factor 4 (IRF4) expression in CD44 low naïve, Cryptococcus-specific (Cda2+) Foxp3+ 

Treg, Cda2+ Foxp3− effector cells collected from the lungs of mice. (B) Histogram of IRF4 

expression by lung Treg cells in wildtype and Foxp3-cre IRF4 fl/fl mice 14 days post 

infection. (C) Cda2+ Th2 cells producing interleukin-5 (IL-5) and/or IL-13 in the lungs of 

wildtype, Foxp3-cre, and Foxp3-DTR mice 14 days post-infection. (D) IL-5 and IL-13 

secreted in lung homogenates from wildtype, Foxp3-cre, and Foxp3-DTR mice 14 days 

Wiesner et al. Page 21

J Immunol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



post-infection. (E) Photograph of gross-level pathology of lungs from mice infected 14 days 

previously (top). Hematoxylin and eosin staining of lung sections from Foxp3-cre mice 14 

days post-infection (bottom). Bar = 200 μm. (F) Colony forming units (CFU) in the lungs of 

wildtype +/− diphtheria toxin (DT), Foxp3-cre IRF4 fl/fl, or Foxp3-DTR + DT. (G) 

Survival curve of IRF4 fl/fl and Foxp3-cre IRF4 fl/fl infected mice (top). Survival curves of 

naïve Foxp3-DTR, as well as infected wildtype and Foxp3-DTR mice – all groups treated 

every other day with 200 ng DT beginning at 5 days post-infection (bottom). Survival curves 

include 10 mice per group, and P-values calculated by log rank test. Pairwise comparisons 

were made by Man-Whitney U with Bonferoni adjustments for multiple comparisons. *** = 

P<0.0005, ** = P<0.005, * = P<0.05, n.s. = non-significant. All data are presented as the 

mean ± standard error of the mean and represent two independent experiments.
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Figure 5. Pulmonary retention of Treg cells is maintained by IRF4
(A) Frequency of Foxp3+ Treg cells in the lungs of naïve wildtype mice and wildtype, 

Foxp3-cre, and Foxp3-DTR mice 14 days post-infection. (B) Flow cytometry plots of 

antigen-specific Treg and effector cells in the lungs of mice 14 days post-infection. (C) Flow 

cytometry plots and composite graphs of Foxp3-IRF4 fl/fl or widltype donor Th cells 

collected from lungs of wildtype or Foxp3-cre IRF4 mismatched recipients at 14 days post-

infection. Cytometry plots show congenic marked donor Th cells collected from the 

recipient with quantities of Th cells deposited also indicated in the plot. (D) Flow plots and 

composite graphs of pulmonary Treg cells from wildtype and Foxp3-cre IRF4 mice infected 

14 days previously and treated with intravenous anti-CD45 antibody 3 minutes before lung 
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harvest. Pairwise comparisons were made by Man-Whitney U with Bonferoni adjustments 

for multiple comparisons. *** = P<0.0005, n.s. = non-significant. All data are presented as 

the mean ± standard error of the mean and represent two independent experiments.
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Figure 6. Treg cell accumulation is mediated by CCR5 via IRF4
(A) Chemokine Ligands (CCL) measured in lung homogenates from wildtype mice 14 days 

post-infection. (B) Cytometry histograms of Chemokine Receptor (CCR) expression on 

CD44 low naïve cells, as well as Treg cells from wildtype and Foxp3-cre IRF4 fl/fl mice 14 

days post-infection. (C) Flow plots (left) and composite graphs (right) of Treg cells in the 

lungs of mice 14 days post-infection with and without maraviroc treatment. (D) CD45.2/

CD90.1 wildtype and CD45.2/CD90.2 CCR5 −/− naïve Th cells transferred into a CD45.1/

CD90.2 Foxp3-DTR mouse infected and Treg cell-depleted 7 days previously. Pairwise 

comparisons were made by Man-Whitney U. All data are presented as the mean ± standard 

error of the mean and represent 2 independent experiments.
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