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Abstract

Background—Kabuki syndrome (KS) is a complex multi-system developmental disorder 

associated with mutation of genes encoding histone-modifying proteins. In addition to 

craniofacial, intellectual, and cardiac defects, KS is also characterized by humoral immune 

deficiency and autoimmune disease, yet no detailed molecular characterization of the KS-

associated immune phenotype has previously been reported.

Objective—To characterize the humoral immune defects found in KS patients with KMT2D 

mutations.

Methods—We comprehensively characterize B cell function in a cohort (N = 13) of patients with 

KS (ages 4 months to 27 years).
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Results—Three-quarters (77%) of the cohort had a detectable heterozygous KMT2D mutations 

(50% nonsense, 20% splice site, 30% missense), and 70% of the reported mutations are novel. 

Amongst the patients with KMT2D mutations (KMT2DMut/+), hypogammaglobulinemia was 

detected in all but one individual, with IgA deficiency affecting 90% of patients and a deficiency 

in at least one other isoform seen in 40% of patients. Total memory (CD27+) and class-switched 

memory B cells (IgM−) were significantly reduced in KMT2DMut/+ patients compared to controls 

(p-values < 0.001). KMT2DMut/+ patients also had significantly reduced rates of somatic 

hypermutation in IgG (p value = 0.003), but not IgA or IgM heavy chain sequences. Impaired 

terminal differentiation was noted in KMT2DMut/+ primary B cells. Autoimmune pathology was 

observed in patients with missense mutations affecting the SET domain and its adjacent domains.

Conclusions—In patients with KS, autosomal dominant KMT2D mutations are associated with 

the dysregulation of terminal B cell differentiation leading to humoral immune deficiency and in 

some cases autoimmunity. All patients with KS should undergo serial clinical immune 

evaluations.

Clinical Implications—KMT2DMut/+ Kabuki syndrome causes IgA deficiency in nearly all 

patients, although additional humoral defects (memory B cell deficiency, IgG 

hypogammaglobulinemia) have variable expressivity. Missense mutations in terminal domains 

may increase autoimmunity risk.
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Introduction

Kabuki syndrome (KS) or Niikawa-Kuroki syndrome is a congenital syndrome 

characterized by a stereotypical set of facial features, skeletal anomalies, dermatoglyphic 

abnormalities, intellectual disability, and post-natal growth deficiency (1, 2). Classic KS-

associated facies include arched eyebrows with central notching; elongated palpebral 

fissures with eversion of the lateral lower eyelid; and large, prominent, cupped ears. Though 

consensus clinical diagnostic criteria have not been established for this rare disease, other 

frequently noted structural defects include congenital heart disease, cleft palate, 

gastrointestinal malformations, and ophthalmologic defects (3–5). Functional defects are 

also observed including immune dysfunction (recurrent infections and autoimmune 

disorders), seizures, hearing loss, and endocrinopathies (6–9).

Autosomal-dominant mutations in two epigenetic regulatory genes, lysine methyltransferase 

2D (KMT2D/MLL2/ALR/MLL4; KS-1, OMIM 147920) and lysine demethylase 6A 

(KDM6A/UTX; KS-2, OMIM 300867), were recently found in large cohorts of patients with 

KS, suggesting that defects in histone-mediated regulation drive the diverse pathology of 

this syndrome (10, 11). KMT2D modifies gene expression via methylation of lysine 4 on 

histone 3 (H3K4), and mutations of this gene are the most common cause of KS (~60–70% 

of cases) (12, 13). KMT2D encodes a large, multi-domain protein that forms the core of one 

of the six mammalian complex of proteins associated with SET1 (COMPASS) protein 
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complexes (14). KDM6A is a cofactor physically associated with the KMT2D COMPASS 

complex and exhibits complementary demethylase activity at lysine 27 on histone 3 

(H3K27) (15). Together, the components of the KMT2D COMPASS complex remove 

inhibitory epigenetic marks and add activating marks, specifically H3K4 mono-, di-, or 

trimethylation (H3K4me1,2,or 3). KMT2D has been implicated in the regulation of 

hundreds of genes via regulation of enhancer and promoter elements, providing a rationale 

for how defects in this single gene and its binding partners can lead to a complex and 

heterogeneous congenital phenotype (12, 16, 17).

