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Fast Probabilistic Collision Checking for
Sampling-based Motion Planning using

Locality-Sensitive Hashing
Jia Pan1 and Dinesh Manocha2

Abstract—We present a novel approach to perform fast
probabilistic collision checking in high-dimensional configuration
spaces to accelerate the performance of sampling-based motion
planning. Our formulation stores the results of prior collision
queries, and then uses such information to predict the collision
probability for a new configuration sample. In particular, we
perform an approximate k-NN (k-nearest neighbor) search to
find prior query samples that are closest to the new query
configuration. The new query sample’s collision status is then
estimated according to the collision checking results of these
prior query samples, based on the fact that nearby configurations
are likely to have the same collision status. We use locality-
sensitive hashing techniques with sub-linear time complexity
for approximate k-NN queries. We evaluate the benefit of our
probabilistic collision checking approach by integrating it with
a wide variety of sampling-based motion planners, including
PRM, lazyPRM, RRT, and RRT∗. Our method can improve
these planners in various manners, such as accelerating the local
path validation, or computing an efficient order for the graph
search on the roadmap. Experiments on a set of benchmarks
demonstrate the performance of our method, and we observe
up to 2x speedup in the performance of planners on rigid and
articulated robots.

I. INTRODUCTION

Motion planning is an important problem in robotics, virtual
prototyping and related areas. Most practical methods for
motion planning of high-DOF (degrees-of-freedom) robots are
based on random sampling in configuration spaces, including
PRM (Kavraki et al. 1996) and RRT (Kuffner & LaValle
2000). The resulting algorithms avoid explicit computation
of obstacle boundaries in the configuration space (C-space)
and instead use sampling techniques to compute paths in the
free space (Cfree). The main computations include probing the
configuration space for collision-free samples, joining nearby
collision-free samples by local paths, and checking whether
the local paths lie in the free space. There is extensive work
on different sampling strategies, faster collision checking, and
on biasing the samples to handle narrow passages according
to local information.

In motion planning, the collision detection module is typi-
cally used as an oracle for collecting information about the free
space and approximating its topology. This module classifies
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a given configuration or a local path as either collision-free
(i.e., in Cfree) or in-collision (i.e., overlapping with Cobs).
Most motion planning algorithms only store the collision-free
samples and local paths, and use them to compute a global
path from the initial configuration to the goal configuration.
Typically, the in-collision configurations or local paths are
discarded.

In order to accelerate the performance of sampling-based
planners, our goal is to improve the performance of the
collision detection module by leveraging the information about
prior collision queries. This notion of using the results of
previous queries is not new, and has been used for motion
planning. For instance, a variety of planners (Boor et al. 1999,
Denny & Amato 2011, Rodriguez et al. 2006, Sun et al.
2005) utilize the in-collision configurations or the samples near
the boundary of the configuration obstacles (Cobs) to bias the
sample generation or to improve the planners’ performance
in narrow passages. However, it can be expensive to perform
geometric inference based on the outcome of a large number
of collision queries in high-dimensional configuration spaces.
As a result, most prior planners only use partial or local
information about configuration spaces.
Main Results: We present a novel probabilistic approach
which improves the performance of the collision detection
module by utilizing the results from prior collision queries,
including both in-collision and collision-free samples. Our for-
mulation leverages the historical information generated using
collision queries to compute an approximate representation of
C-space as a hash table. Given a new probe or collision query
in C-space, we perform efficient inference on the approximate
C-space in order to compute a collision probability for this
query. This probability is used either as a similarity result or
as a prediction of the exact collision query. Based on this
collision probability, we design a collision filter for efficient
milestone and local path validation, which can greatly improve
the performance of sampling-based motion planners.

The underlying prediction performed on the approximate
C-space is based on k-NN (k-nearest neighbor) queries. The
efficiency of the k-NN computation in high-dimensional con-
figuration spaces is achieved by using locality-sensitive hash-
ing (LSH) algorithms, which have sub-linear complexity. In
particular, we present a point-point k-NN query for computing
the nearest neighbors of a point configuration, and a line-
point k-NN algorithm for finding the nearest neighbors of
a line query, which arises in the context of local planning.
We derive bounds on the accuracy and time complexity of
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these LSH-based k-NN algorithms and show that the collision
probability computed using these algorithms converges to the
exact collision detection as the size of dataset increases.

Our approach is general and can be combined with any
sampling-based motion planning algorithm. In particular, we
present improved versions of PRM, lazyPRM, and RRT plan-
ning algorithms based on our probabilistic collision check-
ing algorithm. Furthermore, it is quite efficient for high-
dimensional configuration spaces. We have applied these plan-
ners to rigid and articulated robots, and have observed up to
2x speedup. The only additional overhead comes from storing
the prior instances in the hash table and performing k-NN
queries; these account for only a small fraction of the overall
planning time. Finally, the learned approximate C-space can be
updated efficiently for moving obstacles and can also be used
for motion planning in dynamic environments. This paper is
a revised and extended version of our prior work (Pan et al.
2012a).

The rest of the paper is organized as follows. We survey
related work in Section II. Section III gives an overview of the
probabilistic collision checking framework. We present details
of the probabilistic collision checking and analyze its accuracy
and complexity in Section IV and Section V. We show the
integration of our fast collision checking module with a variety
of motion planning algorithms in Section VI and highlight the
performance of the modified planners on various benchmarks
in Section VII.

II. RELATED WORK AND BACKGROUND

In this section, we first provide an overview about how
the collision checking module is used in prior sampling-based
planners, with a brief comparison with our approach. Next,
we discuss different ways adopted by previous sampling-
based planners to leverage information accumulated during
the planning process about the surrounding environment, and
compare these methods with our approximate collision check-
ing module. Finally, we briefly survey the k-nearest neighbor
search algorithms, especially the locality-sensitive hashing ap-
proaches, which make up our toolbox for accelerating collision
queries.

A. Collision Checking for Motion Planning

One important feature of sampling-based motion planners is
the use of exact collision queries to probe the connectivity of
Cfree. However, the topology of Cfree can be rather complex, and
may consist of multiple components or small, narrow passages.
As a result, it is challenging to capture the full connectivity
of Cfree using collision queries. There is extensive work on
various techniques improving the connectivity computation
with different sampling strategies.

Many sampling approaches used for sampling-based plan-
ners tend to be memoryless, i.e., the sampling technique used
to generate the (n + 1)th sample is independent of the pre-
vious n samples. Approaches belong to this category include
OBPRM (Amato et al. 1998), Gaussian sampling (Boor et al.
1999), retraction-based planners (Hsu et al. 1998, Rodriguez
et al. 2006, Zhang & Manocha 2008), and methods specially

designed for narrow passages (Sun et al. 2005, Kavraki et al.
1996). All these sampling strategies are orthogonal to our
probabilistic collision query approach, and thus our approach
can be combined with all these techniques for a better perfor-
mance of motion planners.

In some recent approaches, adaptive sampling strategies
have been proposed that evolve while more information about
C-space and Cfree has been inferred via sampling. In other
words, these strategies are not memoryless because the under-
lying approximate representation of C-space changes as more
samples are generated. For instance, Jaillet et al. (2005) and
Yershova et al. (2005) approximate the free space using a set
of size-varying balls around nodes in the RRT representation.
Burns & Brock (2005b) approximate the C-space with a set
of prior samples, either collision-free or in-collision. Recently,
Knepper & Mason (2012) extend the adaptive sampling ap-
proach in (Burns & Brock 2005b) to non-holonomic motion
planning by defining the utility of local paths. Denny & Amato
(2011) construct roadmaps in both Cfree and Cobs, for generating
more samples in narrow passages.

Our method also computes an approximate representation
of C-space, in terms of in-collision and collision-free samples.
However, our approach is independent of the underlying sam-
pling strategy, and thus can be combined with all the adaptive
sampling strategies mentioned above for better performance.
One method directly related with our approach is (Burns &
Brock 2005a), which also used k-NN queries to estimate the
collision status for a local path based on the database of
prior collision queries. There are several important differences
between their approach and ours. First, our nearest neighbor
queries on a local path uses the line-point k-NN query (see
Section IV), which is more accurate and efficient. In particular,
we convert this problem into a point-point k-NN problem in
a higher dimensional space, and then use LSH technique for
efficient query in the higher-dimensional space. Second, a set
of initial random samples are used in (Burns & Brock 2005a),
which are not necessary for our approach. In addition, our
approach can also handle dynamic environments with moving
obstacles, where we can approximate the underlying represen-
tation of C-space. Finally, our approach can be combined with
any sampling-based planner, whereas the algorithm proposed
by Burns & Brock (2005a) is mainly for PRMs.

Some of our previous work is also about probabilistic
collision checking, such as Pan et al. (2011, 2013). However,
they mainly focus on the collision checking in environments
with noise and uncertainty, and thus are not directly related
with this work.

B. Motion Planners and Environment Learning

The performance of motion planners can be improved by
exploiting learned knowledge about the underlying geometric
structures in tasks and human environments. In particular, this
capability is useful for robots working in domestic environ-
ments, because these environments do not change much (walls
and shelves, for example, are static, and large objects like fur-
niture are not moved frequently). Many approaches have been
proposed to help motion planners learn about the surrounding
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environment by reusing the trajectories planned in the past.
For instance, Jetchev & Toussaint (2010) construct a database
of high-dimensional features which captures information about
the proximity of the robot to obstacles. Such information is
then used to predict a good path while facing a new situation.
Other methods construct a database of past motion plans (Jiang
& Kallmann 2007, Berenson et al. 2012, Phillips et al. 2012,
Stolle & Atkeson 2006, Branicky et al. 2008).

The method proposed in this paper enables motion planners
to learn about environments from the results of previous
collision detection queries. In our method, a database of
collision results is maintained, rather than a database of motion
plans. Compared with a database of motion plans, our database
of collision results has some advantages. First, it is easier to
compute and store this information, and can also be used for
a dynamic environment. Second, since the dimension of the
motion plan database (i.e., the length of the motion paths)
is much larger than that of a database of collision query
results (i.e., the dimension of the C-space), the storage and
query performance is higher for collision query results than
for motion plans. Finally, our method outperforms previous
methods (Jetchev & Toussaint 2010) that also used k-NN
search, due to our improved k-NN computation algorithm.

