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Abstract

The inferior colliculus (IC) is the common target of separate pathways that transmit different types 

of auditory information. Beyond tonotopy, little is known about the organization of response 

properties within the 3-dimensional layout of the auditory midbrain in most species. Through 

study of interaural time difference (ITD) processing, the functional properties of neurons can be 

readily characterized and related to specific pathways. To characterize the representation of ITDs 

relative to the frequency and hodological organization of the IC, the properties of neurons were 

recorded and the sites recovered histologically. Subdivisions of the IC were identified based on 

cytochrome oxidase (CO) histochemistry. The results were plotted within a framework formed by 

an MRI atlas of the gerbil brain. The central nucleus was composed of two parts, and lateral and 

dorsal cortical areas were identified. The lateral part of the central nucleus had the highest CO 

activity in the IC and a high proportion of neurons sensitive to ITDs. The medial portion had lower 

CO activity and fewer ITD-sensitive neurons. A common tonotopy with a dorsolateral to 

ventromedial gradient of low to high frequencies spanned the two regions. The distribution of 

physiological responses was in close agreement with known patterns of ascending inputs. An 

understanding of the 3-dimensional organization of the IC is needed to specify how the single 

tonotopic representation in the IC central nucleus leads to the multiple tonotopic representations in 

core areas of the auditory cortex.
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The MRI of a gerbil brain was used to align physiological data from the inferior colliculus on a 

tissue atlas, graphically illustrating the original locations of recording sites and the organization of 

characteristic frequencies and interaural time di3erences.
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1 INTRODUCTION

The central nucleus of the inferior colliculus (IC) is the common target of separate ascending 

pathways that convey discrete types of auditory information (for reviews, see Hutson, 1997; 

Winer & Schreiner, 2005; for more recent studies, see Malmierca, Saint Marie, Merchan, & 

Oliver, 2005; Cant & Benson, 2006, 2008; Loftus, Bishop, & Oliver, 2010; Cant, 2013; 

Felix, Magnusson, & Berrebi, 2015). From there, the information is relayed to the ventral 

division of the medial geniculate body (MGv) of the thalamus, which in turn projects to 

multiple core regions of the auditory cortex, including the primary auditory cortex (AI). A 

transformation from an organization based on frequency to one according to function occurs 

between the level of the IC and the auditory cortex. This transformation is best shown in the 

mustached bat, where neurons with different physiological properties and functional roles, 

such as sensitivity to target range or relative velocity, are arrayed according to their position 

in the tonotopic map of the IC central nucleus (Wenstrup, Mittmann, & Grose, 1999; 

Portfors & Wenstrup, 2001). However, at the level of the cortex, neurons are clustered into 

functional areas characterized by a common response type (O’Neill & Suga, 1979; Suga, 

O’Neill, Kujirai, & Manabe, 1983; Fitzpatrick, Suga, & Olsen, 1998). In other mammals, the 

isofrequency laminae in the IC become multiple tonotopic regions in the cortex. Functional 

parcellation of the cortical areas is likely, such as into “place” and “pattern” pathways 

(Malhotra, Hall, & Lomber, 2004; Lomber & Malhotra, 2008; Recanzone & Cohen, 2010; 

Rauschecker, 2015), but the details of these functional areas are less clear than in the 

mustached bat. In addition, in the mustached bat the change from an organization according 
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to frequency to one according to function occurs in the output pathways of the IC, so that the 

thalamic organization resembles that seen in the cortex (Olsen & Suga, 1991a, 1991b; 

Wenstrup, Larue, & Winer, 1994; Wenstrup & Grose, 1995; Wenstrup, 1999; Pearson, 

Crocker, & Fitzpatrick, 2007). In other species, the connection from the IC to the thalamus is 

typically presented as a single pathway, and the output from the thalamus as branching to 

innervate separate cortical areas (Kaas & Hackett, 2000; Winer & Schreiner, 2005). These 

relationships are schematized in Figure 1. Other than in the mustached bat, path-ways from 

the IC to the thalamus are not typically described in terms of both physiological and 

functional roles—in part due to the lack of identified “information-bearing parameters” that 

relate specific responses and neuronal location to a functional role. An exception is 

sensitivity to interaural time difference (ITD), which is an information-bearing parameter for 

sound location as well as for improving signal detection in noise.

Processing of ITDs in terms of neurophysiology and behavior is among the most studied 

properties of the auditory system (Bernstein, 2001; Konishi, 2003; Palmer & Kuwada, 2005; 

Vonderschen & Wagner, 2014). Most of the physiological focus has been on identifying the 

specializations used in pathways from the auditory nerve to the superior olivary complex 

(SOC) to encode and extract the ITD information with microsecond resolution. Less 

attention has been paid to localization of ITD-sensitive neurons within the pathways from 

the IC to the cortex than to the physiological properties of the neurons. Here, we used gerbils 

to study the localization of ITD sensitivity within the IC. Previous studies on gerbil ITD 

sensitivity have described the pathways to the IC from the main nuclei of the SOC that 

convey ITD information (Cant & Benson, 2006; Cant, 2013). In the present study, 

localization was achieved through the use of an MRI atlas whereby physiological 

information across cases could be plotted within a common framework. This framework will 

then form the basis for further physiological and connectional studies of the thalamus and 

cortex, to help distinguish whether the patterns of connections observed in the mustached bat 

are a specialized adaptation to their particular lifestyle, or are representative of a common 

mammalian plan.

2 MATERIALS AND METHODS

2.1 Experimental procedures

Thirty-five female gerbils, weighing between 50 and 70 g, were used for this study. The 

animals were handled and housed according to the standards described by the National 

Institutes of Health Committee on Care and Use of Laboratory Animals. The experimental 

protocols were approved by the Institutional Animal Care and Use Committee at the 

University of North Carolina at Chapel Hill.

2.1.1 Surgery and animal handling—Animals were anesthetized with an intramuscular 

injection of ketamine/xylazine (100 mg ketamine and 4 mg xylazine per kg body weight), 

supplemented with one-third the original dose every 60 min. Animals were transferred to a 

double-walled, sound-attenuated booth, where each recording experiment lasted 6 to 8 hr. 

The head was shaved and secured to a stereotactic platform with a bite-bar of dental cement 

molded to the teeth of a gerbil’s skull. In this configuration, the orientation of the gerbil’s 

Graña et al. Page 3

J Comp Neurol. Author manuscript; available in PMC 2017 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain resembles that shown in Figure 2a. To avoid puncture of the transverse sinus (ts), the 

head holder was inclined 15° (nose up), resulting in the orientation in Figure 2b. Corneas 

were protected with sterile lubricating eye ointment (Refresh P.M.), and temperature was 

maintained at approximately 37°C with a heating blanket and rectal probe. A subcutaneous 

injection of xylocaine was administered under the scalp and regions adjacent to the external 

auditory meatus. The scalp was incised and retracted, and blunt dissection was continued 

laterally to expose the junction of the internal and external acoustic meatus on both sides of 

the head. The external meatus was opened to allow insertion of a small plastic tube for 

stimulus delivery. The stimulus tubes were sealed in place with connective tissue. The 

plastic tubes were attached to individual (left and right) speakers to complete a sealed 

stimulus delivery system.

A small hole was drilled in the skull to access the IC. For each penetration, a parylene-

coated tungsten microelectrode (5 or 12 MΩ; A-M Systems, Sequim, WA) was positioned at 

predetermined coordinates relative to lambda and advanced into the brain until robust 

multiunit responses to a 70- to 80-dB SPL frequency sweep were observed. The electrode 

was advanced through the IC and responses recorded until no auditory activity could be 

demonstrated, at which point a lesion was created in the tissue by applying a +5-μA current 

for 2 to 5 s to mark its location and assist in reconstructing the penetration trajectory. The 

electrode was then withdrawn and repositioned at a different set of coordinates, and the 

procedure for locating recording sites was repeated. All recordings were obtained from the 

left IC. Stimulus presentation and neural spike-time recording procedures are detailed below.

2.1.2 Recording procedures and acoustic stimulation—The electrode was 

advanced by a Burleigh Inchworm micro-drive (6000ULN, Burleigh Instruments, Victor, 

NY) capable of moving in sub-micron increments. A Grass P15 AC preamplifier was used 

for recording, with filters set between 300 and 3000 Hz and a gain of 1,000; additional gain 

was provided by an amplifier external to the booth (Signal Recovery model 5113, 

AMETEK, Burwyn, PA). Spike times from a window discriminator (Frederick Haer, 

Bowdoinham, ME) were stored digitally (Tucker Davis RZ6, Alachua, FL).

Stimulus waveforms were generated in a custom MATLAB (http://www.mathworks.com/; 

RRID: SCR_001622) program running on a Windows 7 PC platform. The stimuli were sent 

to a TDT (Alachua, FL) multi I/O processor (RZ6), where outputs for left and right channels 

went to programmable attenuators (TDT PA5), then to a headphone driver (TDT HB7), and 

finally to Beyerdynamics (Heilbronn, Germany) speakers (DT48, 8 Ω) attached to the plastic 

tubes in each ear. Stimuli were calibrated using a Bruel & Kjaer (Naerum, Denmark) ¼-in. 

microphone with a short probe tube attachment, and corrections for levels at different 

frequencies were made online. Stimulus levels are expressed in dB sound pressure level 

(SPL).

Stimuli consisted of tone bursts to measure frequency tuning, threshold, and binaural 

responses. Responses to ITDs were probed first with binaural beats to low-frequency tones 

or to sine amplitude modulated (SAM) tones at 100% modulation depth, to test for ITD 

sensitivity to the ITDFS or ITDENV, respectively. The test for ITDFS was most commonly 

used for neurons with low characteristic frequencies (CFs) while the test for ITDENV was 

Graña et al. Page 4

J Comp Neurol. Author manuscript; available in PMC 2017 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.mathworks.com/


most often used for neurons with high CFs. Fine-structure stimuli used low frequencies from 

200 to 1,700 Hz, with a 1- or 3-Hz binaural beat frequency, with equal levels of 50 or 70 dB 

SPL at each ear. Modulation frequencies were tested with SAM tones at CF, and often with a 

level difference of 10 to 40 dB between the ears, with the ipsilateral ear typically having the 

higher intensity. Additional tests of ITD sensitivity included static ITDs with low frequency 

tones or noise. The noise could be presented as correlated or anticorrelated at each ear.