KMT2D binds multiple co-factors, including the paired box (PAX) transactivation domain– 

interacting protein (PTIP), which plays a key role in B cell terminal differentiation. PTIP 

has dual activities, binding regions of DNA double-strand breaks, such as those that occur 

during class-switch recombination (CSR), and interacting with PAX transcription factors. 

PTIP directly binds the B cell master transcription factor PAX5, targeting KMT2D-mediated 

H3K4me3 methylation to switch regions within the immunoglobulin (Ig) heavy chain locus 

(IGH) during CSR (18–20). B cell–specific knockout of Ptip in primary murine B cells 

dramatically impairs CSR (20). Studies of PTIP have demonstrated the important role of the 

KMT2D COMPASS complex in regulating the IGH locus during B cell differentiation, thus 

linking the molecular functions of the two KS-associated genes with a central mechanism of 

humoral immunity.

Immune dysfunction is a common feature of KS. Described as having a common variable 

immune deficiency-like (CVID-like) immune profile in early studies (7), this initial 

observation was later correlated with clinical findings in three larger cohorts of patients with 

heterozygous KMT2D mutations (KMT2DMut/+). Approximately half of the patients in these 

studies had clinical features of immune deficiency, including recurrent otitis media [47% 

(21)] and frequent/repeat infections [41.9% (22)/64% (23)]. A more recent study found 

recurrent otitis media to be a nearly universal clinical finding (85%) in KMT2DMut/+ KS 

patients (24). In addition, autoimmune diseases, especially immune thrombocytopenia (ITP), 

hemolytic anemia, and vitiligo, have also been reported in patients with KS; however, all of 

these early cases were in clinically diagnosed patients without a defined genetic etiology. 

Two new case reports of ITP in genetically defined KMT2DMut/+ patients, however, have 

strengthen the link between KS and autoimmunity (25, 26). Together, these foundational 

studies provide a general outline of the KS immune phenotype, but reveal little about the 

underlying pathogenesis of the observed immune dysfunction.

Despite a growing clinical interest in KS, the cellular characteristics and molecular 

mechanisms of KS-associated immune dysfunction remain poorly understood. A variety of 

recent studies, however, have now shown that histone-modifications regulate key events in 

terminal B cell differentiation. Specifically, CSR and the related phenomenon, somatic 

hypermutation (SHM), are two critical B cell processes subject to epigenetic regulation (27–

29), but despite their importance to humoral immunity, these processes have never 

previously been evaluated in patients with KS. To address these knowledge gaps, we 

characterize herein the specific cellular and molecular B cell defects found in a cohort of 13 

patients with KS (10 pediatric, 4 adult cases). Our findings provide mechanistic insight into 
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the humoral immune deficiency and autoimmunity found in this understudied patient 

population.

Methods

Patient cohort

Patients with a clinical diagnosis of KS by a board-certified clinical geneticist were recruited 

to participate. All participants and/or their parents/guardians provided written consent/assent 

for enrollment in this study (including explicit authorization to publish images of patients). 

The study protocol (#2012–4636) was approved by the Institutional Review Board at 

Cincinnati Children’s Hospital Medical Center (CCHMC). Phenotypic data were collected 

from medical record review and interviews with patients, guardians and physicians.

KMT2D/KDM6A sequencing analysis and multiplex ligation-dependent probe amplification 
(MLPA)

All 13 patients underwent KMT2D sequencing (reference: NM_003482.3). KMT2D 

domains were mapped according to UniProt Database (O14686). Per the step-wise approach 

to genetic diagnosis of KS in clinical practice, the 3 patients (A, B, C) in whom no KMT2D 

mutation was identified underwent multiplex ligation-dependent probe amplification 

(MLPA) analysis of 23 KMT2D exons, sequencing of the KDM6A coding region, and 

MLPA of 26 KDM6A exons. (See Online Methods for MLPA exon numbers).

Splice site analysis

To confirm the presence of mis-spliced mutant variant transcripts, putative splice site 

variants were analyzed using NNSPLICE software (30). cDNA from patients 3 and 7, who 

have mutations in KMT2D splice sites, was generated from peripheral blood mononuclear 

cells (PBMCs). Primers flanking the predicted splice site mutation amplified regions of 

interest. Bands were purified, cloned, and sequenced.