C. k-Nearest Neighbor (k-NN) Search

The problem of finding the k-nearest neighbor within a
database of high-dimensional points is well-studied in var-
ious areas, including databases, computer vision, and ma-
chine learning. Samet’s book (Samet 2005) provides a good
survey of various techniques used to perform the k-NN
search. In order to handle large and high-dimensional spaces,
most practical algorithms are based on approximate k-NN
queries (Chakrabarti & Regev 2004). In these formulations,
the algorithm is allowed to return a point whose distance
from the query point is at most 1 + ε times the distance
from the query to its k-nearest points; ε > 1 is called the
approximation factor. One popular approximate k-NN method
is the locality-sensitive hashing algorithm, which is originally
designed for point k-NN queries, but has also be extended to
line queries (Andoni et al. 2009), hyper-plane queries (Jain
et al. 2010) and point/subspace queries (Basri et al. 2011).
LSH-based k-NN has already been used in motion planning,
e.g., a parallel version of LSH-based k-NN was used in a
parallel PRM framework (Pan et al. 2010).

The basic LSH algorithm is an approximate method for
computing k-nearest neighbors. The underlying idea is to hash
the data items in a locality-sensitive manner: similar items
are mapped to the same buckets with high probability, and
dissimilar items are usually mapped into different buckets,
with only a low probability of being sorted into the same
buckets. We need only search within a given query’s bucket
or in nearby buckets to collect the k-nearest neighbors for a
given query. As the size of a bucket is much smaller than the
number of all possible data items, the search process tends to
be more efficient.

In particular, a M -dimensional hash function g(·) is used
to divide the entire problem space into a grid and to distribute

each data item into one grid cell:

g(x) = [h1(x), h2(x), ..., hM (x)], (1)

where hi(·) is a 1-dimensional hash function randomly
selected from a hash function family H with ‘locality-
sensitiveness’, which can be formally described as follows:

Definition (Andoni & Indyk 2008) Let hH denote a random
choice of hash functions from the function family H, and let
B(x, r) be a radius-r ball centered at x. H is called (r, r(1 +
ε), p1, p2)-sensitive for dist(·, ·) when for any two points x,
x′,

• if x′ ∈ B(x, r), then P[hH(x) = hH(x′)] ≥ p1,
• if x′ /∈ B(x, r(1 + ε)), then P[hH(x) = hH(x′)] ≤ p2.

For this family of hash functions to be useful, we require
p1 > p2, which indicates that the probability of two points
being mapped into the same hash bucket is large while they
are close to each other, and is small otherwise.

According to the distance metric used for k-NN search,
different hash functions are being used. For instance, the hash
function for lp metric, p ∈ (0, 2] (Datar et al. 2004) is hi(x) =
bai·v+biW c, where the vector ai consists of i.i.d. entries from
standard normal distribution and bi is drawn from a uniform
distribution U [0,W ). M and W control the dimension and
size of each lattice cell, respectively, and therefore control the
locality sensitivity of the hash functions. In order to achieve
higher accuracy for approximate k-NN queries, L hash tables
are used and each of them is constructed independently with
different dim-M hash functions g(·). Given a query item x′,
we first compute its hash code using g(x′) and locate the hash
bucket that contains x′. All the items in the bucket are potential
candidates for k-NN computations. Next, we perform a local
scan on the candidate set to compute the k-NN results. For
the local scan result, the following conclusion holds for the l2
metric:

Theorem 1: (Point-point k-NN query) (Datar et al. 2004)
Let H be a family of (r, r(1 + ε), p1, p2)-sensitive hash
functions, with p1 > p2. Given a dataset of size N , we
set the hash function dimension as M = log1/p2 N and
choose L = Nρ hash tables, where ρ = log p1

log p2
. Using L-

hash tables over dimension M , given a point query p, with
probability at least 1

2 − 1
e , the LSH algorithm solves the (r, ε)-

neighbor problem. In other words, if there exists a point x that
x ∈ B(p, r(1 + ε)), then the algorithm will return the point
with probability ≥ 1

2 − 1
e . The retrieval time is bounded by

O(Nρ).
In particular, for the hash function mentioned above, we have
ρ ≤ 1

1+ε and the algorithm has sub-linear complexity, i.e., the
results can be retrieved in time O(N

1
1+ε ).

III. OVERVIEW

In this section, we summarize the notations and symbols
used in our paper, and give an overview of our approach using
probabilistic collision checking.
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A. Notations and Symbols

We denote the configuration space as C-space, and each
point within the space represents a configuration x. C-space
is composed of two parts: collision-free points (Cfree) and
in-collision points (Cobs). C-space can be non-Euclidean,
but we approximately embed a non-Euclidean space into a
higher-dimensional Euclidean space using the Linial-London-
Robinovich embed (Linial et al. 1995) and then perform k-NN
queries. We use D to denote a set of N configuration points
D = {x1,x2, ...xN} along with their exact collision statuses,
which is an approximation to the exact C-space.

A local path in C-space is a continuous curve that connects
two configurations. It is difficult to compute Cobs or Cfree
explicitly; therefore, sampling-based planners use collision
checking between the robot and obstacles to probe the C-space
implicitly. These planners perform two kinds of queries: the
point query and the local path query. We use the symbol
Q to denote either of these queries. When it is necessary to
distinguish point and line queries, we use p for a point query
and l for a line query.

We use an operator y(·) to denote the exact collision status
(0 for collision-free and 1 for in-collision). In particular, y(x)
is the collision status of a configuration sample x, y(p) is the
collision status of a point query p, and y(l) is the collision
status of a line l. We usually abbreviate y(x) or y(p) by y.
The estimated collision status of a query is computed by a
binary-class classifier c(·).

We denote vec(·) as the vectorization of a given matrix. In
particular, vec(A), the vectorization of an m×n matrix A, is
the mn× 1 column vector which is obtained by stacking the
columns of the matrix A on top of one another:

vec(A) = [a1,1, ..., am,1, a1,2, ..., am,2, ..., a1,n, ..., am,n]T ,

where ai,j represents the (i, j)-th element of matrix A.

B. Probabilistic Collision Checking

Exact collision checking is an important component of
sampling-based motion planners. By providing binary collision
statuses for configuration points or local paths in the config-
uration space, collision checking helps the planners to learn
about the connectivity of C-space, and eventually to compute a
collision-free continuous path connecting the initial and goal
configurations in C-space (Figure 1(a)). The collision query
results can also bias the planner’s sampling scheme through
different heuristics (e.g., retraction rules).

Unlike the exact collision checking algorithm that computes
many collision queries independently, our new probabilistic
collision checking scheme exploits the prior collision infor-
mation accumulated during the planning process, and lever-
ages the spatial correlation between different collision queries
(Figure 1(b)). In particular, after the collision checking routine
finishes probing the C-space for a given query, we add the
obtained information related to this query in a dataset D,
which stores all the historical collision query results during the
planning process. The stored information is a binary collision
status, if the query is a point within C-space, or the collision
statuses of several configuration points along the path, if the
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Fig. 1: The collision detection module in sampling-based planners:
exact collision checking only (a) and our approach with probabilistic
collision checking (b). (a) The collision detection routine is an oracle
used by the planner to gather information about Cfree and Cobs. The
planner performs binary collision queries, either on point configura-
tions or 1-dimensional local paths, and estimates the connectivity of
Cfree (shown as Approximate Cfree). Moreover, some planners leverage
in-collision results to bias sample generation according to different
heuristics. (b) Our method also uses collision queries. However, we
store all in-collision results (as Approximate Cobs) and collision-free
results (as Approximate Cfree). Given a new query, our algorithm
first performs a k-NN query on the given configuration or local path
and then computes a collision probability for this query. The motion
planner then uses the collision probability as a heuristic to guide the
exploration process in the configuration space.

query is a local path. The resulting dataset D constitutes
the complete set of information we know about C-space, all
learned from collision checking routines. Therefore, we use
D as an approximate description of the underlying C-space:
Cobs and Cfree are represented by in-collision samples and
collision-free samples, respectively. We then use these samples
to estimate the collision status for a new query. The estimation
result is in a form of a probability value, i.e., the collision
probability (refer to Section V for details).

Given a new query Q, either a point or a local path, we first
perform k-NN search on the dataset D to find its neighbor
set S. The set S provides a rough description about the
C-space local around the query Q. If S contains sufficient
information to infer the collision status of the query, we
compute a collision probability for the new query according
to S; otherwise, we perform exact collision checking for this
query and the query result is added into D. The calculated
collision probability provides prior information about a given
query’s collision status, which is useful in many ways. First,
some new query configurations or local paths have a neigh-
borhood which is well-sampled by the database, and thus
we can use the collision probability as a culling filter to
avoid the exact (and expensive) collision checking for these
queries. Second, according to the collision probability, we can
decide an efficient order while performing the exact collision
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Fig. 2: Two types of k-NN queries used in our method: (a) point-
point k-NN; (b) line-point k-NN. Q is the query item, and the results
of different queries are shown as hollow circle points in each figure.
We present novel LSH-based algorithms for fast computation of these
queries. (c) The line-point k-NN query is used to compute prior
collision instances that can influence the collision status of a local
path connecting x1 and x2 in C-space. The query line is the line
segment between x1 and x2. The white points are prior collision-
free samples in the dataset, and the black points are prior in-collision
samples.

checking for a set of queries. For instance, many planners
like RRT need to select a local path that can best improve the
local exploration in Cfree, i.e., a local path that is both long and
collision-free. The collision probability can be used to find an
efficient sorting strategy, which thereby reduces the number
of exact collision tests.

There are two types of k-NN queries involving in our
probabilistic collision checking algorithm. One retrieves points
closest to a given point query: this is the well-known k-NN
query, which we call the point-point k-NN query. The second
query tries to find the points that are closest to a given line,
which arises in the context of local path query. We call this
second query the line-point k-NN query. These two types of
k-NN queries are illustrated in Figure 2. For efficiency, both
types of queries are implemented using the locality-sensitive
hashing technique. For point-point k-NN queries, we directly
build on prior LSH results in Section II-C. For line-point k-
NN queries, we will present a new LSH-based algorithm in
Section IV. When the collision result for a new configuration
query is computed, we calculate the hash code for that query
and add it to the hash tables. This operation is performed once
for each item stored in the dataset D.

The notion of having sufficient information about S is
related to how confident we are about our inferences drawn
from S. If the confidence is too small, the algorithm rejects
the results of probabilistic collision queries and performs exact
collision queries instead. We consider two types of rejection
cases: ambiguity rejection and distance rejection (Dubuisson
& Masson 1993). Ambiguity rejection happens when the
collision probability of a given query is nearly 0.5. Distance
rejection happens when the query configuration is far (in terms
of geometric distance) from all prior instances stored in the
database.