During the experiment, the full set of analyses was available online from the MATLAB 

routines for display, enabling stimuli to be chosen with knowledge of a unit’s ongoing 

response characteristics. This approach helped to reduce the parameters of a large potential 

stimulus space.

2.1.3 Tissue processing—At the conclusion of each recording session, animals were 

euthanized with an overdose of Nembutal (100 mg/kg), and perfused through the heart with 

0.1 M phosphate buffer rinse (pH 7.4) followed by 4% para-formaldehyde in the same 

buffer. The head was removed and placed overnight in fixative at 4°C. The following day the 

head was repositioned in the head holder, and the brain was blocked in the same plane as the 

electrode penetration. The brain was then dissected from the skull and placed in 30% 

sucrose phosphate buffer until it sank. Brains were then frozen-sectioned at 40 μm and 

reacted for levels of mitochondrial activity using histochemistry for CO activity (Wong-

Riley, 1976). After the reaction was terminated, sections were rinsed, mounted on glass 

slides, cleared, and coverslipped for microscopic reconstruction of the penetration and to 

plot the location of unit recording sites relative to the location of the lesion. Photographs of 

the sections were obtained using a Zeiss Axioskop microscope with a Canon Rebel TI1 

camera and software (Melville, NY), and combined using Photoshop (http://

www.adobe.com/photoshop/; RRID: SCR_014199) to produce full-section images.

2.2 Physiological data analysis

Responses were displayed online on an oscilloscope, and single units, when present, were 

identified and studied in detail. Units that met a criterion of having spike intervals <0.7 ms 

occurring in <1% of all intervals were verified to be single units. Although single unit 

recordings were taken as they were encountered during each penetration, for purposes of 

mapping the IC, a recording was always made—regardless of whether it was single or 

multiunit—at approximately 200-μm intervals beginning from the first recorded response. In 

the event of multiunits, the discriminator level was lowered until multiunit activity was 

recorded.

2.2.1 Frequency tuning, threshold, and latency—The CF was determined from 

responses to tone bursts varying in frequency and intensity, typically starting at 70 dB SPL, 

decreasing in 20-dB steps until there was no response, and then increasing in 5- or 10-dB 

steps until the response just returned. The CF of a unit was the frequency that produced a 

response at the lowest stimulus intensity. The threshold value was determined from a 

“neurometric function” (Kiang & Moxon, 1974; Day, Koka, & Delgutte, 2012), where the 

responses in stimulus intervals exceeded those in nonstimulus intervals by d′ =1. Because 

most binaural stimuli were presented at suprathreshold levels, we also determined the best 
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frequency at 70 dB SPL (BF70), i.e., the frequency that produced the maximal response at 

70 dB SPL. Latency was taken as the median time from the stimulus onset to the first spike 

in the response at BF70 and 70 dB SPL.

2.2.2 Binaural response type—The basic scheme of Irvine (1992) was used to define 

binaural response types. Units were defined by their response to stimuli presented to each 

ear alone as excitatory (E), inhibitory (I), or no response (O). The binaural response (BR) 

type was defined based on the relationship to the monaural responses as either facilitation (F, 

20% greater than the sum of responses to each ear) or I (20% less than the response to either 

ear). Otherwise, if the binaural response fell between these two extremes, the relationship 

was labeled as occlusion (O). To classify a unit, the designations were written as 

[contralateral][ipsilateral]/[binaural]; thus, for example, a unit that had an excitatory 

response at both ears and a facilitative binaural response would be classified as EE/F. We 

categorized a neuron as monaural if we ran the following three binaural tests with no effect 

on response: 1) responses at CF and/or BF70 tested separately and together across a series of 

common stimulus levels, 2) responses to the responding ear held at CF and 10 to 20 dB 

above threshold while levels to the opposite ear were varied, and 3) at least one test of ITD 

sensitivity (see below), typically a binaural beat to a tone or modulation frequency.

2.2.3 ITD sensitivity—The most common test of ITD sensitivity used a binaural beat 

stimulus, which consists of tones presented to each ear that differ in frequency (Kuwada, 

Yin, & Wickesberg, 1979). The frequency difference produces a continuous change in 

interaural phase. If the frequency difference is small (usually 1 to a few Hz, but in some 

cases up to ~100 Hz), neurons in the IC can follow this changing phase, because of the 

specialized circuits that collect and enhance the phase-locking produced by hair cells and the 

auditory nerve. Sensitivity to the binaural beat can occur to the fine structure of low-

frequency sounds or to the envelopes of sounds including high-frequency carriers, as has 

been shown in many species (Kuwada, Stanford, & Batra, 1987; Batra, Kuwada, & Stanford, 

1989, 1993; Yin & Chan, 1990; McAlpine, Jiang, & Palmer, 1996; Marshall et al., 2008), 

including gerbils (Spitzer and Semple, 1993, 1995). We used the analytic procedures 

described by Yin & Kuwada (1983a) to quantify the responses of ITD-sensitive neurons. 

The responses to binaural beat fine structure (ITDFS) or envelope (ITDENV) were used to 

generate delay curves, or rate changes as a function of ITD to different stimulus or 

modulation frequencies. The average of all the delay curves is called a composite curve, 

which was used to determine the neuron’s best ITD (Bitd) as the peak of the composite 

curve. The average interaural phase of response to each frequency was calculated from cycle 

histograms binned on the beat frequency (typically 1 or 3 Hz), and the slope of the plot of 

interaural phase versus frequency was the neuron’s characteristic delay (CD) and the 

intercept was the neuron’s characteristic phase (CP).

While interaural phase is a measure of the timing differences in phase-locking between the 

two ears, vector strength (VS) is a measure of the strength of phase-locking. The VS equals 

1 when all spikes occur at a particular phase and 0 when the spikes are distributed evenly 

across all phases (Goldberg & Brown, 1969). From the binaural beat stimuli, it is possible to 

extract the VS to the beat frequency, as well as to the stimuli presented to each ear (e.g., 
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1,000 Hz in one ear and 1001 in the other, or SAM tones that differ by 1 Hz in modulation 

frequency), by binning the cycle histograms at each frequency in turn. Then, the VS from 

the frequency at each ear can be used to predict the VS obtained to the beat frequency, as a 

test of whether the recorded neuron could be a site or primary binaural interaction or has 

inherited the ITD sensitivity from a previous stage of extraction of the phase-locked timing 

information (Yin & Kuwada, 1983b; Kuwada et al., 1987; Batra, Kuwada, & Fitzpatrick, 

1997). The significance of the VS and interaural phase was determined from the Rayleigh 

test of uniformity (Mardia & Jupp, 2000, criterion P <0.001). Finally, the best frequency for 

ITD sensitivity (BFitd) was determined as the weighted average of a plot of synchronized 

rate (product of VS and spike rate) for each frequency or modulation frequency where the 

VS was significant (Fitzpatrick, Kuwada, & Batra, 2000; Fitzpatrick, Roberts, Kuwada, 

Kim, & Filipovic, 2009).

Sensitivity to ITDs could also be tested with other stimuli. Neurons that did not respond to 

binaural beats could be tested with static ITDs, where the ITD at a single frequency (or 

noise) was varied in steps (50–100 μs for ITDFS, up to 1 ms for ITDENV). It was not possible 

to sample all possible frequencies, ITDs, and levels, so values were chosen that were most 

likely to identify ITD sensitivity, if it existed, based on other responses that were collected. 

A positive result was therefore a clear indication of ITD sensitivity, but a negative result 

cannot be an absolute indication of lack of ITD sensitivity.

2.3 MRI-based reconstructions

The MRI of a gerbil brain served as a framework for aggregating physiological data obtained 

from different animals. MR images of the head of a 13-week-old, 65-g female Mongolian 

gerbil was obtained from the Center for In Vivo Microscopy (CIVM) at Duke University 

(http://www.civm.duhs.duke.edu/). The techniques were similar to those used to produce a 

mouse brain atlas suitable for use in histological and genotyping experiments (Johnson et al., 

2002a; Johnson, Cofer, Gewalt, & Hedlund, 2002b; Badea, Johnson, & Williams, 2009). 

Briefly, enhanced MR images were obtained through the use of ProHance (Bracco 

Diagnostic, Princeton, NJ), a gadoteridol-based contrast agent, mixed with a 10% buffered 

formalin fixative. The fixed brain was then imaged using a 9.4-T magnet with a GE Excite 

console (Epic 11.0, GE Healthcare, Milwaukee, WI), using a 3D spin echo sequence with a 

repetition time (TR) of 50 ms and an effective echo time (TE) of 6.2 ms. The resulting image 

array was 1,024 × 2,048 × 1,024 pixels over a field of view of 22 × 44 × 22 mm, and data 

were reconstructed at an isotropic resolution of 21.5 μm.

Using this MRI brain to catalogue experimental observations involves basic steps that are 

general to any similar study, and then specific implementations of each step for the material 

specific to this study. The basic steps are 1) rotating the stack of MRI images so that the 

orientation of the region of interest matches that seen in the histological images, so that MRI 

images corresponding to each histological section can be identified; 2) morphing the 

matching MRI images to the region of interest in each histological section; 3) plotting or 

digitizing points to be localized from the histology onto the morphed MRI images; and 4) 

reversing the morphing of the MRI image so that the plotted locations are within the 
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framework of the atlas brain. In the following paragraphs, we discuss each step in more 

detail for our particular experiment.

2.3.1 Standardized orientations of the MRI images—The stack of images in the 

MRI brain were viewed in ImageJ (Rasband, 1997–2014, RRID: SCR_003070), where the 

set could be manipulated as a volume with a variety of tools to zoom, rotate, or orient in 

different planes. A plugin, TransformJ (Meijering, 2000–2002), allowed free rotation of the 

stack about the three Cartesian axes, using the centroid of the image stack as the origin of 

rotation. The orientation of the imaged brain was first adjusted to have the midline be 

vertical in any horizontal or coronal section when displayed on the computer screen; this 

corrected for errors in the “yaw” and “roll” of the brain in the stack, respectively. The 

“pitch”—the angle of the head when looking up and down—was chosen to be 0° when the 

pons and ventral surfaces of the temporal lobes were coplanar, similar to how the brain is 

positioned when removed from the head for horizontal sectioning. All angles of rotation 

reported subsequently are in relation to this standard orientation. The stack was then cropped 

one last time to produce a volume with pixel dimensions 1,024 (mediolateral) × 1,024 

(dorsoventral) × 1,650 (anteroposterior), leaving enough room in front of and behind the 

gerbil’s head so that rotation of the stack would not crop pixels pertaining to the gerbil’s 

skull or brain.