Clinical laboratory evaluations

Immunoglobulin (Ig) levels, post-vaccination serology, lymphocyte subpopulation data, and 

mitogen studies were derived from physician review of medical records. All clinical 

evaluations were performed at Clinical Laboratory Improvement Amendments (CLIA)–

certified clinical laboratories and reported with the age-matched normal ranges. B cell flow 

cytometry was performed in the Diagnostic Immune Laboratory, CCHMC.

Somatic hypermutation analysis

V(D)J libraries were generated from PBMC-derived cDNA, cloned, and sequenced. Briefly, 

we combined the BIOMED-2 FR1 pool of variable gene primers (31) with individual 

antisense, constant region–specific (μ, γ, α) primers to amplify pools of isotype-specific Ig-

derived clones (32, 33). After gel purification, these libraries were cloned (TOPO TA 

cloning, Life Technologies), screened for inserts, and 20–30 clones per library were 

sequenced. Ig sequences were aligned with the human IGH locus using the IgBLAST 
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software and the IMTG database (34). Non-productive clones were excluded from analysis. 

Mutation analysis performed with SHMTool software (35).

In vitro terminal B cell differentiation

B cell differentiation was induced using a modified version of the protocol described by 

Ettinger et al. (36). (See Online Methods for culture and staining details). Cells were 

analyzed after 3 days or 7 days of culture by flow cytometry (LSR-II flow cytometer, BD 

Biosciences).

Statistical Analysis

Patient-derived B cell data was compared to age-matched controls using a linear regression 

model in which the p-value was calculated on the basis of the F-test (GLM procedure, SAS 

ver9.4 software). All other statistical analyses were performed using an unpaired Student t 

test. p < 0.05 was considered statistically significant.

Results

Cohort characteristics

Each patient’s KS phenotype was evaluated for the presence of 4 of the 5 cardinal 

manifestations of KS (Table 1) (dermatoglyphic analysis not done) (37) Images of each 

patient’s face and right ear are provided (Supplemental Figure E1). Additional KS-

associated structural and functional anomalies were also evaluated. The frequency of 

selected traits in our cohort were calculated and compared with the meta-analysis of 

Bogershausen and Willnik (4 studies, total n = 287 patients) (9). All but two categories of 

KS-associated traits showed similar frequency rates between our cohort and the meta-

analysis; congenital heart disease and genitourinary anomalies were more common in our 

cohort than in the meta-analysis cohorts. Adult KS patients also exhibit a variety of CVID-

associated comorbidities, especially splenomegly and pulmonary disease (Supplemental 

Table E2, A).

Molecular genetic evaluation

All of the patients underwent KMT2D gene sequencing, and 10 out of 13 (77%) were found 

to have mutations predicted to be pathogenic (Supplemental Figure E2), a rate consistent 

with prior reports (9, 10). Seven of these KMT2D mutations were novel. Half of the 10 

identified KMT2DMut/+ patients harbored nonsense/frameshift mutations predicted to 

generate a truncated protein or induce nonsense-mediated decay (NMD) of the mutated 

transcript (38).

Two patients, 3 and 7, had splice site mutations identified (Supplemental Figure E2). 

Bioinformatic analysis of patient 3’s mutation predicted a deleterious effect (loss of intron 

26 acceptor site). This prediction was confirmed by PCR amplification of a mutant transcript 

fragment (Mut) from patient-derived PBMC cDNA (Supplemental Figure E3,A). Cloning 

and sequencing of this aberrant band revealed retained intronic sequence encoding a 

premature stop codon. Patient 7 was also found to have a splice site mutation (adjacent to 

the donor site of intron 29), and bioinformatic analysis predicted reduced confidence in the 
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functionality of the site. Similar PCR analysis of PBMC-derived cDNA from patient 7 failed 

to detect a mutant band (Supplemental Figure E3, B).

Three patients, 5, 6, and 8, had missense mutations in the 3’ end of the KMT2D locus (exons 

48, 51) within highly conserved functional domains (Supplemental Figure E2). The 

previously reported missense mutation identified in patient 8 (c.16294C>T) was recently 

shown to disrupt the Kabuki interaction surface (KIS), which forms a secondary active site 

in the COMPASS complex (39).