An overview of our probabilistic collision framework is
given in Algorithm 1.

IV. LSH-BASED LINE-POINT k-NN QUERY

One of the contributions of this paper is to extend the
LSH formulation to the line-point k-NN query, for efficiently

Algorithm 1: probabilistic-collision-query(D, Q)
begin

if Q is point query then
S ← point-point-k-NN(Q)
if S provides sufficient information for inference then

probabilistic-collision-query(S,Q)

else exact-collision-query(D, Q) ;

if Q is line query then
S ← line-point-k-NN(Q)
if S provides sufficient information for inference then

probabilistic-continuous-collision-query(S,Q)

else exact-continuous-collision-query(D, Q) ;

estimating the collision status of a local path. In comparison
with previous methods for such computations (Andoni et al.
2009, Basri et al. 2011), our line-point k-NN results in a
more compact form. In addition, we also derive LSH bounds
similar to the point-point k-NN, as shown in Theorem 1.
Moreover, we address several issues that arise when using
our algorithm for sampling-based motion planning, such as
handling non-Euclidean metrics and reducing the dimension
of the embedded space.

The simplest algorithm for line-point k-NN query is based
on sampling the line into a sequence of uniformly sampled
points at a fixed resolution, and using point-point k-NN algo-
rithms on each of those sampled points. One major drawback
of such an approach is its efficiency, as we land up performing
a high number of point-point k-NN queries for a given line
or local path. Furthermore, the samples in the database are
typically not distributed in a uniform manner. As a result, it
is hard to compute the appropriate sampling resolution for the
line.

The main issue in terms of using LSH to perform line-
point k-NN query is to embed the line query and the point
dataset into a higher-dimensional space, and then to perform
point-point k-NN queries in that embedded space. First, we
present a technique to perform line-point embedding. Next,
we design hash functions for the embedding and prove that
these hash functions satisfy the locality-sensitive property for
the original data (i.e., D). Finally, we derive the error bound
and time bound for the approximate line-point k-NN query,
which is similar to that given in Theorem 1.

A. Line-point Distance

A line l in Rd is described as l = {a + s ·v}, where a is a
point in Rd on l and v is a unit vector in Rd. The Euclidean
distance of a point x ∈ Rd to the line l is:

dist2(x, l) = (x− a) · (x− a)− ((x− a) · v)2. (2)

Given a database D = {x1, ...,xN} of N points in Rd, the
goal of line-point k-NN query is to retrieve the points from
D that are closest to l. We do not directly use Equation 2 for
line-point k-NN query, because in that form the database item
(i.e., the point) and the query item (i.e., the line) are not well
separated. To accelerate the line-point k-NN using LSH-based
techniques, we convert the distance metric into a form which
is more suitable for efficient k-NN query.
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B. Line-point Embedding: Non-affine Case

We first assume the non-affine line query, i.e., l, passes
through the origin (i.e., a = 0). In this case, dist(x, l) =
x ·x−(x ·v)2, and it can be re-formalized as the inner product
of two (d+ 1)2-dimensional vectors:

dist2(x, l)

= x · x− (x · v)2

= Tr(xT (I− vvT )x)

= Tr(

(
x
t

)T (
I 0

)T
(I− vvT )

(
I 0

)(x
t

)
)

= Tr(
(
I 0

)T
(I− vvT )

(
I 0

)(x
t

)(
x
t

)T
) (3)

= vec(
(
I 0

)T
(I− vvT )

(
I 0

)
) · vec(

(
x
t

)(
x
t

)T
)

= V (v) · V (x),

where I is d × d identity matrix, Tr(·) is the trace of a
given square matrix and t can be any real value; vec(·) is the
vectorization operation. V P (·) is an embedding which yields
a (d+1)2-dimensional vector from d-dimensional point vector

x: V P (x) = vec(

(
x
t

)(
x
t

)T
); V L(·) is an embedding which

yields a (d+ 1)2-dimensional vector from a line l = {sv} in

d-dimensional space: V L(v) = vec(

(
I− vvT 0

0T 0

)
).

In addition, we notice that the Euclidean distance between
the embedding V P (x) and −V L(v) is given by

‖V P (x)− (−V L(v))‖2

= d− 1 + ‖V P (x)‖2 + 2(V P (x) · V L(v))

= d− 1 + (‖x‖2 + t2)2 + 2 dist2(x, l).

(4)

In Equation 4, if the term d − 1 + (‖x‖2 + t2)2 is constant,
then the point-to-line distance dist(x, l) can be formalized
as the distance between two points V P (x) and −V L(v)
in the higher-dimensional embedded space. This is possible
because t is a free variable that can be chosen arbitrarily. In
particular, we choose t as a function of x: t(x) =

√
c− ‖x‖2,

where c > maxx∈D ‖x‖2 is a constant real value related
to the entire database D but independent from each single
item in the database. In this way, Equation 4 reduces to
‖V P (x)− (−V L(v))‖2 = 2 dist2(x, l) + constant.

Until now, we have successfully separated the database
item (i.e., x) from the query item (i.e., l). Next, we can pre-
compute the locality-sensitive hash values for all the database
items (see Section IV-D), which are used for efficient line-
point k-NN computation of any given line queries. Moreover,
this reduction implies that we can reduce the line-point k-
NN query in a d-dimensional database D to a point k-NN
query in a (d+1)2-dimensional embedded database V P (D) =
{V P (x1), ..., V P (xN )}, where the query item corresponds to
−V L(v).

C. Line-point Embedding: Affine Case

Now we consider the case of any arbitrary affine line, i.e.,
a 6= 0. Similarly to Equation 3, there is

dist2(x, l)

= (x− a) · (x− a)− ((x− a) · v)2

= Tr((x− a)T (I− vvT )(x− a))

= Tr(

x
1
t

T (
I −a 0

)T
(I− vvT )

(
I −a 0

)︸ ︷︷ ︸
B

x
1
t

)

= vec(

x
1
t

x
1
t

T

) · vec(B) (5)

= V̂ (x) · V̂ (v,a),

where V̂ P (x) and V̂ L(v,a) are (d+ 2)2-dimensional embed-
dings for a point and line in Rd, respectively. Similarly to
Equation 4, if we choose t(x) =

√
c− x2 − 1, where c >

maxx∈D ‖x‖2 + 1 is a constant related to the entire database
D (i.e., set ‖V̂ P (x)‖2 = c2), then dist2(x, l) also linearly
depends on the squared Euclidean distance between the em-
bedded database and the query item: ‖V̂ P (x)− V̂ L(v,a)‖2 =
c2 + d − 2 + (dist2(0, l) + 1)2 + 2 dist2(x, l). As a result,
we can perform an affine line-point k-NN query based on
a point k-NN query in a (d + 2)2-dimensional database
V̂ P (D) = {V̂ P (x1), ..., V̂ P (xN )}, and the corresponding
query item is −V̂ L(v,a).

The dimension of the embedded space (i.e., (d+1)2 or (d+
2)2) is much higher than the original space (i.e., d), and will
slow down the LSH computation. We present two techniques
to reduce the dimension of the embedded space.

First, notice that the matrices used within vec(·) are sym-
metric matrices. For a d × d matrix A, we can define a
d(d+ 1)/2-dimensional embedding v̂ec(A) as follows

v̂ec(A) = [
a1,1√

2
, a1,2, ..., a1,d,

a2,2√
2
, a2,3, ...,

ad,d√
2

]T . (6)

It is easy to see that ‖ vec(A) − vec(B)‖2 = 2‖v̂ec(A) −
v̂ec(B)‖2 and hence this dimension-reduction will not influ-
ence the accuracy of the line-point k-NN algorithm introduced
above.

Secondly, we can use the Johnson-Lindenstrauss lemma (Li
et al. 2006) to reduce the dimension of the embedded data
by randomly projecting the high-dimensional embedded data
items onto a lower dimensional space. Compared to the first
approach, this method can generate an embedding with lower
dimensions, but according to our experimental results, it may
reduce the accuracy of the line-point k-NN algorithms.

D. Locality-Sensitive Hash Functions for Line-Point Query

We design the hash function ĥ for the line-point query as
follows:{

ĥ(x) = h(V̂ P (x)), x is a database point
ĥ(l) = h(−V̂ L(v,a)), l is a line {a + s · v}, (7)
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where h is a locality-sensitive hash function as defined in
Section II-C. The new hash functions are locality-sensitive for
line-point query, as shown by the following two theorems:

Theorem 2: The hash function family ĥ is (r, r(1 +
ε), p1, p2)-sensitive if h is the hamming hash, (i.e., h = hu),
where p1 = 1

π cos−1( r
2

C ), p2 = 1
π cos−1( r

2(1+ε)2

C ) and C is
a value independent of database point, but is related to the
query. Moreover, 1

(1+ε)2 ≤ ρ = log p1
log p2

≤ 1.
Theorem 3: The hash function family ĥ is (r, r(1 +

ε), p1, p2)-sensitive if h is the p-stable hash, (i.e., h = ha,b),
where p1 = f( W√

2r2+C
) and p2 = f( W√

2r2(1+ε)2+C
) and C

is a value independent of database point, but is related to the
query. The function f is defined as f(x) = 1

2 (1−2 cdf(−x))+
1√
2πx

(e−
1
2x

2 − 1), where cdf(x) =
∫ x
−∞

1√
2π
e−

1
2 t

2

dt is
a cumulative distribution function. Moreover, 1

1+ε ≤ ρ =
log p1
log p2

≤ 1.
The proofs of Theorem 2 and Theorem 3 are provided in

Appendix A and Appendix B.
Similarly to Theorem 1 for point-point k-NN query, we can

compute the error bound and time complexity for line-point
k-NN query as follows:

Theorem 4: (Line-point k-NN query) Let H be a family of
(r, r(1 + ε), p1, p2)-sensitive hash functions, with p1 > p2.
Given a dataset of size N , we set the hash function dimension
M as M = log1/p2 N and choose L = Nρ hash tables,
where ρ = log p1

log p2
. Using H along with L-hash tables over

M -dimensions, given a line query l, with probability at least
1
2 − 1

e , our LSH algorithm solves the (r, ε)-neighbor problem,
i.e., if there exists a point x that dist(x, l) ≤ r(1 + ε), then
the algorithm will return the point with probability ≥ 1

2 − 1
e .

The retrieval time is bounded by O(Nρ).
The proof is given in Appendix C.
Theorem 4, along with Theorem 1, guarantees sub-linear

time complexity when performing k-NN query on the histori-
cal collision results, if hamming or p-stable hashing functions
are applied.