The procedures necessitated the identification of a coordinate system with a zero that is 

visible as a discrete point in the MRI. We chose the location of lambda—the intersection of 

the lambdoidal and sagittal fissures—as the nominal zero of our coordinate system; a point 

visible on the skull is useful both during physiological experiments and when displaying 

coordinates in anatomical sections. A photograph of a gerbil skull is shown in Figure 3a, 

illustrating the locations of lambda and bregma, another common landmark. In Figure 3b 

and c, the close correspondence between the landmarks on the skull and in the MR images is 

apparent after the pitch of the MR brain is adjusted to bring lambda and bregma into the 

same horizontal and sagittal planes. For rotation procedures, the nominal zero was the 

geometric center of the image stack. The final coordinates are all stored and referenced 

relative to the location of lambda as it appears in the standard orientation, however. 

Examples of sections taken in the coronal, sagittal, and horizontal planes from the standard 

orientation are shown in Figure 3d, e, and f, respectively.

2.3.2 Mapping electrode penetrations in MRI space—To align information from the 

physiological experiments into the MR framework, the MR-imaged brain was oriented to 

match the plane of the histological sections for each case. To achieve this, the MR stack was 

rotated iteratively to visually match features in the histological material. It proved to be 

important that the angles be determined from parts of sections local to the IC, because once 

the brain was removed it could sag and distort differentially, such that a single plane of 

section would not apply to the entire brain. In adjusting the pitch of the MRI, the most useful 

features identified were the relative positions of the caudal end of the commissure of the IC 

and the caudal junction where the IC joins the brainstem (both left and right; see Figure 3d 

and e, the latter of which is in the sagittal plane); when adjusting yaw, the procedures 

primarily relied on the relative sizes of the IC, especially the caudal sections not attached to 
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the brainstem. The final angles were recorded and stored into a database file created for each 

experiment.

For the fitting procedure, the pitch of the MR stack was altered in 5° steps until a rough 

approximation of the histological sections was achieved; changes were then made in 1° steps 

until a best match was found. A nominal 1° level of precision corresponds to an error of 

approximately 34 μm over the depth of the IC (~2 mm). Corrections in yaw were performed 

similarly, but started with 1° changes since deviations in coronal symmetry were 

intentionally made small during the physical blocking of the brain. As a control for observer 

bias and to estimate the reproducibility of this method, the angle of section was determined 

in four brains independently by two observers. One of the rotation angles was identical 

between observers, one differed by 1°, and two differed by 2°.

Once the plane of section was known, each histological section of interest—those that 

contained the electrode penetrations—were mapped to individual MR sections. The 

photograph of a histological section was opened in Photoshop along with the corresponding 

MR image, which was added as a separate image layer. The MR section was then scaled 

independently in the X (width) and Y (height) dimensions until the edges of the IC in the 

MRI matched those of the histological section; as with determining the angle of section for 

the MRI, the alignment works best by focusing only on the region of interest (here the IC) 

instead of the tissue section as a whole. The fitting was performed on a section-by-section 

basis; the scaling factors required for each section were typically similar for any given case. 

If there were large nonlinear distortions between a histological section and its corresponding 

MR image, the alignment was further refined using a piece- wise linear geometric 

transformation in MATLAB.

The locations of the recording sites along each electrode penetration were plotted relative to 

the lesion(s) made and the track of the penetration through the sections. The course of a 

penetration could typically be seen as a light or dark streak through the brain, depending on 

whether there was blood present. The distance from the lesion was determined from the 

micrometer reading of recording sites obtained during the experiment, and corrected for 

shrinkage based on a scaling factor from the morphed brain.

The recording locations were converted to corresponding coordinates in the MR framework 

space by applying the inverses of the morphing transformations described above. The 

resulting coordinates represent the locations of the recorded units relative to the nominal 

zero point of the MRI brain described earlier. The coordinates of the recording sites in MRI 

space and their respective data analyses were stored in an Excel database file in combination 

with the anatomical location of each unit in the IC and its physiological response properties. 

In this manner, all the data sets became coregistered within a single MR framework.

2.3.4 Test for localization error—To estimate the expected range of location errors in 

the procedures, a test case was prepared where two penetrations were made through a brain 

at different angles, leaving behind a small cylindrical hole on each side. To do this, an 

anesthetized animal was placed in the head holder, and a 29-gauge, thin-walled tube was 

lowered into the left tectum; the angle of the head holder was then changed by 10° and a 
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second tube was lowered on the right side. The animal was then perfused with both tubes in 

situ. We chose to penetrate the superior colliculus (SC) rather than the IC to ensure that the 

fiduciary marks coursed through the entire depth of the midbrain and to avoid the possibility 

of the tubes exiting the IC prior to completing the penetration (note the curvature of the 

caudal margin of the IC in Figure 2). After perfusion the tubes were removed, and the brain 

was sectioned in the horizontal plane and prepared with cytochrome oxidase (CO) 

histochemistry. Section alignment proceeded as above, but the person performing the 

stretching procedures and reconstruction in MRI space was blind to the penetration angles 

involved. After alignment, the coordinates of the centers of each of the holes, for each 

section, were determined using imaging software in MATLAB and converted to MRI space 

coordinates. Once the coordinates were obtained, a best-fit line (using orthogonal 

regression) was used to estimate both the dispersion of the centers around the line and the 

angles of penetration, all in the sagittal plane (Figure 4; standard error of the estimate: 2.25 

for the left hole and 2.43 pixels for the right). The scatter around the best-fit line had a range 

of 5 pixels (corresponding to 105 μm in the MRI brain) and a standard deviation of 1.91 

pixels (~40 μm in MRI space). The estimated angles relative to a sagittal orientation were 

16.4° for the left penetration and 5.64° for the penetration on the right. The reconstructed 

angle difference was 10.76°, compared with the nominal 10° change in the stereotaxic 

frame.

2.3.5 Additional orientations of the MRI used in this study—We designated two 

histological preparations to act as “reference atlases” to help visualize the pooled locations 

of our recording sites and their physiological properties against the patterns of CO activity 

found in the different parts of the IC. One series was cut in the plane of the electrode 

penetrations and will thus be referred to as the “physiological” orientation. The other was 

cut in the near-horizontal plane relative to the standard. The two atlas series were aligned to 

the MRI, and their angles of section were stored as in the other cases. A GUI was developed 

in MATLAB to visualize the locations of our recording sites onto these sections; once a 

series of images was loaded, the coordinates of our recordings were transformed from the 

MRI space into the “space” of a given reference atlas. Additional elements of the GUI 

allowed individual recording sites to be selected, their physiological properties examined in 

detail, and the reconstructed positions within their own histological section viewed. The 

orientations of these two atlases, combined with views derived from the standard orientation 

of our MRI framework, served as the basis for visualizing recording site locations and 

physiological properties in this paper.

3 RESULTS

A total of 386 single and multiunit recordings were obtained from the IC of 35 gerbils. 

Single units were recorded at 47% of locations. The inclusion of multiunits did not distort 

the overall patterns or affect the significance of the statistics compared with when single 

units were tested separately, so the results were pooled. Except where noted, the illustrated 

examples are from single units.
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3.1 Examples of physiological results

The major categorizations of neurons in the gerbil’s IC were based on frequency tuning and 

binaural response, particularly ITD sensitivity. Figure 5 shows two examples of ITD-

sensitive neurons. The neuron in Figure 5a–e was tuned to low frequencies with a CF of 841 

Hz (a), thus falling within the range of strong phase-locking found at the periphery. It was 

strongly facilitated by binaural stimulation, with only a small response to each ear alone (b). 

Consequently, the binaural classification for this neuron was EE/F. Delay curves generated 

by a 1-Hz binaural beat show sensitivity to ITDFS that aligned near the peaks across 

frequency (c). When the delay curves were averaged, the Bitd from the composite curve was 

−190 μs (d). When phase was plotted as a function of frequency (e), the CD (−240 μs) was 

close to the Bitd, and alignment near the peaks resulted in a CP near zero (0.03) cycles. The 

BFitd was 734 Hz, i.e., similar to the CF.

Figure 5f–j shows a neuron with a CF higher than the phase-locking range (4,000 Hz). This 

neuron was strongly driven by contralateral tones at CF (g). There was no response to the 

ipsilateral stimulus, but the response to the contralateral ear was nearly completely inhibited 

by binaural stimulation, indicating an inhibitory ipsilateral input. Thus, this neuron was 

classed as EO/I. The delay curves generated from a 1-Hz binaural beat of the envelopes of 

SAM tones showed strong sensitivity to ITDENV that aligned at the troughs across 

modulation frequency (h). The composite curve had a minimum near zero ITD (i) and a Bitd 

of −2,600 μs. The plot of interaural phase versus modulation frequency (j) yielded a CD of 

77 μs and a CP of nearly 1/2 (−0.47) cycles. The BFitd was to a modulation frequency of 144 

Hz (not shown, see Materials and Methods).

The two examples in Figure 5 demonstrate responses that can only have originated through 

the circuitry of the SOC that extracts the ITD information. The responses of the two neurons 

to stimuli at each ear and the alignment of ITD curves across frequencies further separate 

them as receiving inputs primarily from the medial superior olive (MSO; Figure 5a) or 

lateral superior olive (LSO; Figure 5b).