The three patients (A, B, C) who were clinically diagnosed with KS but in whom no 

KMT2D mutation were detected (clinical KS, cKS) also underwent KMT2D exon copy 

number variant testing (MLPA) and KDM6A sequencing and copy number testing (MLPA). 

In all three cases, these additional studies failed to detect a pathogenic mutation, insertion, or 

deletion in these two previously described KS-associated genes.

Autoimmune disease clinical histories

Autoimmune disease is commonly associated with humoral immune deficiency and is 

observed in ~20% of patients with CVID (40). Three of our patients have a history of 

marked autoimmune disease (patients 5, 6, and 8; 23% of total cohort; detailed clinical 

histories provided in Supplemental Figure E4). All 3 patients experienced ITP, and in 2 

cases, ITP developed within several months of contracting Epstein-Barr virus (EBV) 

(patient 5 and 8). Patient 6 also developed vitiligo, which required phototherapy. Patient 8 

has had recurrent ITP, autoimmune neutropenia, autoimmune hepatitis, and insulin-

dependent diabetes mellitus. Interestingly, these patients all harbor similar missense 

mutations in the 3’-end of the KMT2D gene near the SET domain region (Supplemental 

Figure E2).

Immune evaluations

Lymphocyte Evaluations—Peripheral lymphocyte subpopulations were evaluated for 12 

out of the 13 patients, and the majority of patients had normal or minor deviations from age-

matched control values(41) (Supplemental Table E1). Similarly, mitogen studies were 

performed in 11 out of 13 subjects, with >80% having essentially normal results. Two 

patients (6,8) had diminished, but not absent, mitogen responses (Supplemental Table E1). 

With regard to lymphocyte subpopulations, four out of 12 patients (33%), were found to 

have a reduced percentage of CD19+ B cells (vs. age-matched controls). Four patients (2, 5, 

6, 8) had lymphopenia and abnormal lymphocyte subpopulations at the time of enrollment. 

Patient 2 has a large, retroperitoneal lymphatic malformation, resulting in significant 

chylous ascites and loss of peripheral lymphocytes, especially T cells; patient 2’s absolute B 

cell count was low (556 cells/mcl vs. age-adjusted normal range 700–2500 cells/mcl), 

despite an elevated B cell percentage because of preferential loss of T cells. Patient 5 

underwent thymectomy at 3 days of life, with intermittent lymphopenia noted since that 

time. Patient 6 was noted to have lymphocyte subpopulation levels within normal, age-

matched ranges at initial evaluation (5.5 years of age) but subsequently developed 

lymphopenia with onset of autoimmune disease (Supplemental Figure E4). Similarly, patient 
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8 had a normal absolute lymphocyte count at 13 years of age prior to contracting EBV, but 

since that time has had chronic borderline lymphopenia (Supplemental figure E4).

Immunoglobulin levels—We found that 90% of our KMT2DMut/+ patients had IgA 

deficiency, whereas our 3 cKS patients (A–C) had normal or above-normal serum IgA levels 

(Figure 1A). In patients greater than 5 years of age, the IgA levels were significantly 

decreased in KMT2DMut/+ patients compared with cKS patients (A–C) (p value = 0.003) 

(Figure 1A, right panel). Low serum IgM was noted in 40% of KMT2DMut/+ patients (4, 6, 

8, and 9) but in none of the cKS patients (Figure 1B). Low IgG was also noted in 40% of 

patients with KMT2D mutations (patients 6, 8, and 9) and in 1 cKS patient (Figure 1C). 

Three KMT2DMut/+ patients (6, 8, 9) had pan-hypogammaglobulinema.

Specific antibody titers against tetanus were also evaluated for all patients greater than 2 

years of age except for patients 4 and 5. All patients had protective tetanus titers except for 

patient 6. One month after revaccination, patient 6 mounted a 10-fold increase in her anti-

tetanus titers (still below protective level), but this level returned to her previously low 

baseline by 1 year later. An alternative measure of vaccine responsiveness was available for 

patient 5, who mounted protective responses to hepatitis A and B vaccinations at 6 years of 

age. Of note, 5 adult KMT2DMut/+ patients (patients 6–10) underwent pre- and post-

vaccination pneumococcal titer testing, and 3 out of 5 (60%) failed to mount a normal 

response (defined as 2-fold increase in 70% of tested titers)(Supplemental Table E2) (42).