V. PROBABILISTIC COLLISION DETECTION BASED ON
k-NN QUERIES

In this section, we use the LSH-based k-NN query presented
in Section IV to estimate the collision probability for a given
query. Our approach stores the outcome of prior instances of
exact collision queries, including point queries and local path
queries, within a database (shown as Approximate Cfree and
Approximate Cobs in Figure 1(b)). Those stored instances are
used to perform probabilistic collision queries.

A. Collision Status Classifier
Our goal is to estimate the collision probability for a query

point p or a query line l according to the database of previous
collision query results. Based on the collision probability, we
can design a classifier c(·) to predict the collision status of
a given query. The expected prediction error for the classifier
can be defined as

Eerror[c(p) | D]

= y(p) · P[c(p) = 0 | D] + (1− y(p)) · P[c(p) = 1 | D]

and

Eerror[c(l) | D]

= y(l) · P[c(l) = 0 | D] + (1− y(l)) · P[c(l) = 1 | D],

where D, as defined before, is a dataset of N points in Rd
and y(·) provides the exact collision status of p or l.

A classifier is effective at predicting the collision status of
point or line queries, if its prediction error will converge to
zero when the size of database D increases. In other words, an
effective classifier c(·) should have the following properties:

lim
|D|→∞

Eerror[c(p) | D] = 0 or lim
|D|→∞

Eerror[c(l) | D] = 0.

As we will show in Section V-E, if a collision status classi-
fier is effective, our probabilistic collision detection algorithm
can guarantee to converge to the exact collision results, as the
size of the database increases.

B. Effective Classifier for Point Query

Here we give an example implementation of an effective
collision status classifier. Following the previous work on
locally-weighted regression (LWR) (Cohn et al. 1996, Burns
& Brock 2005a), we fit a Gaussian distribution to the region
surrounding a query point and then estimate the probability
for collision, as well as the confidence of the estimation.
The confidence is further used to determine whether there is
sufficient information to infer the collision status of the query,
as discussed in Section V-D.

The first case is the query point, i.e., the task is to compute
the collision status for a sample p in C-space. We first
perform point-point k-NN query to compute the prior collision
instances closest to p. Next, based on the collision status
of the neighboring instances, the collision probability can be
estimated as:

P[c(p) = 1 | D] = E[c(p) | D] = µ2 + ΣT
12Σ

−1
1 (p− µ1),

(8)

and the variance of the estimation can be given as

Var[c(p) | D] (9)

=
Σ2|1

(
∑
i wi)

2

(∑
i

w2
i + F (p)

∑
i

w2
iF (xi)

)
where µ1 =

∑
i wixi∑
i wi

, µ2 =
∑
i wiyi∑
i wi

=
∑

xi∈S\Cfree
wi∑

i wi
,

Σ1 =
∑
i wi(xi−µ1)(xi−µ1)

T∑
i wi

, Σ2 =
∑
i wi(yi−µ2)

2∑
i wi

, Σ12 =∑
i wi(xi−µ1)(yi−µ2)∑

i wi
, Σ2|1 = Σ2 −ΣT

12Σ
−1
1 Σ12, and F (x) =

(x−µ1)TΣ−11 (x−µ1). S is the neighborhood set computed
using point-point k-NN query and yi = y(xi) is the exact col-
lision status of instance xi. wi = e−γ dist(xi,p) is the distance-
tuned weight for each k-NN neighbor xi. The parameter γ
controls the magnitude of the weight wi, which measures the
correlation between the labels of xi and query point p. In
all our experiments, γ is set according to the scale of the
environment (e.g., the diameter of the bounding sphere for
the environment):

1/
√
γ = 0.05 · scale. (10)
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Once the collision probability P[c(p) = 1 | D] is computed,
we can predict p’s collision status using an appropriate thresh-
old t ∈ (0, 1): when P[c(p) = 1 | D] > t, we classify p as
in-collision; otherwise, we classify it as collision-free. This
classifier is effective for any t ∈ (0, 1), because when the size
of D increases, if p is actually in-collision (i.e., y(p) = 1),
more and more points in its neighborhood S will be inside
Cobs, and therefore P[c(p) = 1 | D] converges to 1. Similarly,
P[c(p) = 1 | D] will converge to 0 if p is actually collision-
free. As a result, given a large enough database, the classifier
can always correctly predict the query point’s collision status
and is thus effective.

C. Effective Classifier for Local Path Query

The second case is the line query. The goal of the line query
is to estimate the collision status of a local path in C-space.
We require the local path to lie within the neighborhood of
the line segment l connecting its two endpoints, i.e., the local
path should not deviate too much from l. The first step is
to perform a line-point k-NN query to find the prior point
collision query configurations closest to the infinite line that l
lies on. Next, we need to filter out the points whose projections
are outside the truncated segment of l, as shown in Figure 2(c).
This process might trim down some samples that are very
close to the line, but lie just beyond the segment l along the
axis of the line. Since these samples are isolated from the
line segment by the segment’s two end-points, the collision
status of the segment is independent with the collision status
of these samples, given that the segment’s two end-points are
collision-free. As a result, not considering these samples does
not change the outcome of the line query. Finally, we apply
our inference method (as shown below) on the filtered results,
denoted as S, to estimate the collision probability of the local
path.

One way to compute the collision probability for a line is
to use LWR (Burns & Brock 2005a). The collision probability
can be estimated as:

P[c(l) = 1 | D] = E(c(l) | D] (11)

= µ2 + ΣT
12Σ

−1
1 (NearestPnt(l,µ1)− µ1),

and

Var[c(l) | D] (12)

=
Σ2|1

(
∑
i wi)

2

(∑
i

w2
i + F (NearestPnt(l,µ1))

∑
i

w2
iF (xi)

)
.

where the symbols are as defined in Equation 8 and Equa-
tion 12, except the terms related with wi, which is now defined
as wi = e−γ dist(xi,l). Function NearestPnt(l,x) returns a
point on line segment l that is closest to a point x.

However, the above LWR-based method has some limita-
tions. The main issue is that it can only compute a collision
probability for the entire line. In many cases, we need to know
where the collision is likely to happen on the line (i.e., the first
time of contact (TOC)). We provide an optimization method
for estimating the approximate TOC. In particular, we divide
the line l into I segments and assign each segment, say li,

a label ci to indicate its collision status. We aim to find a
suitable label assignment {c∗i }Ii=1 so that:

{c∗i } = argmin{ci}∈{0,1}I

I∑
i=1

(ci − c′i)2 + κ

I−1∑
i=1

(ci − ci+1)2,

where c′i is the collision status for the midpoint of li estimated
using Equation 8. The term (ci − c′i)

2 constrains the label
assignment to be consistent with point query results, and∑I−1
i=1 (ci − ci+1)2 is a smoothness term, which models the

fact that collision labels for adjacent points are likely to be
the same. Parameter κ adjusts the relative weight between the
consistency term and the smoothness term. The optimization
can be computed efficiently using dynamic programming.
After that, we can estimate the collision probability for the
line as

P[c(l) = 1 | D] = E[c(l) | D] = max
i: c∗i=1

c′i, (13)

and the approximate first time of contact can be given as
mini: c∗i=1 i/I .

Based on the collision probability formulated as above, we
can design a classifier to predict the collision status for a given
line query by using a specific threshold t ∈ (0, 1) to justify
whether the query is in-collision or not. If the query’s collision
probability is larger than t, we return in-collision; otherwise,
we return collision-free. This classifier is also effective for
any t ∈ (0, 1), because when the size of D increases, if l is
in-collision, there always exists one segment li on l whose
collision probability c′i converges to 1 and therefore P[c(l) =
1 | D] will converge to 1. Similarly, if l is collision-free, the
probability will converge to 0.

Remark The collision status classifiers described above are
generative classifiers, i.e., they are constructed after the con-
ditional collision probability is computed. One advantage of
the generative classifier is that it can be used even in a dynamic
environment where the obstacles may change their positions.
However, in our approach, we only need to know the binary
collision status of the query instead of its collision probability.
As a result, we can use effective discriminative classifiers, i.e.,
design a classifier directly from the data. For example, we can
use the weighted average of the query’s neighbors’ collision
status to predict the query’s collision status; then all we need
to learn are those weight factors. Given a large database
of historical data, a discriminative classifier is usually more
robust than a generative classifier. However, the discriminative
classifier is specific to the current database, and the need to
learn a new classifier when the environment changes can be
expensive. The discriminative classifier is thus limited to static
environments.

D. Rejection Rules

When using the methods discussed above to estimate the
collision status for a given point or line query, there must be
sufficient number of data items surrounding the query to give
an estimate with a high level of confidence. Otherwise, we
should reject the estimated collision status and rather perform
exact collision checking on the query.
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Q

(a)

Q

(b)

Fig. 3: Two rejection rules: (a) ambiguity rejection: Q’s estimated
collision probability is near 0.5 or the variance for the estimate is
large; (b) distance rejection: when Q is far from all in-collision and
collision-free database items.

We consider two types of rejection rules (Dubuisson &
Masson 1993): ambiguity rejection and distance rejection.

• Ambiguity rejection happens when the estimated collision
status is ambiguous. For instance, suppose there are the
same number of in-collision points and collision-free
points in the neighborhood of a point query p, and these
points all lie same distance from the query. The collision
probability computed by Equation 8 is 0.5 in this case;
therefore any estimate of the collision status is equivalent
to a random guess. Ambiguity also occurs when the
variance of the estimated collision status (computed by
Equation 9) is large. To determine whether ambiguity
rejection is necessary for a point query p, we measure
the ambiguity as

Amb =
(

min(E[c(p)], 1− E[c(p)])
)2

+ Var[c(p)],

where E[c(p)] and Var[c(p)] are computed according to
Equation 8 and Equation 9. If Amb is larger than a given
threshold Ad, we reject the estimate and perform the exact
collision test.

• Distance rejection happens when the k-NN points for a
given query lie too far away from the query configuration
(in terms of the distance). This is a problem because
our collision status estimator is based on coherency of
nearby points’ or lines’ collision statuses. This distance
rejection happens when the database is nearly empty, or
when the query is in a region not well sampled by current
configuration database. In order to determine whether we
need to perform distance rejection, we compute Dis, the
distance from p to its nearest point. If Dis is larger than
a given threshold Dd (for instance, Dis is ∞ when the
database is empty), we perform the exact collision query.

The two rejection rules are shown in Figure 3. The rejection
rules for a line query are similar.