Figure 6 shows two neurons that were not ITD sensitive. The neuron in Figure 6a–c had a 

CF of 8,000 Hz (a). This neuron had an excitatory response to the contralateral ear, no 

response to the ipsilateral ear, and was slightly inhibited by stimulation of both ears, 

compared with contralateral alone (b). The inhibition from the ipsilateral side was confirmed 

when the contralateral response was held at a constant level and the ipsilateral level was 

varied (c). Consequently, this neuron was classed as EO/I. This neuron showed no ITD 

sensitivity to the binaural beat with SAM tones at CF (tested with two intensity 

combinations), or to noise. The neuron in Figure 6d–f had a CF of 5,700 Hz. Like the 

previous neuron, it was strongly excited by contralateral stimulation, but in this case there 

was no response or change in the response to ipsilateral stimulation (E and F). It was 

therefore classified as EO/O. This neuron also showed no ITD sensitivity to several tests, so 

by these criteria it was considered a “monaural” rather than “binaural” neuron.
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3.2 Parcellation of the gerbil’s IC

Based on CO histochemistry (Figure 7), the gerbil IC is easily divisible into two basic 

regions: a central or “core” nucleus encapsulated by a cortical or “belt” region. The central 

nucleus was divided into a lateral crescent-shaped region showing the highest CO activity 

(C1) and a medial region with lighter CO activity (C2). Furthermore, C1 has the appearance 

of dorsal and ventral subdivisions, which we refer to as C1d and C1v, respectively. 

Surrounding the central nucleus were cortical regions, including (at the level shown in 

Figure 7) the dorsal cortex (DC) and lateral cortex, which included the external and lateral 

nucleus (EX and L, respectively). Of the surrounding regions, the DC had the lightest CO 

reaction in the IC, while the L had a density similar to that of C2 in the central nucleus. The 

EX was distinctive, being composed of islands of high CO reactivity embedded within fiber 

tracts, indicated by arrows in Figure 7b (see Chernock, Larue, & Winer, 2004), forming the 

most dorsal and lateral margin of the IC.

3.3 Recovery of recording sites

Figure 8 shows penetrations through the middle third of the IC in three different animals at 

different mediolateral locations. Each penetration and recording site was recovered in a 

section treated for CO histochemistry (a–c) and plotted relative to a lesion or pair of lesions 

made during the penetration (arrows). All three penetrations started with low CF neurons 

and progressed systematically to neurons with high CFs (see corresponding plots, c–f). The 

same graphs illustrate ITD sensitivity for each unit. The presence of ITD sensitivity is 

indicated by a filled rather than open circle, and sensitivity to ITDFS is shown in blue and 

ITDENV in cyan. The most lateral penetration (Figure 8a) was mainly through C1, except for 

the last unit, which was in the L. All the units in the dense CO of C1 were ITD-sensitive, 

either to the ITDFS or ITDENV. The middle penetration (Figure 8b) started in the C1d, 

traversed C2, entered C1v, and ended in L. The units in C1d and C1v were ITD-sensitive, 

while the units in C2 and L were not. The most medial penetration (Figure 8c) started in the 

DC, then entered C2, and then entered the dense zone of C1v. Only the first unit in this 

penetration was ITD-sensitive.

3.4 Physiology in different parts of the IC

The basic physiology in each part of the IC is shown in Table 1. Listed for each region are 

the numbers of units sampled and the percentage of units that were identified as monaural, 

binaural, and ITD-sensitive, with ITD sensitivity further divided into those responding to 

ITDFS or ITDENV. The denominator for each category is the number in the n column. All 

regions of the IC had a preponderance of binaural neurons. Of the monaural neurons, the 

largest percentages were found in C1v and C2. Some ITD-sensitive neurons were found in 

each subdivision, but the proportions varied considerably. The overwhelming majority in C1 

were ITDFS neurons. Area C1v also had a high percentage of ITD-sensitive units, with most 

being ITDENV neurons. In contrast, relatively few units in C2 were sensitive to ITDs. In the 

cortical areas, a fairly large proportion of neurons was sensitive to ITDs, with ITDFS 

sensitivity predominating in the DC and EX, and ITDENV in the L.
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3.5 Distribution of response types across the IC

The locations of neurons are shown across the extent of the IC in Figures 9 and 10. In Figure 

9, the CO labeling in five different anterior–posterior sections from our physiological atlas is 

shown in the first column, with A being the most caudal, and E the most rostral. This set of 

tissue acts as a 320-μm-spaced atlas on which physiological data can be compared, bearing 

in mind that each photomicrograph is a “snapshot” that represents the center of a 320-μm 

slab of tissue on which all physiological data within that slab are summarized. A small dot in 

the top left of each histological section is labeled with its corresponding coordinate in the 

standard MRI framework, representing mediolateral, dorsoventral, and caudorostral distance 

from the origin, respectively. The small inset image above Figure 9a shows a sagittal view of 

the gerbil brain from the standard MRI orientation, with the IC indicated near the center. The 

solid line through the IC indicates the estimated angle of section. In Figure 9f–j, the location 

of each recording site is shown reconstructed in the atlas brain with a color code depicting 

the location of each site as recovered from histological sections (Figure 8). There is good 

correspondence between location in the individual histological sections and in the pooled 

MRI atlas despite natural variations across subjects. There is also clear clustering by 

identified area. These properties indicate that the summed physiological data, mapped onto 

the MRI atlas brain, can be correlated with the histological observations across individual 

cases. A region where identification of location is difficult is in the rostral central nucleus. 

The regions of dense and light CO are compact, and distinctions between C1d and C1v in 

particular are difficult to assess.

In Figure 10, the distributions of CF, ITD sensitivity, and binaural type are shown. Within 

the central nucleus, the CF (f–j) progressed in an orderly fashion from dorsal to ventral, 

consistent with the individual penetrations shown in Figure 8. The tonotopy extended across 

both C1 and C2 in the central nucleus. Caudally the region was almost exclusively low 

frequency, while the rostral IC contained the full range of frequencies despite its compact 

architecture. Outside of the central nucleus the tonotopy was less distinct.

ITD sensitivity (Figure 10k–o) was separated into whether the sensitivity was to the ITDFS 

or ITDENV. The majority of ITDFS units were in C1d while ITDENV units were found 

primarily in C1v, but there were also ITD-sensitive neurons of both types in C2, as well as in 

each of the nuclei outside of the central nucleus. The separation of the two ITD types was in 

large part governed by the time constraints of the experiments, so that low CF neurons were 

usually tested and characterized in terms of ITDFS and high CF neurons for ITDENV. This 

frequency selectivity is a major reason for the dichotomy between ITDFS neurons in C1d 

and ITDENV neurons in C1v, and tests for both types were not performed. Overall, C1v was 

more complex than C1d because a greater proportion of non-ITD–sensitive neurons was 

seen.

The regional distribution of binaural sensitivity (EE, EI or monaural; Figure 10p–t) suggests 

at least a partial segregation based on these binaural classes. The categories are broad, with, 

for example, the EE designation corresponding to EE/O, EE/F, EO/F, OO/F, OE/F, and EE/

occlusion. However, they do capture the general effect of whether the ipsilateral input was 

excitatory, inhibitory, or absent. In the central nucleus, the EE neurons were generally dorsal 

to EI neurons, and the monaural neurons tended to be located more ventrally as well. 
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Despite these trends, there was considerable intermingling of binaural types. In particular, 

there were EI neurons in the C1d that were ITD-sensitive (e. g., Figure 10s), where most 

neurons had low CFs and were preferential to ITDFS (Figure 10n).

To compare the clustering of frequency and ITD, the Classifier Learner App in MATLAB 

(r2015b) was used. The CFs of neurons were separated into three groups, low (<2,000 Hz), 

medium (≥2,000 to <16,000), and high (≥16,000), and the ITD sensitivity into two groups 

(yes or no). The “response” data was the group (either frequency or ITD) while the 

“predictors” were the X, Y, and Z coordinates of the neurons in the MRI brain coordinates. 

The classifier used was the linear support vector machine. In some cases a nonlinear fit (e.g., 

weighted k-nearest neighbor) was superior, but more often such fits were worse, so to avoid 

cherry-picking among models the single model was applied. The main focus was on neurons 

in the central nucleus, so the sample was 261 neurons. In the frequency comparison, the 

clustering according to location based on frequency had an accuracy of 89% and the average 

d’ was 1.94, with a d’ of 1 typically used as a threshold for discriminability. For ITD, the 

accuracy of the classifier was 74% and the d’ was 1.3. Thus, both frequency and ITD 

representations were separable within the central nucleus.

3.6 Representation of parameters of ITD sensitivity

Using the binaural beat, the alignment of delay curves occurs across frequency provides a 

separation that, to a first approximation, equates to the inputs as being from the MSO or 

LSO (Figure 5). However, in addition to peak-type neurons with a CP near zero and trough-

type neurons with a CP near 0.5 (Figure 5), there were also intermediate-type neurons with a 

CP near 0.25. Thus, the distribution of CP is a continuum rather than pure categories. 

Furthermore, in some neurons the phase-frequency plot was nonlinear, and the bestfit line 

did not adequately portray the combination of delay curves that produced the composite 

curve. In these cases, the CP was computed from the slope of the frequencies that dominated 

the composite curve. For the ITDFS, peak-type neurons were the most numerous, with 

intermediate-type less abundant and trough-type the least (Table 2). The relationships 

between the parameters are incorporated in the formula: Predicted Best ITD =CD +(CP/

BFitd) (Fitzpatrick et al., 2000; Shackleton, McAl-pine, & Palmer, 2000; Hancock & 

Delgutte, 2004; Grothe, Pecka, & McAlpine, 2010). Using this formula, the correlation 

between the predicted and actual best ITDs was 0.91. As expected from the formula, the best 

ITD therefore increased in the three groups along with the CP. The CD, in contrast, varied 

relatively little. The change in Bitds was significant (F, df, and P values in Table 2, using 

two-way ANOVAs where the effect of group was tested against the value in question), as 

was, by definition, the change in CPs. In contrast, the change in the CDs was not significant. 

These relationships indicate that the delays, or CDs, of the different types of neurons are 

comparable, but the alignment across frequency and the frequency content itself varies. The 

BFitds were similar across types and the standard deviations were large. Consequently, the 

differences in frequency tuning that led to ITD sensitivity in the three classes of CP were not 

significant.