B cell subpopulations—Given our finding of hypogammaglobulinemia in the majority 

of our KMT2DMut/+ patients, we next evaluated peripheral B cell subpopulations in 12 out of 

13 patients in our cohort (patient 5- no data; patient 6- not all data available). Consistent 

with our lymphocyte subpopulation analysis, 4 (33%, 4 of 12) of our patients had a low 

percentage of total B cells (CD19+/CD20+, Figure 2A); all 4 were KMT2DMut/+ patients 

(44%, 4 of 9). We next evaluated total memory B cells (CD27+) and found that 89% (8 of 9) 

of KMT2DMut/+ patients were deficient in this cell type, a feature shared with 67% (2 of 3) 

of cKS patients (Figure 2B). When compared to control subjects, we found that 

KMT2DMut/+ patients had a significant reduction in memory B cells after adjusting for age 

(p-value = 0.0005). Class-switched memory B cells (IgM−, IgD−, CD27+) were also low in 5 

KMT2DMut/+ patients (63%) and in 1 patient lacking a KMT2D mutation (Figure 2C). 

Compared to age-adjusted control subjects, we found that KMT2DMut/+ patients had a 

significant reduction in class-switched memory B cells (p-value = 0.0077). Finally, we 

evaluated CD19+CD21lo B cells, a cell population previously associated with CVID in 

adults (43) and found that 4 KMT2DMut/+ patients had an expanded population of these 

cells; no expansion of these cells was seen in cKS patients (Figure 2D). When compared to 

control subjects, KMT2DMut/+ patients had a significant expansion in CD19+CD21lo B cells 

after adjusting for age (p-value < 0.0001). Collectively, these findings indicate that many 

patients with KS exhibit abnormal terminal B cell differentiation.

Somatic hypermutation (SHM) rates—A critical step in terminal B cell differentiation 

is post-activation SHM of the IGH locus. We therefore quantified the rate of SHM in V(D)J 

transcripts cloned from KMT2DMut/+ B cells to investigate whether this process was 

disrupted by KMT2D genetic lesions. We focused our analysis on our 4 adult KMT2DMut/+ 
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patients (7–10) because of the availability of age-matched controls. Using a set of diverse 

variable gene primers (BioMED-2 FR1) paired with a constant region primer (IgM, pan IgG, 

or IgA specific), we isolated and sequenced patient-specific V(D)J clones and quantified 

their divergence from germline sequence. SHM rates for IgM and IgA V(D)J clones from 

KMT2DMut/+ patients did not significantly differ from rates derived from control subject 

clones (Figure 3A, B) and were consistent with previously published rates of SMH in adults 

(44–47). Interestingly, the SHM rate for IgG V(D)J clones was significantly lower in 3 out 

of 4 KMT2DMut/+ patients when compared to controls clones (p-values <0.003)(Figure 3C). 

These findings show that a subset of adult patients with KS have diminished IgG affinity 

maturation in circulating memory B cells. IgG affinity maturation appears to be more 

susceptible to KMT2D insufficiency than IgA SHM, possibly the result of the divergent 

cytokine signaling mechanisms and cell trafficking that drive mucosal (IgA) vs systemic 

(IgG) humoral immunity(48).

To explore the mechanism driving this reduction in the SHM rate, we next performed 

mutation analysis on IgG clones derived from KMT2DMut/+ patients (Supplemental Table 

E3). SHM-associated mutations are targeted to the V(D)J and occur in non-random patterns 

with certain nucleotide motifs being preferentially targeted (“hotspot”) or ignored 

(“coldspot”). We observed no differences in the fraction of transition or transversion 

mutations detected in V(D)J sequences derived from KMT2DMut/+ patients versus from 

normal controls. Likewise, the percentage of total V(D)J mutations occurring at activation-

induced cytidine deaminase (AICDA, also known as AID) “hotspot” and “coldspot” motifs 

also did not differ between KMT2DMut/+ patients and controls. In contrast, we did observe a 

trend toward reduced utilization of the preferred polymerase η (eta) motif in KMT2DMut/+ 

patients (KS average 9.01% vs. Control 15.96%, p = 0.058). This ~40% reduction was seen 

in all KMT2DMut/+ patients examined, including patient 10 who had a normal overall SHM 

rate.