E. Asymptotic Property of Probabilistic Collision Query

If the classifier used in the probabilistic collision query is
effective, we can prove that the collision status returned by the
probabilistic collision checking module will converge to the
exact collision detection results when the size of the dataset
increases (asymptotically):

Theorem 5: The collision query performed using LSH-
based k-NN will converge to the exact collision detection as
the size of the dataset increases.

Proof: We only need to prove that both the probability of
a false positive (i.e., returns in-collision status when there is in
fact no collision) and a false negative (i.e., returns collision-
free when there is in fact a collision) converges to zero, as the
size of the database increases.

Given a query, we denote its r-neighbor as Br, where r is
the distance between the query and its k-th nearest neighbor.
For a point query, Br is an r-ball around it. For a line
query, Br is the set of all points with distance r to the line
(i.e., a line swept-sphere volume). Let P1 =

µ(Br(1+ε)∩Cobs)

µ(C-space)

and P2 =
µ(Br(1+ε)∩Cfree)

µ(C-space) , which are the probabilities that a
uniform sample in C-space is in-collision or collision-free and
within query’s r(1+ε)-neighborhood. Here µ(·) is the volume
measure. Let N be the size of the database corresponding to
the prior instances.

A false negative occurs if and only if the following two cases
are true: 1) there are no in-collision points within Br(1+ε),
and therefore the probabilistic method always returns collision-
free; 2) there are in-collision points within Br(1+ε), but the
classifier predicts wrong label.

First, we compute the probability for case 1. The event
that there are no in-collision points within Br(1+ε) happens
either when no dataset point lies within Br(1+ε) or when there
exist some points within that ball which are missed due to the
approximate nature of LSH-based k-NN query. According to
Theorem 1, we have

P[case 1]

=

N∑
i=0

(
N

i

)
(1− P1)N−iP i1(1− (1/2− 1/e))i

= (1− P1(1/2− 1/e))N → 0 (as N →∞).

Case 2 can occur when case 1 does not happen and the
classifier gives the wrong results. However, as the classifier is
effective, we have

P[case 2]

= (1− P[case 1]) · Perror[x or l in-collision;D]

= (1− P[case 1]) · Eerror[c(x) or c(l) | D]

→ 0 (as N →∞).

As a result, we have

P[false negative] = P[case 1] + P[case 2]→ 0 (as N →∞).

Similarly, a false positive occurs if there are no collision-
free points within Br(1+ε) or if there are collision-free points
within Br(1+ε) but the classifier still predicts a wrong label.
The probability of case 1 can be given as

P[case 1] = (1− P2(1/2− 1/e))N

and the probability of case 2 is

P[case 2] = (1− P[case 1]) · Perror[x or l collision free;D]

= (1− P[case 1]) · Eerror[c(x) or c(l) | D].
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Both terms converge to zero when the size of the database
increases. As a result, we can conclude that the false positive
also converges to 0:

P[false positive] = P[case 1] + P[case 2]→ 0 (as N →∞).

Remark Note that the convergence of the collision query
using LSH-based k-NN query is slower than that using the
exact k-NN based method, whose prediction errors can be
given as: P[false negative] = (1−P1)N and P[false positive] ≤
(1− P2)N .

Remark The fact that the probability of getting false negative
(or false positive) converges to 0 is true if and only if P1 (or
P2) is not 0. Usually we assume that real world obstacles are
compact and therefore obstacles in C-space are also compact.
Thus, if a configuration is collision-free, there is an open
set surrounding it that is collision-free as well and therefore
P2 > 0. However, a configuration in-collision (i.e., inside a
contact set) does not necessarily have a positive P1 (i.e., P1

may be zero). As these kinds of ‘bad’ configurations are of
zero measure, our proof of Theorem 5 still holds.

VI. ACCELERATING SAMPLING-BASED PLANNERS

In this section, we first discuss techniques to accelerate
various sampling-based planners using our probabilistic col-
lision query, including 1) how the database is constructed
and maintained; 2) how to accelerate various planners; 3)
how to handle dynamic environments; 4) how to combine
these techniques with non-uniform sampling techniques. Next,
we analyze the factors that can influence the performance
of resulting planners using our probabilistic collision queries.
Finally, we prove the completeness and optimality of modified
sampling-based planners.

A. Database Construction

When the planner thread starts, the database of prior colli-
sion query results is empty. Given a point query, we first com-
pute its k-nearest neighboring points S. Based on S, we check
whether distance rejection is necessary. If so, we perform
exact collision test and add the query result into the database.
Otherwise, we estimate the query’s collision probability and
the confidence of our estimate, using approaches discussed in
Section V. Next, we check for ambiguity rejection. Based on
the outcome of ambiguity rejection, we may again perform
exact collision query and add the result to the database; or the
estimated collision result can be directly used by a sampling-
based planner. When a local path query is given, the processing
pipeline is similar, except that when performing exact collision
checking of the local path, a series of point configurations
on the local path are added to the database. In summary, we
perform exact collision tests only for queries that are located
within regions that are not well covered by the current database
D; the resulting query results are added into D. Later, in
Section VI-B, we verify the collision status of a query using
exact collision test when it is estimated as collision-free. This
test is performed to guarantee the overall motion planning

algorithm to be conservative. However, such queries are not
added to the database.

Next, we discuss the efficiency of operations on the LSH-
based database, which is implemented as a hash table. The
hash table starts out empty, so there is no pre-processing
overhead. When we decide to add the result for a collision
query x into the database, we first compute its hashing code
ĥ(x) and then add it into the hash table. This step’s complexity
remains constant. After warm-up, we begin performing k-NN
query on the hash table, which has the complexity O(Nρ) (all
symbols are as defined in Theorem 4). After adding N items
into the hash table and performing

∼
N probabilistic collision

queries, the overall complexity of the database operations
becomes O(N+

∼
N ·Nρ). Note that the number of all collision

queries is larger than max(N,
∼
N); therefore the amortized

computational overhead on each collision query is O(1).

B. Accelerating Various Planners

Algorithm 1 highlights our basic approach to apply the
probabilistic collision query: we use the computed collision
probability as a filter to reduce the number of exact collision
queries. If a given configuration or local path query is close
to in-collision instances, then it has a high probability of
being in-collision. Similarly, if a query has many collision-
free instances around it, it is likely to be collision-free. In our
implementation, we cull away only those queries with high
collision probabilities. For queries with high collision-free
probability, we still perform exact collision tests on them in
order to guarantee that the overall collision detection algorithm
is conservative. In Figure 4(a), we show how our probabilistic
culling strategy can be integrated with the PRM algorithm
by only performing exact collision checking (collide) for
queries with collision probability (icollide) larger than a
given threshold t. Note that the neighborhood search routine
(near) can use LSH-based point-point k-NN query. icollide
is computed according to Equation 8 or Equation 11.

In Figure 4(b), we show how to use the collision probability
as a cost function with the lazyPRM algorithm (Kavraki
et al. 1996). In the basic version of lazyPRM algorithm, the
expensive local path collision checking is delayed till the
search phase. The basic idea is that the algorithm repeatedly
searches the roadmap to compute the shortest path between the
initial and goal nodes, performs collision checking along the
edges, and removes the in-collision edges from the roadmap.
However, the shortest path usually does not correspond to
a collision-free path, especially in complex environments.
We improve the lazyPRM planner using probabilistic colli-
sion queries. We compute the collision probability for each
roadmap edge during roadmap construction, based on Equa-
tion 13. The probability (w) as well as the length of the
edge (l) are stored as costs of the edge. During the search
step, we try to compute the shortest path with a minimum
collision probability, i.e., a path that minimizes the cost∑
e l(e) + λmine w(e), where λ is a parameter that controls

the relative weight of path length and collision probability. As
the prior knowledge about obstacles is implicitly taken into
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A. Database Construction

When the planner thread starts, the database of prior colli-
sion query results is empty. Given a point query, we first com-
pute its k-nearest neighboring points S. Based on S, we check
whether distance rejection is necessary. If so, we perform
exact collision test and add the query result into the database.
Otherwise, we estimate the query’s collision probability and
the confidence of our estimate, using approaches discussed in
Section V. Next, we check for ambiguity rejection. Based on
the outcome of ambiguity rejection, we may again perform
exact collision query and add the result to the database; or the
estimated collision result can be directly used by a sample-
based planner. When a local path query is given, the processing
pipeline is similar, except that when performing exact collision
checking of the local path, a series of point configurations
on the local path are added to the database. In summary, we
perform exact collision tests only for queries that are located
within regions that are not well covered by the current database
D; the resulting query results are added into D. Later, in
Section VI-B, we verify the collision status of a query using
exact collision test when it is estimated as collision-free. This
test is performed to guarantee the overall motion planning
algorithm to be conservative. However, such queries are not
added to the database.

Next, we discuss the efficiency of operations on the LSH-
based database, which is implemented as a hash table. The
hash table starts out empty, so there is no pre-processing
overhead. When we decide to add the result for a collision
query x into the database, we first compute its hashing code
ĥ(x) and then add it into the hash table. This step’s complexity
remains constant. After warm-up, we begin performing k-NN
query on the hash table, which has the complexity O(Nρ) (all
symbols are as defined in Theorem 4). After adding N items
into the hash table and performing M probabilistic collision
queries, the overall complexity of the database operations
becomes O(N+M ·Nρ). Note that the number of all collision
queries is larger than max(N,M); therefore the amortized
computational overhead on each collision query is O(1).

B. Accelerating Various Planners

Algorithm 1 highlights our basic approach to apply the
probabilistic collision query: we use the computed collision
probability as a filter to reduce the number of exact collision
queries. If a given configuration or local path query is close
to in-collision instances, then it has a high probability of
being in-collision. Similarly, if a query has many collision-
free instances around it, it is likely to be collision-free. In our
implementation, we cull away only those queries with high
collision probabilities. For queries with high collision-free
probability, we still perform exact collision tests on them in
order to guarantee that the overall collision detection algorithm
is conservative. In Figure 4(a), we show how our probabilistic
culling strategy can be integrated with the PRM algorithm
by only performing exact collision checking (collide) for
queries with collision probability (icollide) larger than a
given threshold t. Note that the neighborhood search routine

sample(Dout, n)
V ← D ∩ Cfree, E ← ∅
foreach v ∈ V do

U ← near(GV,E , v,Din)
foreach u ∈ U do

if icollide(v, u,Din) < t
if ¬collide(v, u,Dout)

E ← E ∪ (v, u)

near: nearest neighbor search.
icollide: probabilistic collision checking based on k-NN.
collide: exact local path collision checking.
Din/out: prior instances as input/output.