Another feature of interest is the sharpness of tuning to ITDs. The VS is a measure of 

sharpness that is not affected by the manner in which the responses vary across frequencies, 
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as is the case with composite curves or noise-delay curves. Many of the maximum VS 

values recorded across neurons were very high, above 0.9 in 15/52 neurons, and even above 

0.95 in 9 neurons. On average, both the maximum and mean VS values were higher in 

intermediate-type neurons, compared with either peak- or trough-type. This effect of ITD 

type was significant in the ANOVA.

For the ITDENV the trends were quite different (Table 3). As with the ITDFS, all three types 

were represented. However, instead of peak-type neurons being the most common, trough-

type neurons prevailed. Because the ITD sensitivity was to low-frequency envelopes (10–

800 Hz was typically tested), the range of ITDs covered was extremely wide (Bitds in Table 

3), and the width of tuning in individual neurons was broad (Figure 4b). As with the ITDFS, 

the range of CDs was smaller than the range of Bitds, and did not differ between the groups. 

However, the mean values of CP for the intermediate-type neurons were near the edge of the 

trough-type, rather than the edge of the peak-type. The VS values were lower, and there was 

no trend for the intermediate-type neurons to have sharper tuning to ITDs.

Additional comparisons between ITDFS and ITDENV sensitivity are made in Figure 11. The 

difference in the range of frequency tuning available to extract the ITD is shown in Figure 

11a. There is overlap between the two ranges such that the total range for ITD sensitivity 

extends from the lowest envelope frequency (10 Hz and presumably lower), to >1,000 Hz for 

ITDFS. Figure 11b shows the ability of IC neurons to phase-lock to the input frequencies at 

each ear compared with phase-locking to the binaural beat frequency. For neurons that 

extract the ITD directly from the phase-locked inputs, the VS to the binaural beat frequency 

(VSitd) is expected to be related to the VS of inputs from both the contralateral (right) and 

ipsilateral (left) ear, expressed as VSr × VSl. All VS values can be obtained from the 

responses to the binaural beat stimulus (see Materials and Methods). We considered a 

monaural-to-binaural ratio (i.e., (VSr × VSl)/VSitd) or (contralateral × ipsilateral)/binaural 

that was greater than 0.8 as evidence of a unit’s potential as a primary site of binaural 

interaction (Kuwada, Fitzpatrick, Batra, & Ostapoff, 2006); the number of neurons that meet 

this criterion are plotted against their ITD frequency (fine structure) or modulation 

frequency (envelope) in Figure 11b. Virtually no IC neurons met this criterion for ITDFS, but 

the criterion was often met for the lowest ITDENV frequencies. Sensitivity to these low 

frequencies is thus potentially available as a primary binaural interaction site at the level of 

the IC (but see Discussion).

We found ITD-sensitive neurons in all regions of the IC. However, most of them were from 

the central nucleus, and specifically C1, or the regions of densest CO reaction product that 

we separated as C1d and C1v (Table 1). To test for spatial organization of the ITD-sensitive 

parameters within C1, we again used the Classifier Learner App in MATLAB (r2015b). The 

classifier showed spatial clustering of ITDFS and ITDENV neurons (83% accuracy, d’ =1.8, n 
=108). This result largely reflects the fact that ITDFS stimuli were used with low CF neurons 

and ITDENV stimuli with high CF neurons. When separated into three groups of CP 

corresponding to the peak, trough, and intermediate types of Tables 2 and 3, the classifier 

failed to discriminate any location for intermediate-type neurons, classifying all as either 

peak- or trough-type neurons (n =69, reduced from 108 cases where ITDFS or ITDENV could 

be determined, but in some cases data for the binaural beat were insufficient for analysis). 
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This pattern makes sense if intermediate-type neurons are equally likely to be found near 

either peak- or trough-type neurons. Consequently, we did further analysis excluding the 

intermediate-type neurons. In this case, a spatial organization for the peak and trough 

response types was indicated, as well as for Bitd and BFitd (all >80% accuracy, d’s >1.8). In 

contrast, the CDs could not be distinguished between the peak and trough type groups (65% 

accuracy, d′ =0.68).

Finally, since the above contrasts are at least in part a reflection of the initial ITDFS and 

ITDENV distinction, the next model tested was to compare the parameters just for ITDFS 

neurons. There were too few trough-type neurons in this group for the CP analysis, but the 

CD, Bitd, and BFitd analyses all failed to show a spatial organization of these parameters 

(<70% accuracy, d′ <0.7, n =40).

3.7 Other response features

Other responses recorded for most neurons included BF70 and Q70, latency, threshold at CF, 

and peristimulus time histogram (PSTH) type. Some of these, such as PSTH, are too varied 

to describe here. For all areas, the range of latencies was wide, extending from about 5 to 50 

ms. In a one-way ANOVA there was a significant effect of area. The main effect was due in 

part to the presence of particularly long average latencies in EX, but was also present when 

EX was removed. When considered separately, the latencies among core areas were not 

significantly different, nor were the latencies among belt areas. However, on average, 

latencies were on the order of 4 ms longer in belt areas than core areas (14.4 vs. 10.7 ms), 

and we deemed six regional comparisons as significant (using an adjusted alpha level of P 
<0.005 for significance in multiple t-test comparisons): EX versus the three core areas, L 

versus C1v and C2 (but not C1d), and DC versus C1v only. Other features that varied 

according to core versus belt were BF70 (higher in some belt areas, such as L), and Q70 

(wider in the belt areas). The BF70s were generally lower than the CFs, as expected from the 

half-octave shift in the region of the basilar membrane, excited by high rather than low 

intensities.

3.8 Further use of the MRI atlas

A useful feature of the pooled data in the MRI atlas is that it can be sectioned to fit other 

planes, and used to visualize data in different orientations. In Figure 12, cell locations (f–j), 

characteristic frequency (k–o), and ITD sensitivity (p–t) are plotted against five different 

dorsoventral sections from the horizontally cut reference image atlas (see Material and 

Methods; 12a is the most dorsal section, while 12e is the most ventral) and using the same 

color coding as the previous histological atlas (Figures 9 and 10). The MRI-derived image 

above the first column again illustrates the angle of section determined for this case. As in 

the physiological orientation, the location data show good clustering, especially in the 

central nucleus, in accordance with the histological atlas.

Viewing the characteristic frequency in the horizontal plane illustrates the dorsolateral-to-

ventromedial gradient of the tonotopy of the central nucleus. The ITD sensitivity panels 

show the expected preference for dorsal and lateral portions of the central nucleus to be 

sensitive to ITDFS while ITDENV sensitivity is preferred in the ventral and medial locations.
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In Figure 13, the physiological data are represented as surface plots in all three dimensions. 

Recording sites were grouped and color-coded based either on their locations in the IC (a–

d), on their CF (e–h), or on the degree of ITD sensitivity (i–l) within the central nucleus. The 

coordinates were plotted in MATLAB in the MRI standard orientation; subsequently, each 

group of data was subject to a Delaunay triangulation, producing surfaces that were then 

exported to MIMICs for rendering. The composite triangulations are shown in a coronal 

view (Figure 13a,e,i; dorsal at the top, medial to the right, and rostral going into the page), a 

sagittal orientation viewing the lateral surface (Fig. 13b,f,j; caudal is to the right, dorsal is at 

the top, and medial going into the page), a sagittal view of the medial surface (Fig. 13c,g,k; 

rostral is to the right, and lateral is into the page), and a horizontal view (Fig. 13d,h, l; 

medial is to the right, rostral is at the top, and ventral is going into the page). The 

segregation of location data illustrated in Figures 9 and 12 can be seen here as integrated 

surfaces to better appreciate how the different regions fit together. Similarly, the three-

dimensional gradient of the tonotopic axis of the central nucleus is apparent when visualized 

in these different orientations. The bottom panels organize the ICC by the percentage of cells 

that were ITD-sensitive in cubes with 320-μm sides. The region with the highest proportion 

of ITD-sensitive cells was coextensive with, but somewhat larger than, C1d. The region of 

medium numbers of ITD-sensitive neurons overlapped with C1v, and the region of few ITD-

sensitive neurons overlapped with C2. In C1v and C2, the organization was largely 

orthogonal to the isofrequency laminae (Figure 13e–h).

4 DISCUSSION

This study described the representations of frequency and of ITDs, an information-bearing 

parameter for sound location and hearing signals in noise, at the level of the IC and in 

particular the central nucleus of the IC. Neural recordings in the gerbil’s IC were combined 

with recovery of recording sites from CO-stained material, and the data were pooled, with 

computer assistance, into an atlas based on a high-resolution MRI scan of a normal gerbil 

brain; similar attempts to reference physiological data points to established atlases have been 

made by others (e.g., Semple & Aitkin, 1979). The results of our study indicate that the 

central nucleus has a single tonotopic organization that includes subregions that differ in 

their responses to ITDs. Surrounding the central nucleus are belt regions that are distinct 

from the central nucleus in terms of tonotopy, binaural response properties, latency, and/or 

CO activity. In general, the response distributions reflected the patterns of inputs as 

described in previous tract-tracing studies in the gerbil (Cant & Benson, 2003, 2006, 2008; 

Cant, 2013).

We describe the major features of the gerbil IC in terms of a central or core region 

surrounded by a cortical or belt region, and each can be subdivided based on CO activity 

levels (Figure 7). While further subdivision of the cortical region is possible in some 

preparations (e.g., Golgi stains; see Oliver & Morest, 1984 and Faye-Lund & Osen, 1985), 

such distinctions are, at best, tenuous based solely on CO-stained material. Furthermore, a 

common organizational plan at the level of the auditory cortex (and the MG) is a core region 

defined by a strict tono-topic organization surrounded by associated belt regions (Kaas & 

Hackett, 2000). In conforming to this anatomical arrangement, we consider the cortical 
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structures of the IC to be, at least to a first approximation, equivalent to the belt regions 

described at higher order locations.

4.2 Benefits of the MRI-based framework

A persistent problem in neuroanatomical and neurophysiological studies is that commonly 

used methods for plotting results are difficult to correlate across cases, histological 

procedures (e.g., different stains, section angles, or reactions), and laboratories. The main 

use of a standard frame of reference such as an MR-imaged brain is to facilitate comparisons 

in all of these situations. The subjective and objective tests suggest that the procedures 

introduce errors that on average are about 50 μm or less and not likely to exceed 100 μm. 