In vitro terminal B cell differentiation—In order to clarify whether the humoral defects 

seen in many of our patients with KS were the result of intrinsic B cell defects (cell 

autonomous or nonautonomous), we induced in vitro class-switch recombination in B cells 

isolated from an adult KMT2DMut/+ patient with hypogammaglobulinemia, but no prior 

exposure to rituximab or other immune suppressive medication (patient 9). Total B cells 

were isolated from patient 9 and two age-matched control patients and incubated in media 

alone or media plus germinal center differentiation factors/stimuli (IL-21, anti-CD40 

antibody, anti-IgM antibody). Cells were analyzed after 3 days and 7 days of incubation by 

flow cytometry. Control cells exposed to the differentiation factors efficiently 

downregulated IgD and induced CD38 (Figure 4), a marker of memory and plasma cell 

differentiation (36). B cells derived from patient 9 appeared to initiate normal differentiation 

at day 3 of culture by downregulating surface IgD but failed to upregulate CD38 on IgD− 

cells by day 7 of culture (2.8% versus 36.3% IgD−CD38+ in control cells). CD27 was also 

examined and followed the same pattern as CD38 (data not shown). These findings suggest 

a specific role for KMT2D signaling during germinal center–mediated terminal 

differentiation.
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Discussion

Based on our results and accumulating evidence from multiple model systems (27, 49, 50), 

we believe the hypogammaglobulinemia, reduced memory B cells, and impaired SHM 

observed in our KMT2DMut/+ patients are likely the result of disrupted epigenetic regulation 

of the IGH locus. During B cell terminal differentiation, the IGH locus undergoes a variety 

of dynamic, stepwise epigenetic modifications. In activated naive mature B cells, H3K4me3 

modifications accumulate throughout the V(D)J region and IGH switch regions. These 

targeted H3K4me3 marks are associated with an open chromatin state, and initiate a cascade 

of secondary H3 histone modifications that drive AICDA/AID recruitment to the switch 

regions, and ultimately induce recombination of the IGH locus (51). The V(D)J sequence 

also is subject to similar epigenetic regulation during SHM, with initial H3K4me3 

accumulation at the V(D)J coding sequence leading to secondary histone modifications, 

recruitment of AICDA/AID and the error-prone DNA polymerase-η (pol-η), and subsequent 

mutation-driven affinity maturation of the antibody (49). Impaired H3K4 trimethylation of 

the IGH locus reduces both CSR and SHM efficiency (27, 50), linking these independent, 

but simultaneous processes to epigenetic regulatory mechanisms. These findings are highly 

relevant to KS-associated immune dysfunction since KMT2D catalyzes H3K4 methylation 

at the IGH locus by binding it’s COMPASS cofactor PTIP (20), therefore supporting a direct 

link between KMT2D function and CSR/SHM (Supplemental Figure E5).

The CVID-like phenotype observed in our KMT2DMut/+ patients implicates altered 

epigenetic signaling as an etiology for human B cell dysfunction. Multiple knockout murine 

models have shown that a variety of chromatin modifier genes (Ezh2, Suv39h1, Spt6) have 

important roles in terminal B cell differentiation, CSR, and SHM (27–29). Future 

investigations into the etiology of CVID may benefit from closer inspection of B cell 

epigenetic regulation. Other important aspects of B cell differentiation may also be affected 

in some KMT2DMut/+ patients, such as impaired deletion of autoreactive B cell clones. One 

intriguing observation is that all three of our KMT2DMut/+ patients with autoimmune disease 

were found to have missense point mutations in the terminal carboxyl end of KMT2D gene. 

Of the two other KMT2DMut/+ patients reported in the literature to have developed ITP, one 

patient exhibited a highly similar missense mutation in the same gene region (exon 52, c.

16384G>C, p.D5462H) (26). A recent enzymatic study of the KMT2D pre-SET domain 

region modeled five previously reported KS missense mutations and found that all clustered 

onto a solvent-exposed surface termed the KIS (39). These mutations interfered with 

KMT2D’s formation of a second active site with critical protein cofactors rendering the 

protein only capable of performing histone monomethylation. Additional studies, perhaps 

using animal models that recapitulate human genetic lesions, are needed to clarify the in vivo 

effects of specific KMT2D point mutations on the development of autoreactive B cells.