(a) I-PRM

sample(Dout, n)
V ← D ∩ Cfree, E ← ∅
foreach v ∈ V do

U ← near(GV,E , v,Din)
foreach u ∈ U do
w ← icollide(v, u,Din)
l ← �(v, u)�
E ← E ∪ (v, u)w,l

do
search path p on G(V,E) which minimizes�

e l(e) + λmine w(e).
foreach e ∈ p, collide(e,Dout)

while p not valid

(b) I-lazyPRM

V,D ← xinit , E ← ∅
while xgoal not reach

xrnd ← sample-free(Dout, 1)
xnst ← inearst(GV,E , xrnd,Din)
xnew ← isteer(xnst, xrnd,Din,out)
if icollide(xnst, xnew) < t

if ¬collide(xnst, xnew)
V ← V ∪ xnew, E ← E ∪ (xnew, xnst)

inearest: find the nearest tree node that has high collision-free probability.
isteer: steer from a tree node to a new node, using icollide for validity checking.

(c) I-RRT

V,D ← xinit , E ← ∅
while xgoal not reach

xrnd ← sample-free(Dout, 1)
xnst ← inearst(GV,E , xrnd,Din)
xnew ← isteer(xnst, xrnd,Din,out)
if icollide(xnst, xnew) < t

if ¬collide(xnst, xnew)
V ← V ∪ xnew
U ← near(GV,E , xnew)
foreach x ∈ U , compute weight c(x) =
λ�(x, xnew)� + icollide(x, xnew,Din)

sort U according to weight c.
Let xmin be the first x ∈ U with ¬collide(x, xnew)
E ← E ∪ (xmin, xnew)
foreach x ∈ U , rewire(x)

inearest: find the nearest tree node that has high collision-free probability.
isteer: steer from a tree node to a new node, using icollide for validity checking.
rewire: RRT∗ routine used to update the tree topology for optimality guarantee.

(d) I-RRT∗

Fig. 4: Our probabilistic collision checking module can improve
a wide variety of motion planners. Here we present four modified
planners as example.

Fig. 4: Our probabilistic collision checking module can improve
a wide variety of motion planners. Here we present four modified
planners as example.

account based on collision probability, the resulting path is
more likely to be collision-free.

Finally, the collision probability can be used by the motion
planner to explore Cfree in an efficient manner. We use RRT
to illustrate this benefit (Figure 4(c)). Given a random sample
xrnd, RRT computes a node xnst among the prior collision-
free configurations that are closest to xrnd and expands from
xnst towards xrnd. If there is no obstacle in C-space, this
exploration technique is based on the Voronoi heuristic that
biases the planner towards the unexplored regions. However,
the existence of obstacles affects its performance: the planner
may run into Cobs shortly after expansion, and the resulting
exploration is limited. Using the k-NN based inference, we can
estimate the collision probability for local paths connecting
xrnd with each of its neighbors and choose xnst as the one with
both a long edge length and a small collision probability (i.e.,
xnst = argmax(l(e)− λ · w(e)), where λ is a parameter used
to control the relative weight of these two terms). A similar
strategy can also be used for RRT∗, as shown in Figure 4(d).

C. Narrow Passages and Non-uniform Samples
Narrow passages are a key issue for sampling-based motion

planners. In general, it is difficult to generate enough number
of samples in the narrow passages and capture the connectivity
of the free space. Narrow passages can lead to some additional
issues in terms of the collision status classifier presented
in SectionV-B. In narrow passages, a collision-free query
point configuration can be wrongly classified as in-collision,
as shown in Figure 5. This is because the collision status
inference algorithm assumes the spatial coherency about the
collision status, i.e., nearby samples in the C-space tend to have
the same collision status. However, such spatial coherency
may not work in the regions around narrow passages and this
may reduce the accuracy of collision status estimated via the
inference algorithm. This reduced accuracy can also decrease
the performance of the sampling-based planner in narrow
passages. If a random planner can indeed generate a free-space
sample in the narrow passage, the inference algorithm may
incorrectly classify it as in-collision and may not add it to the
database D and the roadmap/tree-structure computed by the
planner. As a result, the planner may not be able to capture the
connectivity of the space correctly around that narrow passage.

Q

Fig. 5: Q is a collision-free query point configuration inside the
narrow passage, but the collision status classifier may estimate it as
in-collision, because all its nearby samples in the database (shown as
black dots) are all in-collision.

One solution to address this problem is to perform a double
check on a query’s collision status occasionally using exact
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collision test, even when the inference algorithm estimates
the query to have a large collision probability. In particular,
suppose the estimated collision probability of a query is p,
where p ∈ (0.5, 1], then with a probability of max(1− p, ps),
we check the exact collision status of the query, where ps is a
small value (e.g., 0.01). In practice, this occasional verification
strategy works well on narrow passage benchmarks and pro-
vides a good trade-off between efficiency and completeness.

However, for some narrow passages with small expan-
siveness, defined based on the criteria in (Hsu et al. 1997),
this occasional verification with an exact collision test can
slowdown the process of generating sufficient number of
samples in the narrow passages, which affects the perfor-
mance of probabilistic collision checking. In order to handle
challenging narrow passage scenarios, we combine the non-
uniform sampling strategies used in different sampling-based
planners (Boor et al. 1999, Rodriguez et al. 2006, Sun et al.
2005) with our probabilistic collision query to quickly generate
more narrow passage samples in the database D and the
planner’s roadmap. In particular, with a probability of 1− ps,
we perform uniform sampling using probabilistic collision
checking; with a probability of ps, we perform non-uniform
sampling with exact collision checking to increase the number
of samples in the narrow passages. The samples generated by
non-uniform sampling are directly added into the database and
are used later by the inferencing algorithm.

D. Performance Analysis

The modified planners are faster, mainly because we replace
some of the expensive, exact collision queries with relatively
cheap k-NN queries. Let the timing cost for a single exact
collision query be TC and for a single k-NN query be TK ,
where TK < TC . Suppose the original planner performs C1

collision queries and modified planners performs C2 collision
queries and C1 −C2 k-NN queries, where C2 < C1. We also
assume that the two planners spend the same time A on other
computations within a planner, such as sample generation,
maintaining the roadmap or the tree structure, etc. Then the
speedup ratio obtained by the modified planner is:

R =
TC · C1 +A

TC · C2 + TK · (C2 − C1) +A
. (14)

Therefore, if TC � TK and TC · C1 � A, we have R ≈
C1/C2, i.e., if the higher number of exact collision queries are
culled, we can obtain a higher speedup. The extreme speedup
ratio C1/C2 may not be reached, however, for two reasons.
1) TC · C1 � A may not hold, such as when the underlying
collision-free path solution lies in some narrow passages (A
is large) or in open spaces (TC ·C1 is small); or 2) TC � TK
may not hold, such as when the environment and robot have
low geometric complexity (i.e., TC is small) or the instance
dataset is large and the cost of the resulting k-NN query is
high (i.e., TK is large).

Note that R is only an approximation of the actual ac-
celeration ratio. It may overestimate the speedup, because
a collision-free local path may have a collision probability

higher than a given threshold; our probabilistic collision ap-
proach filters such high probabilities out. If such a collision-
free local path is critical for the connectivity of the roadmap,
such false positives due to the probabilistic collision checking
module will cause the resulting planner to perform more
exploration, and thereby increases the overall planning time.
As a result, we need to choose an appropriate threshold that
can provide a balance: we need a large threshold to filter out
more collision queries and increase R; at the same time, we
need to use a small threshold to reduce the number of false
positives. However, the threshold choice is not important in the
asymptotic sense. According to Theorem 5, the false positive
error converges to 0 when the database size increases.
R may also underestimate the actual speedup, because the

timing cost for different collision queries can be different. For
configurations near the boundary of Cobs, the collision queries
are more expensive. Therefore, the timing cost of checking
the collision status for an in-collision local path is usually
larger than that of checking a collision-free local path, because
the former always has one configuration on the boundary of
Cobs. As a result, it is possible to obtain a speedup larger than
C1/C2.

E. Completeness and Optimality

As a natural consequence of Theorem 5, we can prove the
probabilistic completeness and optimality of the new planners.
To avoid the narrow passage problems, while discussing the
new planners’ completeness, we assume that they apply the
heuristics mentioned in Section VI-C. In other words, we
assume ps > 0 in order to guarantee that the critical samples
in the narrow passage will not be filtered out by mistake.

Theorem 6: I-PRM and I-lazyPRM are probabilistically
complete. I-RRT∗ is probabilistically complete and asymptot-
ically optimal.

Proof: A motion planner MP is probabilistically complete
if its failure probability, i.e., when a collision-free path exists,
the probability that it cannot find a solution after N samples
converges to 0 when the number of samples N increases:
limN→∞ P[MP fails] = 0, where [MP fails] denotes the event
that the motion planner fails to find a solution after N samples,
when the solution exists.

Suppose we replace MP’s exact collision detection query by
the probabilistic collision query and denote the new planner
as I-MP. I-MP can fail in two cases: 1) MP fails; 2) MP
computes a solution but some edges on the collision-free path
are classified as in-collision by our collision status inference
algorithm (i.e., false positives). Let L be the number of edges
in the solution path and let Ei denote the event that the i-th
edge is incorrectly classified as in-collision. As a result, we
have

P[I-MP fails]

= P[MP fails] + (1− P[MP fails]) · P[

L⋃
i=1

Ei]

≤ P[MP fails] +

L∑
i=1

P[Ei].
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Similar to [MP fails], the event [I-MP fails] denotes the event
that the new motion planner fails to find a solution after N
samples, when the solution exists. According to Theorem 5,
limN→∞ P[Ei] = 0 and L is a finite number, then we
have limN→∞ P[I-MP fails] = 0, i.e., I-MP is probabilisti-
cally complete. Therefore, as PRM, lazyPRM and RRT∗ are
all probabilistically complete, we can prove that I-PRM, I-
lazyPRM and I-RRT∗ are all probabilistically complete.

Similarly, if MP is asymptotically optimal, then I-MP may
not converge to the optimal path only when some of the
path edges are classified as in-collision by the collision status
inference algorithm and this probability converges to zero. As
a result, I-RRT∗ is asymptotically optimal.