While Cant & Benson (2005) had previously published an extensive atlas of the gerbil IC 

using histological sections from all three dimensions, the use of an MRI-based atlas permits 

a less labor-intensive and more flexible means of comparison between cases, as the frame of 

the MRI reference can be freely rotated. In addition, since MRIs are obtained with the brain 

in situ, distortions inherent in histological procedures are normalized to an intact brain. 

Additional datasets, such as from connectional or immunocytochemical experiments, can be 

readily incorporated. Such examples have been presented in the literature for the mouse, 

perhaps the most comprehensive of which is the Allen Reference Atlas (Dong, 2008), which 

integrates multiple modalities including atlases and techniques produced at the Duke CIVM 

(Badea, Ali-Sharief, & Johnson, 2007; Johnson et al., 2010). The gerbil, because of its 

sensitivity to low frequencies, is a more suitable model than the mouse for many studies that 

are important for human hearing.

4.3 Organization of the gerbil’s IC and relationship to input pathways

4.3.1 The core region: the central nucleus—The divisions of the IC were identified 

based on CO histochemistry and response properties of single and multiunit recordings. The 

main finding was the identification of a relatively separate domain of ITD sensitivity within 

the lateral region of the frequency laminae that corresponds to the regions of densest CO 

activity in the gerbil’s IC. This work extends previous studies of CO histochemistry and 

input connections in the gerbil (Cant & Benson, 2006, 2008; Cant, 2013). Following 

injections into the IC, three types of input patterns based on retrograde labeling were found. 

Two of these were seen primarily following injections into the central nucleus: group 1 

inputs included labeled cells in the cochlear nucleus (CN), the nuclei of the lateral lemniscus 

(nLL), and the MSO and LSO, while group 2 inputs included labeled cells in the CN and the 

nLL, but few if any from the SOC (Cant & Benson, 2006). The injection sites that showed 

SOC inputs (group 1) tended to be located in or near the lateral region of intense CO activity 

in the central nucleus. Within this region, a dorsal pars lateralis has been associated with 

strong inputs from the SOC (Cant, 2013). The injections with minimal SOC inputs (group 2) 

were typically located in the medial regions of the central nucleus. However, some injections 

into ventral regions of the dense CO activity, particularly the more ventral regions, were also 

group 2. Thus, there was an association, but not a strict correlation, between regions of dense 

CO and inputs from the MSO and LSO that should convey ITD information.

The physiological results corresponded closely to this pattern of ascending inputs. Most 

neurons sensitive to ITDs were in the region of dense CO activity, what we call C1. Cluster 
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analyses further showed ITD- and non–ITD-sensitive neurons to be separable. The pars 

lateralis, which receives dominant inputs from the MSO and the lateral (low-frequency) limb 

of the LSO (Cant, 2013), is essentially equivalent to our C1d, and, as would be expected, 

was strongly associated with low CFs, ITDFS sensitivity, and excitation or facilitation from 

each ear. This class of responses is characteristic of that seen primarily in the MSO (Yin & 

Chan, 1990; Spitzer & Semple, 1995; van der Heijden et al., 2013; Plauska, Borst, & van der 

Heijden, 2016). In our results C1d extended nearly to the dorsal pole of the IC in caudal 

sections (Figure 9a,f), but its extent was less clear in the most rostral sections.

Neurons in C1v, or the ventral part of the high CO region, were distinguished from those in 

C1d because they had predominantly high CFs and the ipsilateral input was typically 

inhibitory. These are expected characteristics of responses from the medial, high-frequency 

limb of the LSO, which is also consistent with the connectional data (Cant & Benson, 2006, 

2008; Cant, 2013). Many C1v neurons were sensitive to ITDENV, but whether these neurons 

also showed sensitivity to ITDFS in the tails of their tuning curves was not tested. There was 

a proportion of neurons (10.6%) in C1v that were not binaural, and thus were unlikely to be 

driven by inputs from the LSO. This pattern of results also closely parallels that of the 

previous anatomical experiments, where most injections in the ventral region of dense CO 

had a group 1 pattern of inputs, but some had a group 2 pattern.

The medial part of the central nucleus, or C2, had less dense CO activity than C1, and was 

previously shown to have group 2 patterns of retrograde labeling (Cant & Benson, 2008). 

This area had a mixture of response types. Many C2 neurons either were not driven 

binaurally or were EI with ITD sensitivity not readily demonstrated. These responses are 

consistent with input pathways other than the MSO and LSO that can include the CN on 

both sides and monaural and/or binaural inputs from the nuclei of the lateral lemniscus. 

However, ITD sensitivity was not strictly confined to regions of highest CO activity, in that 

some neurons with low CFs but medial to the heaviest CO active regions were sensitive to 

the ITDFS (e.g., compare G and H with L and M in Figure 10). Neurons sensitive to ITDENV 

were also observed out-side the boundaries of the highest CO activity.

4.3.2 The belt region: dorsal and lateral cortices—Injections of retrograde tracers in 

previous studies identified a third, or group 3, type of input to the cortical, or belt areas of 

the IC. Cases in this group showed a few labeled cells in the ascending pathway while inputs 

from the auditory cortex were more prevalent than for the central nucleus (Cant & Benson, 

2006). Neurons in the cortical regions of the IC as a whole had a less distinct tonotopy and 

possessed, on average, longer latencies than were observed in the central nucleus. These and 

similar features characterize belt regions of the IC, and this structural organization can be 

traced back to its early origins in the opossum, a primitive mammal from which the basic 

“plan” for the mammalian auditory system is derived. In this species, the belt areas are also 

distinguished by their abundant descending inputs from cerebral cortex, whereas the core 

areas are primary targets of ascending projections from the CN and SOC (Willard & Martin, 

1983).

In the gerbil, the borders of the L can be readily appreciated in all material prepared for CO 

histochemistry, where its lower activity level stands in contrast to the high levels of activity 
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characteristic of the central nucleus, especially C1. On its lateral side area L has a distinct 

border where it abuts the fibrous part of the EX. In rats and cats, injection of anterograde 

tracers into the dorsal cochlear nucleus (DCN) or anterior ventral cochlear nucleus (AVCN) 

shows a “winged” projection pattern in the IC, with one of the wings forming an extensive 

lamina in the central nucleus (and extending marginally into the DC), and the other being 

shorter and just lateral to the core area (Loftus, Malmierca, Bishop, & Oliver, 2008; 

Malmierca et al., 2008). Similar projections beyond the central nucleus have been reported 

in the gerbil (Moore & Kitzes, 1985; Cant & Benson, 2008). Thus, in some respects the L 

appears to have dual features—descending inputs from the cerebral cortex and ascending 

inputs from lower order auditory structures—that suggest it possesses both belt and core 

characteristics. Its outputs could help resolve the question. Most belt areas have stronger 

connections with the dorsal division of the MG than with the ventral division, in contrast to 

the central nucleus. The outputs of area L to the MG are not yet known. Physiologically, 

area L differed from the central nucleus by its average latency, although both had neurons 

with long latencies, up to about 45 ms. The tonotopy in the L had the same general pattern 

of low to high frequencies as did the central nucleus, but in general over-represented high 

frequencies. Overall, area L had the highest mean and median CFs of any area, and few units 

were sensitive to ITDFS. These characteristics suggest that the L may have a greater affinity 

with either C1v or C2, rather than C1d.

Along the most lateral margin of the IC is the EX, consisting of islands of cells embedded 

within the fibrous capsule overlaying the IC, which eventually merges with the brachium of 

the IC. These cellular islands stain intensely for CO and positively for γ-aminobutyric acid 

(GABA) in rat (Chernock et al., 2004) and gerbil (personal observations). Thus, anatomical 

and physiological distinctions make the EX cells likely to be distinct from those of the L, 

rather than an extension of it. Response properties of neurons in the EX were varied; many 

were low frequency and ITD-sensitive, yet high-frequency and monaural neurons were also 

found. Because the cells were embedded in fiber tracts, the possibility of recording from 

fibers must be considered. However, many of the recordings in our sample of EX neurons 

were of single units held for a considerable period and were thus presumably cells; 

reconstructions were typically consistent with recordings from within the cellular islands.

The other part of the belt we identified was the DC, which together with the EX forms a 

shell covering the central nucleus along its dorsomedial and lateral margins, with the rostral 

and caudal cortex, completing the encirclement of the outer margin of the central nucleus 

except at its most ventromedial part where the central nucleus itself appears to form the 

border with the fibrous mantle beneath the IC. Most medially in the IC there was a region of 

nearly absent CO activity, where identification of DC was unambiguous. However, the 

transition from the DC to C2 was sometimes difficult to identify in the CO material, in 

contrast to each of the other regions, where the histological distinctions were relatively clear; 

indeed, we found this border to be the most difficult to resolve across all of our cases.

Finally, it should be noted that throughout the IC, there was a general trend of low 

frequencies being represented dorsally and high frequencies ventrally. In the dorsal parts of 

each area, whether EX, L, C1d, C2, or DC, neurons with low CFs, including some sensitive 

to ITDFS, were found. These parallel representations are likely to form functional processing 
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units that loop between the IC and the auditory cortex. In particular, the ITD sensitivity in 

belt areas, particularly the EX and DC, could be derived from the cortex or from local loops 

within the IC, since they receive little input from the ascending pathways (Cant & Benson, 

2006). That they are grouped together in broad outline suggests functional relationships 

between them.

4.4 Monaural and binaural neurons

In addition to the MSO and LSO, information from both sides comes from the superior 

paraolivary nucleus and dorsal nucleus of the lateral lemniscus (DNLL), and both CNs 

project directly to each IC. Axons arising from neurons within the central nucleus arborize 

locally not only in the core, but throughout the ipsilateral IC (Oliver, Kuwada, Yin, Haberly, 

& Henkel, 1991; Saldaña & Merchán, 1992; Malmierca, Hernandez, Antunes, & Rees, 

2009; Wallace, Shackleton, & Palmer, 2012). Thus, there are abundant sources of binaural 

interactions possible in the IC, and it is not surprising that we, and others, have identified a 

large preponderance of binaural responses in all subdivisions of the IC (Aitkin, Webster, 

Veale, & Crosby, 1975; Popelar & Syka, 1982; Kelly, Glenn, & Beaver, 1991). Because of 

the complexity of such interactions and the varied response patterns they can create, we 

chose to focus our more detailed characterizations on the ITD-sensitive neurons.