KS is a complex, heterogeneous disease and patients are at increased risk for recurrent 

sinopulmonary infections and serious autoimmune sequela, as seen in our adult 

KMT2DMut/+ patients(Supplemental Table E2, A&B). Unfortunately, no disease-specific 

clinical treatments are currently approved for use in patients with KS, though this may 

change now that the underlying gene defects have been identified. Several lysine 

demethylase (KDM) inhibitors have recently been described and may prove useful in 
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directly targeting H3K4 methylation defects (52). B cells are interesting initial targets for 

therapeutic epigenetic treatment given their lifelong, ongoing differentiation from stem cells, 

providing a broad developmental window for aberrant epigenetic signaling to be normalized 

by pharmacologic intervention.

In summary, we show that greater than 80% of KMT2DMut/+ patients have 

hypogammaglobulinemia and diminished memory B cell populations. In addition, we 

present evidence associating KMT2D mutations with expansion of the CVID-associated 

CD21lo B cell population, impaired SHM in IgG transcripts, and disrupted terminal B cell 

differentiation We also note a clustering of missense mutations in the terminal region of the 

KMT2D gene and that such mutations may increase the risk for autoimmune disease in 

KMT2DMut/+ patients. In summary, this report reveals that epigenetic dysregulation of the B 

cell compartment can lead to clinically relevant primary immune deficiency and 

autoimmunity in humans.
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Abbreviations used

AICDA activation-induced cytidine deaminase

CCHMC Cincinnati Children’s Hospital Medical Center

cKS Clinical Kabuki syndrome (no identifiable KMT2D/KDM6A mutations)

COMPASS complex of proteins associated with SET1

CSR class-switch recombination

H3K4 histone 3, lysine 4

Ig immunoglobulin

IGH immunoglobulin heavy chain locus

KDM6A lysine demethylase 6A

KIS Kabuki interaction surface

KMT2D lysine methyltransferase 2D

KMT2DMut/+ autosomal dominant mutation in KMT2D

KS Kabuki syndrome

PTIP paired box (PAX) transactivation domain–interacting protein
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SHM somatic hypermutation
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Figure 1. Serum Ig levels
Patients arranged by ascending age. Gray shading represents age-matched normal range 

(2.5th–97.5th percentile). (A) IgA levels in KMT2DMut/+ patients (#1–10, solid circles) and 

cKS patients (A–C, hollow squares). (B) IgA values (bar=mean) are significantly reduced in 

KMT2DMut/+ patients > 5 yrs old versus cKS patients. *p < 0.05. (C, D) IgM levels and IgG 

levels. IgG values for patients 2, 6, C, and 9 (^) are the last levels acquired before IVIG/

SCIG treatment.
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Figure 2. B cell subset analysis
Patients arranged by ascending age; gray shading represents age-matched normal range (5th–

95th percentile). (A) Total B cells (CD19+CD20+) in KMT2DMut/+ (solid circles) and cKS 

patients (hollow squares). (B) Total memory B cells (CD19+, CD27+). (C) Class-switched 

memory B cells (CD19+CD27+IgM−IgD−). (D) CD19+ CD21lo B cells. # = data were not 

available for patient 6 (n = 11). *Received anti-CD20 (rituximab) antibody therapy 3 yrs 

prior to analysis; had normal total B cell count pre-therapy. Lo, low.
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Figure 3. Somatic hypermutation (SHM) rate
Isoform-specific V(D)J clones analyzed in adult KMT2DMut/+ patients(circles) and age-

matched adult controls (triangles). Presented as percent (%) divergent from germline IGH 

sequence. (A,B, C) IgM, IgG and IgA mutations rates in KMT2DMut/+ patients and controls. 

IgG mutation rates (B) were significantly lower in 3 of 4 KMT2DMut/+ patients than in 

controls (*p < 0.05). All data (A,B, C) are present as mean ± standard deviation of the mean.
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Figure 4. In vitro B cell differentiation
Isolated total B cells cultured in media alone or media plus differentiation factors. Flow 

cytometry performed on day 3 and day 7 of culture. Performed in duplicate with 

representative flow plots shown.
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