We did not include I-RRT in the above theorem, because
the theorem and its proof may not directly apply to I-RRT.
In particular, the proof implicitly requires the motion planner
to converge to a solution that is independent of the order of
the samples. Such requirement is satisfied by roadmap-based
approaches such as PRM and lazyPRM, and is also satisfied
by asymptotically optimal algorithms such as RRT∗. However,
RRT has the characteristic that the order of the samples can
make a difference in terms of probabilistic completeness guar-
antees. Since our probabilistic collision checking can change
the generating order of the samples in the free configuration
space, the collision-free samples in the I-RRT tree may be
added in some particular sequences that cannot guarantee
probabilistic completeness. In particular, in Figure 4(c), the
I-RRT tree may choose to extend from a node xnst that is
not closest to the random xrnd, because the actual nearest
node may have a higher collision probability. This variant in
adding new samples in the I-RRT algorithm may break one of
the properties of the original RRT algorithm: for any sample
in the free configuration space, its distance to the RRT tree
will converge in probability to zero (Lemma 2 in (Kuffner &
LaValle 2000)). This property implies that the RRT tree would
cover the entire free space in the limit, and is important for
proving the probabilistic completeness of RRT. In order to
prove the probabilistic completeness of I-RRT, we either need
to show that this property still holds for I-RRT, or we need to
find other methods to directly prove that the I-RRT tree will
eventually cover the entire free configuration space.

Even though we are unable to guarantee the probabilistic
completeness of I-RRT, our current implementation of I-RRT
works well in our benchmarks as shown in Table II and
Table III. This is probably due to the fact that the randomness
of our probabilistic checking algorithm ensures that such
pathological cases of sequences do not arise in our current
benchmarks. As a result, in most cases I-RRT should work
well.

F. Speed and Completeness

The performance improvement in the new sampling-based
planners is achieved by using cheaper hash table-based prob-
abilistic collision queries to replace the expensive exact colli-
sion checking queries. In order to guarantee probabilistic com-
pleteness, we need to optionally check the false positive errors
of probabilistic collision checking and/or use non-uniform

sampling to overcome the difficulty in narrow passages, as
discussed in Section VI-C. This implies that to guarantee
probabilistic completeness, we need to perform extra tests
which actually degrade the runtime performance of our motion
planner. As a result, we have a tradeoff between runtime
efficiency and guarantees of probabilistic completeness. In
particular, when a planner is slow in terms of making progress
towards the goal configuration, which is probably due to
narrow passages, we set a higher priority for completeness and
increase the probability to use the narrow passage sampling
strategy discussed in Section VI-C; when a planner is moving
quickly towards the goal position, which implies open spaces
with good visibility, we set a higher priority for efficiency and
decrease the probability of using the narrow passage sampling
strategy.

VII. RESULTS AND DISCUSSIONS

In this section, we highlight the performance of sampling-
based planners with the probabilistic collision checking mod-
ule. Figure 6 and Figure 7 show the articulated PR2 and
rigid body benchmarks we used to evaluate the performance.
We evaluate each planner on different benchmarks. For each
combination of planner and benchmark we ran 50 instances
of the planner, and computed the average planning time as an
estimate of the planner’s performance on this benchmark. The
algorithm is implemented in C++ and all the experiments are
performed on a PC with an Intel Core i7 3.2GHz CPU with
2GB memory. The exact collision tests are performed using
FCL collision library (Pan et al. 2012b).

A. Pipeline and Results

While using the probabilistic collision checking module, the
planners have a ‘cold start’, i.e., they start with an empty
database of prior collision query results, which means that they
have no knowledge about the environment in the beginning. As
a result, during the first few queries performed by sampling-
based planner, the probabilistic collision framework will find
that it does not have sufficient information to predict the
collision status of a given configuration or a local path. In these
cases, we end up using exact collision checking algorithms.
During this phase, the modified planner will behave exactly the
same as the original planner, except that the results from exact
collision queries will be stored in the database. This process
is called the ‘warm up’ of the modified planning framework.
After several planning queries, there will be enough informa-
tion in the database about C-space to perform inference, and
the acceleration brought by the probabilistic collision checking
method begins to counteract its overhead during the following
queries.

The comparison results are shown in Table II and Table III,
corresponding to PR2 benchmarks and rigid body benchmarks,
respectively. Based on these benchmarks, we observe that:
• The usage of probabilistic collision checking module re-

sults in more planning speedup on articulated models than
on rigid body benchmarks. Exact collision checking on
articulated models is more expensive than exact collision
checking on rigid models, because for articulated models
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we need to compute self-collision as well as check for
collisions between each component of the body and each
obstacle in the environment. This makes TC larger and
results in larger speedups.

• The speedup of I-PRM over PRM is relatively large,
since exact collision checking takes a significant fraction
of overall time within PRM algorithm. I-lazyPRM also
provides good speedup as the candidate path is nearly
collision-free and can greatly reduce the number of exact
collision queries in lazy planners. The speedups of I-
RRT and I-RRT∗ are limited or can even be slower than
the original planners, especially on simple rigid body
benchmarks.

• On benchmarks with narrow passages, our approach does
not increase the probability of finding a solution. How-
ever, probabilistic collision checking is useful in culling
some of the colliding local paths.

• The variance of planning time does not change much
between modified planners and the corresponding original
planners.

On most benchmarks in Table II and Table III, the per-
formance improvement of leveraging the probabilistic colli-
sion checking is higher on multi-query planners (PRM and
lazyPRM) than single-query planners (RRT and RRT∗). This
difference in performance is due to the different sampling
criteria used in single query v.s. multi-query planners. While
multi-query planners like PRM and lazyPRM tend to construct
a roadmap with many samples to cover the free space, single-
query planners only generate samples that are just enough to
find a solution trajectory connecting the initial and goal. As
a result, in the beginning stage of a single-query planner, the
probabilistic collision checking may result in a high number of
false positives due to the lack of sufficient number of samples
in the database, which will degrade the performance of single-
query planners.

We also observe that on several benchmarks without narrow
passages (i.e., “apartment” and “easy” in Table III), I-RRT and
I-RRT∗ can even result in worse performance, as compared
to RRT and RRT∗, respectively. Such reduced performance
occurs due to the following reasons. First, the original RRT
and RRT∗ planners are already quite efficient on these easy
benchmarks, while the database operations in the k-NN in-
ference framework result in computational overhead. Second,
both RRT and RRT∗ are single-query planners and thus the
probabilistic collision checking may result in a high number
of false positives.

On benchmarks with narrow passages (i.e., “flange” and
“torus” in Table III), I-RRT and I-RRT∗ can always find a
solution, and are more efficient than the original planners RRT
and RRT∗, respectively. This is because single-query planners
need to generate a sufficient number of samples in the free
space to capture the connectivity of the region around the
narrow passages. The large number of samples is important
for the performance of I-RRT and I-RRT∗. First, it decreases
the probabilistic collision checking’s false negative rate around
the narrow passages, and this is crucial for I-RRT and I-RRT∗

to find a solution in narrow passages. Second, it results in
a large speedup ratio as defined in Equation 14, because the

time cost of large number of exact collision checking makes
the overhead of database operations negligible.

We also analyze the accuracy of our collision status es-
timation algorithm in Figure 8. For databases of different
sizes, we compute the average inference accuracy on 100
point queries or local path queries. If an ambiguity rejection
or a distance rejection happens for a query, we measure the
inference accuracy for this query as 0.5 because any estimate
is no better than random guess, and we in fact perform exact
collision checking on such samples. This explains why the
inference accuracy is 0.5 when the database is empty. From
the result, we can see the inference accuracy increases when
the database becomes larger.

As the planners with our probabilistic collision checking
use a ‘cold start’, we need to point out that the acceleration
results in Table II and Table III demonstrate only part of the
speedups that can be obtained using our approach. As more
collision queries are performed and their results are stored in
the dataset, the resulting planner has more information about
Cobs and Cfree, and becomes more efficient in terms of culling.
Ideally, we can filter out all in-collision queries and obtain a
high speedup. In practice, we do not achieve ideal speedups
due to two reasons: 1) we only have a limited number of
samples in the dataset; 2) the overhead of the k-NN query
increases as the dataset size increases. As a result, when we
perform the global motion planning computation repeatedly,
the planning time will first decrease to a minimum, and then
increase. This phenomenon is shown in Figure 9.

To alleviate the downgrading of the planner’s performance
while the database size increases, our solution is only adding
query results that have a potential to be useful. For instance,
if a query configuration is near the boundary of Cobs, then
there would be similar number of in-collision and collision-
free samples in its k-nearest neighbors (Figure 3(a)), and hence
the ambiguity rejection tends to happen and the query will
be added into the database D after exact collision test. This
implies that D has a bias for points near boundaries. However,
such points may not be useful if the sampling density around
an obstacle is already high. As a result, we can choose to avoid
adding such configurations to the database, when its distance
to the farthest k-NN neighbor is smaller than a given threshold.
The result of this strategy is shown in Figure 10. It is obvious
that average planning time first decreases and is unchanged
after that. Our current way of choosing which configurations
to incorporate into the database is a heuristic. In the future, it
would be worthwhile to use more sophisticated approaches
such as (Persson & Sharf 2014), which used the concept
of information gain to evaluate a configuration’s potential
usefulness for the motion planning.

Our approach is also memory efficient. In practice, the
memory consumed by our modified motion planners is about
2-3 times more (due to the database) than the original planners.

Sensitivity Analysis for Parameters: We also perform
a simple sensitivity analysis for parameters γ and t of the
collision status classifiers. For other parameters, we use their
default values, i.e., the occasional verification parameter ps in
Section VI-C would be 0.01, the ambiguity rejection parameter
Ad in Section V-D would be 0.2, and the distance rejection
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t γ Ad Dd ps
0.2 1

(0.05·scale)2 0.2 0.1 · scale 0.01

TABLE I: The default values for parameters used in our experiments.
Some parameters (γ and Dd) are related with the scene scale and thus
vary among different benchmarks.

Fig. 6: PR2 planning benchmarks: robot arms with different colors
show the initial and goal configurations. The first three benchmarks
are of the same environment, but the robot’s arm is in different places:
(a) moves arm from under desk to above desk; (b) moves arm from
under desk to another position under desk; and (c) moves arm from
inside the box to outside the box. In the final benchmark, the robot
tries to move arm from under a shelf to above it. The difficulty order
of the four benchmarks is (c) > (d) > (b) > (a). These planning
problems are for PR2’s 7-DOF robot arm.

parameter Dd in Section V-D would be 10% of the scene
scale. As we discussed in Section V-A, γ is used to adjust the
contribution of each k-NN sample in the final collision status
estimation, and t measures the planner’s confidence about the
results computed using estimation. Different settings of these
two parameters will change the probabilistic collision checking
result and eventually influence the planning behavior. In our
sensitivity test, we deviate these parameters ±20% from the
default values used in our experiments, where the default value
for γ is as defined in Equation 10 and the default value of t is
0.2. We find such deviation does not change the success/failure
of the planning algorithms, and the change to the planner’s
timing performance is within ±10%.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we use probabilistic collision checking to
improve the performance of sampling-based motion planners.
The basic idea is to store the prior collision results as an
approximate representation of Cobs and Cfree, and to replace
the expensive exact collision detection query by a relatively
cheap probabilistic collision query. We integrate probabilistic
collision routines with various sampling-based motion plan-
ners and observe 30% to 2x speedup on rigid and articulated
robots.