In a sample of IC neurons, up to about 24% were likely to be monaural units, although 

11.6% were “unconfirmed” in that the full battery of tests (both ears individually followed 

by tests of interaural level difference and ITD) was not completed. This proportion is in 

general agreement with the literature on gerbil (Semple & Kitzes, 1985; Bruckner & 

Rubsamen, 1995) and other species (Aitkin et al., 1975; Popelar & Syka, 1982; Kelly et al., 

1991), although higher proportions of monaural units have also been reported (Wenstrup, 

Ross, & Pollak, 1986; Schreiner & Langner, 1988; McAlpine et al., 1996). One feature 

found in virtually all studies is an orderly increase in the proportion of monaural units as 

frequency increases (Schreiner & Langner, 1988; Kelly et al., 1991; Bruckner & Rubsamen, 

1995; McAlpine et al., 1996), and this was true in our material as well. The fewest monaural 

units were found in the low-frequency–dominated C1d (median frequency 1.0 kHz), while 

the most were found in C1v (median 8.0 kHz) and C2 (median 7.4 kHz). Monaural neurons 

may receive their primary inputs directly from the contralateral CN, including stellate cells 

of the AVCN and fusiform and giant cells of the DCN. That neurons in the IC retain purely 

monaural properties suggests that processing of some spectral cues, to a degree, remains 

independent of binaural influences at the level of the IC.

4.5 Representation of ITDs in the central nucleus of the IC

The question of whether frequency tuning and distribution of ITD sensitivity and its 

parameters were spatially separable in the central nucleus was investigated using classifier 

training. The predictors were the X, Y, and Z coordinates, and the response was the 

frequency or ITD property for each recording site. This analysis indicated a spatial 

organization of CF (low, middle, or high) consistent with the tonotopy seen in the plots of 

the recording sites (Figure 10f–j). The property of ITD sensitivity was also significantly (d’ 

>1) affected by spatial location within the central nucleus. However, the overall organization 

of frequency versus tonotopy was not strictly orthogonal, as most low-CF neurons were 
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ITD-sensitive while fewer high-CF neurons were, so that the gradients of ITD sensitivity 

differed across frequency contours (Figure 13i–l). The gradients further indicated that C2 

contains fewer ITD sensitive neurons than C1, and that C1v contained fewer than C1d, as 

expected from Table 2.

The finding of relatively separate functional domains in the central nucleus along an 

isofrequency lamina is consistent with previous anatomical, physiological, and 

immunohistochemical studies in many species. In cat, Roth, Aitkin, Andersen, & Merzenich 

(1978) used retrograde labeling techniques and hypothesized that the ICC is composed of 

anatomically, physiologically, and functionally distinct regions. This observation was 

confirmed and extended by Loftus, Bishop, Saint Marie, & Oliver (2004) and Loftus et al. 

(2010), who showed that the ascending projections from the CN, LSO, and MSO form 

multiple functional regions within the frequency lamina of the ICC and each lamina —a 

projection pattern not unlike those reported by Cant & Benson (2006) in the gerbil. This 

grouping of specific projection patterns to different groups of cells—the synaptic domain 

hypothesis (Oliver & Huerta, 1992)—was also demonstrated in rat and mouse using 

immunohistochemical studies to investigate GABA and glycine distribution in the ICC 

(Choy Buentello, Bishop, & Oliver, 2015). Our current results add to this growing body of 

evidence in support of the central nucleus as a composite structure of functional regions 

organized along a tonotopic axis.

Parameters of ITD sensitivity were obtained using tones of different frequencies presented 

as binaural beats, followed by an analysis for CP, CD, Bitd, and BFitd as developed by Yin 

and Kuwada (Kuwada et al., 1979; Yin, Chan, & Kuwada, 1983; Yin & Kuwada, 1983a, 

1983b) and used in many later studies (McAlpine et al., 1996; Spitzer & Semple, 1998; 

Blanks, Roberts, Buss, Hall, & Fitzpatrick, 2007; Fitzpatrick, Roberts, Kuwada, Kim, & 

Filipovic, 2009). The classifier training was applied to the parameters of ITD sensitivity to 

investigate their spatial organization within C1 of the central nucleus, as determined by the 

density of CO reaction product. Within C1, the distribution of ITDFS and ITDENV properties 

was spatially segregated, but, as we have mentioned, this was largely a property of frequency 

organization and experimental design, because low-CF neurons were generally tested with 

stimuli to probe ITDFS and high-CF neurons with ITDENV. However, the fact that CP was 

spatially separable indicates that the designation of C1d and C1v is not purely nominal, but 

represents regions that receive ITD-sensitive inputs primarily from the MSO or LSO, 

respectively. Similar conclusions regarding clustering of CF and CP were derived from 

tetrode studies where neighboring single neurons were shown to have similar properties of 

CF and CP (Seshagiri & Delgutte, 2007; Chen, Rodriguez, Read, & Escabi, 2012). Along 

with the CF and CP, Bitds and BFitds were also spatially separable. Interestingly, the CDs 

were not spatially separable, indicating that both MSO and LSO inputs are affected by a 

similar range of “delay mechanisms,” regardless of how they are implemented.

Finally, the spatial segregation of ITDFS properties was investigated in C1d to determine if 

there is a fine-grained representation embedded within this region of potent ITD responses. 

Unfortunately, the fractionation of this group was only 40 neurons, with few trough-type 

neurons. None of the ITD-sensitive parameters showed a spatial segregation when restricted 

to ITDFS in this relatively small sample.
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At the level of the IC, sensitivity to ITDFS is entirely inherited from lower order auditory 

structures, as shown by comparing the response synchronies with the frequencies at each ear 

and the beat frequency using the binaural beat stimulus (Figure 11). In contrast, for ITDENV 

frequencies below a few hundred Hz, the synchrony to fluctuation at each ear could in 

theory account for the ITD sensitivity. However, the degree of synchrony shown to 

modulation frequencies in general is similar across IC neurons, monaural as well as binaural. 

Such sensitivity is expected from the first-spike latencies and slopes of phase-versus-

modulation frequency plots, which both show temporal integration greater than that from 

lower centers, but not too great to resolve modulations up to several hundred Hz, as in other 

species (Joris, Schreiner, & Rees, 2004). In addition, the IC lacks the specialized 

mechanisms that exist at lower levels for extracting ITD information. Thus, although 

ITDENV could theoretically be extracted de novo in the IC (i.e., via non-MSO/LSO afferents 

or intrinsic connections), we think it more likely that sensitivity to ITDFS and ITDENV are 

each inherited from lower level auditory nuclei.

A final issue is the sharpness of tuning to ITDs. By the level of the IC, the VS to beat 

frequencies is affected by both peripheral and central factors. The average VS in auditory 

nerve fibers to tone frequencies is about 0.70 to 0.80, corresponding to phase-locking that 

approximates the positive-going phases of tones (Rose, Brugge, Anderson, & Hind, 1967; 

Joris & Yin, 1992; Greenwood & Joris, 1996; Louage, van der Heijden, & Joris, 2004). In 

the cochlear nucleus there is a sharpening so that VS values >0.9 are seen (Joris, Carney, 

Smith, & Yin, 1994a; Joris, Smith, & Yin, 1994b). At the point of coincidence detection in 

the SOC, the cycle histograms to interaural phase are defined by the convolution between 

the two sides, and thus the VS is the product of that from each side (e.g., a VS of 0.9 to the 

stimulus frequency from both sides should produce a VS of 0.81 to the interaural phase at 

that frequency in an SOC neuron). Sharpening of ITDFS processing between the IC and SOC 

has been described in the rabbit (Fitzpatrick, Kuwada, & Batra, 2002; Kuwada et al., 2006). 

The current results support similar sharpening in the gerbil. The VS in the gerbil’s IC to beat 

frequencies was often very high, well above 0.9 in many cases. This high VS would not 

occur at the stage of coincidence detection of the SOC because of the multiplication from 

the two sides, as described above.

4.6 Implications for output pathways of the central nucleus

In Figure 1, a contrast was drawn between the pattern of connections in the mustached bat 

auditory pathway and the description in other species. The identification of relatively 

separate ITD-processing and non–ITD-processing areas in the gerbil IC gives rise to the two 

hypotheses shown in Figure 14. Either the projection from the central nucleus to the 

thalamic core has a single projection where the topography between the IC and thalamus is 

preserved (Figure 14a), which would be consistent with the single-pathway hypothesis of 

Figure 1A, or there is a reorganization according to the functional parcellation of ITD 

sensitivity (Figure 14b), which would be consistent with the data from the mustached bat, as 

in Figure 1B. A distinction between the mustached bat and other species, including the 

gerbil, is that the different functions vary according to frequency in the mustached bat, (e.g., 

frequency-modulated or constant frequency components of the biosonar signal; Figure 1b). 

In contrast, although ITD sensitivity and the pathways that support it dominate the low-
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frequency realm, there are neurons with low CF where ITD sensitivity cannot be 

demonstrated, while sensitivity to ITDENV extends across the entire frequency range. Thus, 

functional relationships of areas and pathways in gerbils and most other species may be 

more difficult to dissociate from the underlying frequency organization than is the case in 

the mustached bat. Further studies will investigate these hypotheses, to shed light on the best 

representation of the pathways between the inferior colliculus and the auditory thalamus.
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FIGURE 1. 
Schematics of pathways between the central nucleus of the IC and the core areas of the 

auditory cortex. (a) General mammalian pattern. The pathway from the central nucleus is 

usually depicted as a single output to the ventral division of the medial geniculate body 

(MGv) and from there to multiple tonotopic areas of the auditory core, including the primary 

auditory cortex (AI) and, for example, regions anterior (Ant) and posterior (Post) to AI. (b) 

The mustached bat. As in other species, the central nucleus of the IC has a single tonotopic 

representation. Because of the specializations for biosonar, different frequencies serve 

different functions according to their role in the analysis of the emitted signal and its echoes. 

Regions sensitive to frequency-modulated components of different harmonics (FM2, FM3, 

and FM4) of the biosonar signal process target range. Neurons sensitive to constant 

frequency components (CF2 and CF3) process target velocity, among other features. The 

outputs of the IC reorganize these features so that, in the MGv and cortex, the properties that 

were distributed according to frequency in the central nucleus become organized into 

“functional areas” at the thalamic and cortical levels
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FIGURE 2. 
Orientation of the brain for physiology experiments. (a) Parasagittal MRI section showing 

the approximate orientation of the gerbil brain in the stereotactic head holder. (b) To avoid 

puncture of the transverse sinus (ts), we elevate the head holder 15 degrees. IC, inferior 

colliculus; SC, superior colliculus. Scale bar =2 mm in A,B.
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FIGURE 3. 
Establishing coordinate points for zero in MRI space (a–c) and registration points for section 

alignment (d–f). The left panels show a photograph of a gerbil skull (a) in reference to an 

MRI series that has been rotated such that lambda and bregma lie in the same horizontal 

plane (b,c). Lambda was chosen as the zero point for the locations of physiological 

recording sites as it can be seen on the dorsal surface of the skull and can be readily 

identiifed in MR images in horizontal (b) and sagittal (c) planes. Arrows point to lambda in 

both. Lambda and bregma have been digitally enhanced in the MRI panels for clarity. The 

right panels are images from our standard MRI orientation, showing a region containing the 

IC in three cardinal planes (d, coronal; e, sagittal; f, horizontal) and the internal structures 

used to align histological sections to the MRI (arrows in d and e). Using ImageJ’s 

orthogonal views function, cross-hairs can be placed at any location (e.g., the IC in f) and 

automatically render the other two planes of section at the intersecting coordinates. Scale bar 

=2 mm in B (applies to a–c) and e (applies to d–f).
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FIGURE 4. 
Accuracy of tissue alignment into MRI space. Two 29-gauge tubes stereotactically lowered 

into a gerbil brain at different locations and different penetration angles to produce fiduciary 

points that could be recovered in tissue sectioned in the horizontal plane. The scatter plots 

show sagittal reconstructions of the trajectories of each penetration. The ordinate shows the 

location along the dorsoventral axis of the superior colliculus (SC); the abscissa represents 

the caudorostral location within the MRI framework. Red circles indicate holes made in the 

right hemisphere, blue circles in the left hemisphere. The solid lines are bestfit lines derived 

using Deming (orthogonal) regression. The difference between the angles was 10.76°, versus 

the actual stereotactically adjusted 10°
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FIGURE 5. 
Examples of interaural time difference (ITD)-sensitive responses. (a–e) A low-frequency 

neuron with tuning to fine structure ITDs. (a) Frequency tuning. The characteristic 

frequency (CF), or frequency of maximum response at the lowest intensity with a response, 

was 841 Hz. The BF70, or frequency with the maximal response at 70 dB SPL, was 700 Hz. 

(b) Level series at CF, showing responses to binaural and monaural stimulation. This 

response pattern is EE/F. (c) Delay curves to a 1-Hz binaural beat, showing a strong 

“peaker” type of ITD sensitivity. (d) Composite ITD curve showing the average Bitd (−190 

μs) for this unit. (e) Composite phase-frequency plot derived from the phase curve in C; this 

unit had a characteristic phase (CP) near zero and a characteristic delay (CD) of −240 μs 

(see text for details). (f–j) A high-frequency CF neuron (4,000 Hz) driven primarily by the 

contralateral ear that showed strong inhibition upon binaural stimulation, characterized as an 

EO/I type neuron (f,g). Sine amplitude modulated (SAM) tones demonstrate sensitivity to 

ITD envelope, and a “trougher” type response (h,i), with a Bitd of −2,600 μs, consistent with 

a CD near 77 μs and CP of −0.47 cycles (j)
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FIGURE 6. 
Non-ITD sensitive units. (a–c) Unit with a CF of 8,000 Hz (a), which was excited by 

contralateral stimulation, no response to the ipsilateral stimulation, yet slightly inhibited by 

binaural stimuli (b). This was an EO/I type response, confirmed by holding the contralateral 

stimulus at constant amplitude and varying the level at the ipsilateral ear (c). This neuron 

showed no ITD sensitivity to tone, noise, or SAM beats. (d–f) This neuron (CF of 5,700 Hz; 

d) behaved similar to the unit in a, being strongly excited by contralateral stimulation, but no 

response or change in the response to ipsilateral stimulation (e,f). This neuron also showed 

no ITD sensitivity and was typed as EO/O, or a monaural unit
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FIGURE 7. 
Levels of cytochrome oxidase activity in the IC can be used to subdivide the IC into its 

constituent subregions.

Photomicrograph of a representative IC section without (a) and with (b) subdivision labels. 

In the present study, we report observations from six regions. The central region of densest 

CO represents zone 1 (c1) of the central nucleus, and is further subdivided into dorsal (c1d) 

and ventral (c1v) parts. Less dense CO activity medial to C1 is zone 2 of the central nucleus 

(c2), and the dorsal cortex (DC). The lateral nucleus (L) and the external cortex (EX) are the 

lateralmost subdivisions of the IC. Arrows indicate examples of “islands” of high CO 

activity within the fibrous structure of EX. Medial is right, and dorsal is up. Scale bar =2 

mm in a (applies to a,b)
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FIGURE 8. 
Recovery of recording sites in physiology experiments. (a–c) CO-stained sections through 

the IC from three animals showing the electrode penetration in each case overlaid with the 

location of recording sites of individual units, obtained relative to the location of electrolytic 

lesions made at the end of the penetration (arrows). Blue and cyan circles indicate the type 

of ITD-sensitive units (ITDFS vs. ITDENV), and white circles represent units that did not 

respond to our battery of ITD tests. (d–f) The location of each recording site (abscissa) is 

plotted against its central frequency (ordinate). Recording sites are colored as on the left, and 

labeled with their locations in the histology, with d corresponding to a and so on. Medial is 

to the right, and dorsal is at the top in each of the histology photomicrographs. Scale bar =2 

mm in b (applies to a–c)
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FIGURE 9. 
Recording site locations and physiological data from individual cases (e.g., Fig. 7) pooled 

across all animals. Inset at upper left shows the approximate plane of section through the IC 

using an illustration derived from a sagittal image of the MRI stack (cb, cerebellum). (a–e) 
Five coronal sections from a separate atlas brain, spaced 320 μm apart, arranged caudal (a) 

to rostral (e). (f–j) The same sections, overlaid with recording sites from physiological 

experiments. Each site is color coded with their locations in their original histology (legend). 

Blue, C1d; red, C1v; green, C2; magenta, DC; cyan, L; yellow, EX. a–e are labeled with a 

black dot and the three axial coordinate numbers that define that dot in MRI space, with the 

origin at the lambda point, and positive coordinates being to the right, ventral, and rostral. 
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Aligning the dots would orient the images within the MRI space at the estimated angle of 

section. Scale bar =2 mm in a (applies to a–j)
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FIGURE 10. 
(a–t) Physiological response properties (characteristic frequency [CF], ITD sensitivity, and 

binaurality) from the recording sites shown in Figure 8. As in Figure 8, the left column (a–e) 

is an orientation series of CO-stained IC sections. Above each column is a color-coded 

legend to identify the type of response property illustrated in that column. Note: for some 

response properties, e.g., ITD, not all units had an ITD response and are therefore not 

represented. Scale bar =2 mm in a (applies to a–t)
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FIGURE 11. 
Frequency representation and synchronization rates in ITD processing. (a) Number of 

neurons at each frequency that respond to ITD fine structure or envelope. Note that fine 

structure ends at approximately 1,600 Hz (highest level of phase locking), but ITD to 

envelopes continues into very low modulation frequencies. (b) Synchronization rate 

relationships comparing fine and envelope ITD sensitivity, suggesting that primary binaural 

interactions may still be possible at the level of IC for envelope sensitivity but not for fine 

structure
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FIGURE 12. 
(a–t) Data from Figures 9 and 10 replotted in a horizontal orientation (upper left inset is 

derived from a sagittal image in the MRI stack showing the plane of section relative to the 

IC). As in Figures 9 and 10, coordinates of the black dot are relative to lambda; aligning the 

black dot would arrange the images in their estimated plane of section. See legends to 

Figures 9 and 10. Scale bar =2 mm in t (applies to a–t)
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FIGURE 13. 
Three-dimensional renderings of results. (a–d) Surface depictions of the areas of the gerbil’s 

IC. Triangulated from the location data of recording sites (see Fig. 8f–j). (e–h) Surface 

depictions of frequency laminae in the central nucleus (C1d, C1, and C2). Derived from the 

CFs of physiological recording sites (see Fig. 10f–j). (i–l) Surface depiction of the degree of 

ITD sensitivity in the central nucleus, derived by dividing the central nucleus into cubes with 

320-μm sides and calculating the percentage of cells in each cube that were ITD sensitive. a, 

e, and i are coronal orientations; b, f, and j, and c, g, and k are both sagittal orientations, with 

one rotated 180° from the other (see orientation arrows at the bottom); d, h, and l are 

horizontal orientations. Scale bar =1 mm in l (applies to a–l)
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FIGURE 14. 
Schematics of possible pathways between the central nucleus of the IC and the core areas of 

the auditory cortex. Both start from an IC where the ITD-sensitive regions are localized to 

separate parts of the frequency lamina, although not strictly orthogonal, i.e., more low CF 

neurons are ITD-sensitive than high CF neurons. (a) The pathway according to the general 

mammalian plan shown in Figure 1a. (b) The pathway according to the pattern in mustached 

bat, where there is a transformation from an organization according to frequency to one 

according to function
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TABLE 4

ANOVA for first spike latency across inferior colliculus subregions

Group No. FS latency (ms) (mean (SD))

C1d 98 12.1 (7.54)

C1v 74 9.8 (5.74)

C2 90 11.0 (5.59)

DC 41 13.7 (7.30)

L 52 14.3 (8.19)

EX 31 19.1 (11.1)

ANOVAs F 8.81

df 5, 380 P <0.001

DC =dorsal cortex; EX =external nucleus; L =lateral nucleus.
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