There are many avenues for future work. First, we need to
find methods to adjust LSH parameters adaptively so that the
k-NN query becomes more efficient for varying dataset sizes.

Fig. 7: Rigid body planning benchmarks: from left to right,
apartment, cubicles, easy, flange and torus. Apartment benchmark
tries to move the piano to the hallway near the door entrance; in
cubicles benchmark, the robot moves through a simple office-like
environment where the robot needs to fly through the basement;
both flange and torus benchmarks contain narrow passages. These
problems are with 6 DOFs.
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Fig. 8: The accuracy result for benchmark shown in Figure 6(a).
For databases of different sizes, we compute the average accuracy on
100 point queries or local path queries. If an ambiguity rejection or
a distance rejection happens for a query, we measure its accuracy as
0.5 because any estimate is no better than random guess, and we in
fact perform exact collision checking on such samples. This is why
the accuracy is 0.5 when the database is empty.

One possible way is to change L (the number of hash tables),
because a small L may provide sufficient k-NN candidates
for a large dataset. Secondly, for samples in regions that are
well-explored, we should avoid inserting collision results into
the dataset in order to limit the dataset size. For instance, we
can choose to only add samples that have large information
gain (Persson & Sharf 2014). In addition, the probabilistic
collision query can also be used for developing learning
algorithms for motion planning (Pan et al. 2012a). Since prior
collision results are stored in hash tables, we can efficiently
update this data without high overhead. Therefore, we may
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PRM I-PRM lazyPRM I-lazyPRM RRT I-RRT RRT∗ I-RRT∗

(a) 12.78/0.49 9.61/1.15 (32%) 1.2/0.54 0.87/0.43 (37%) 0.96/0.34 0.75/0.35 (28%) 1.12/0.5 1.01/0.52 (11%)
(b) 23.7/6.25 12.1/4.3 (96%) 1.7/1.08 0.90/0.64 (88%) 1.36/0.85 0.89/0.46 (52%) 2.08/1.46 1.55/0.75 (34%)
(c) fail fail fail fail 4.15/2.23 2.77/1.18 (40%) 3.45/2.12 2.87/1.53 (20%)
(d) 18.5/8.3 13.6/6.62 (36%) 2.52/0.82 1.06/0.69 (37%) 7.72/2.96 5.33/1.81 (44%) 7.39/4.45 5.42/3.25 (36%)

TABLE II: Performance comparison of different combinations of planners and PR2 benchmarks (in seconds). We show both the average
time and the standard deviation (average time/standard deviation). ‘Fail’ means all the queries cannot find a collision-free path within 1, 000
seconds. The percentage in the brackets shows the speedup obtained while using our modified planners. The benchmarks (c) and (d) contain
narrow passages.

PRM I-PRM lazyPRM I-lazyPRM RRT I-RRT RRT∗ I-RRT∗

apartment 5.25/0.81 2.54/0.65 (106%) 2.8/0.32 1.9/0.23 (47%) 0.09/0.12 0.10/0.11 (-10%) 0.22/0.16 0.23/0.14 (5%)
cubicles 3.92/0.66 2.44/0.51 (60%) 1.62/0.57 1.37/0.43 (19%) 0.89/0.52 0.87/0.44 (2%) 1.95/0.83 1.83/0.91 (7%)

easy 7.90/1.02 5.19/0.86 (52%) 3.03/1.12 2.01/0.94 (50%) 0.13/0.59 0.15/0.55 (-13%) 0.26/0.17 0.27/0.15 (-4%)
flange fail fail fail fail 48.47/25.43 25.6/11.17 (88%) 46.07/20.52 26.9/11.67 (73%)
torus 31.52/4.3 23.3/3.5 (39%) 4.16/0.91 2.75/0.88 (51%) 3.95/1.12 2.7/0.93 (46%) 6.01/2.1 4.23/1.65 (42%)

TABLE III: Performance comparison of different combinations of planners and rigid body benchmarks (in seconds). We show both the
average time and the standard deviation (average time/standard deviation). ‘Fail’ means all the queries cannot find a collision-free path
within 1, 000 seconds. The percentage in the brackets shows the speedup obtained while using our modified planners. Both flange and torus
benchmarks contain narrow passages.
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Fig. 9: The time taken by I-PRM when it runs more than 100 times
on the benchmark shown in Figure 6(a). The planning time of a
single query first decreases and then increases. The best acceleration
acquired is 12.78/7.5 = 70%, larger than the 32% in Table II.

be able to extend our approach to improve the performance
of motion planning algorithms in dynamic environments. In
particular, we divide the workspace into a set of grids. For
each grid cell, we can maintain two sets: the set of obstacles
intersecting with the cell, and the set of configurations in the
database D that will make the robot collide with the cell. The
maintenance of both sets can be implemented efficiently with
the update operation on a spatial hash table. Given a moving
obstacle, we can first locate the set of grid cells that overlap
with the obstacle’s swept volume (between two successive
time instances), and compute the set of configurations whose
collision status may change due to this movement. These two
queries can also be accelerated by leveraging the hash table
data structure. Finally, we can update the collision status for
these samples in D using exact collision detection algorithm.
This update operation can be performed efficiently since our
database is implemented as a hash table. It will be useful to
evaluate this approach in dynamic scenes.
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Fig. 10: The time taken by I-PRM when it runs more than 100
times on the benchmark shown in Figure 6(a). In this experiment, we
stop adding a collision query result into the database while the local
sample density around the query is larger than a given threshold. As
the database size does not change much after about the 60-th query,
the system does not suffer from the re-increase of the planning time.

APPENDIX A
PROOF OF THEOREM 2

Using the result of random projections, for any point x and
any line l(v,a), we have

P[hu(−V̂ (v,a)) = hu(V̂ (x))]

= 1− 1

π
cos−1(

−V̂ (v,a)T V̂ (x)

‖V̂ (v,a)‖‖V̂ (x)‖
),

where u ∼ N (0, I). According to our embedding design
in Section IV-A1, we have V̂ (v,a)T V̂ (x) = −dist2(x, l),

‖V̂ (x)‖ = c and ‖V̂ (v,a)‖ =
√
d− 2 + (dist2(0, l) + 1)2.

Let C = ‖V̂ (x)‖‖V̂ (v,a)‖, which is a constant value inde-
pendent with database points and only depends on the query,
then we have P[sgn(uT (−V̂ (v,a))) = sgn(uT V̂ (x))] =

1− 1
π cos−1(− dist2(x,l)

C ) = 1
π cos−1(dist2(x,l)

C ).
Hence, when dist(x, l) ≤ r, we have

P[hu(−V̂ (v,a)) = hu(V̂ (x))] ≥ 1

π
cos−1(

r2

C
) = p1,
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and when dist(x, l) ≥ r(1 + ε), we have

P[hu(−V̂ (v,a)) = hu(V̂ (x))] ≤ 1

π
cos−1(

r2(1 + ε)2

C
) = p2.

Then we can estimate the bound for ρ = log p1
log p2

as follows:

ρ =
log( 1

π cos−1( r
2

C ))

log( 1
π cos−1( r

2(1+ε)2

C ))
≈ log( 1

2 − r2

πC )

log( 1
2 −

r2(1+ε)2

πC )

=
− log 2 + log(1− 2r2

πC )

− log 2 + log(1− 2r2(1+ε)2

πC )
≈ − log 2− 2r2

πC

− log 2− 2r2(1+ε)2

πC

,

where the first and second approximations are due to the
Taylor series of cos−1(x) and log(1 − x). As a result, we
have 1

(1+ε)2 ≤ ρ ≤ 1 and ρ ≈ 1
(1+ε)2 if r2

C is large enough.

Remark According to the proof above, as the computational
complexity of LSH is O(Nρ) for a given approximation level
ε, the line-point k-NN has sub-linear complexity only if r2

C

is large enough. As C = c ·
√
d− 2 + (dist2(0, l) + 1)2, this

requires dist2(0, l) to be small. As a result, the computational
complexity is query-dependent, which is caused by the affine
property of the line. In fact, such undesired property will
disappear if we constrain all lines passing through the origin,
because dist(0, l) = 0 for all l. To avoid the performance
reduction for lines far from the origin, we uniformly sample
several points within the space as the origins of different
coordinate systems. Next, we perform line-point hashing for
dataset points relative to each coordinate system and store
them in different hash tables. Given a line query, we also
perform a similar hashing process. As the line is likely
to have only a small distance to the origin in one of the
coordinate systems, the computational complexity can nearly
be O(N

1
(1+ε)2 ).

APPENDIX B
PROOF OF THEOREM 3

Using the result in Datar et al. (2004), for any point x and
any line l(v,a), we have

P[ha,b(−V̂ (v,a)) = ha,b(V̂ (x))]

= f(
W

‖V̂ (v,a) + V̂ (x)‖
). (15)

According to our embedding design in Section IV-A1,
‖V̂ (v,a)+V̂ (x)‖2 = 2 dist(x, l)+c2+d−2+(dist2(0, l)+1)2

and we let C = c2 + d − 2 + (dist2(0, l) + 1)2. Then, if
dist(x, l) ≤ r, there is ‖V̂ (v,a) + V̂ (x)‖ ≤

√
2r2 + C;

if dist(x, l) ≥ r(1 + ε), there is ‖V̂ (v,a) + V̂ (x)‖ ≥√
2r2(1 + ε)2 + C. By putting these bounds into Equation 15,

we can obtain p1 and p2. Using the result in Datar et al. (2004),
we have 1

1+ε ≤ ρ =
√

2r2+C
2r2(1+ε)2+C ≤ 1.

Remark As in the case of hamming hashing in Theorem 2,
for p-stable hashing we also require small dist(0, l) to obtain
sub-linear complexity, which can be realized by using multiple
coordinate systems with origins uniformly sampled in the
problem space.

APPENDIX C
PROOF OF THEOREM 4

The proof is in fact only a simple adaption of the proof
of Theorem 1 for point-point k-NN presented in Gionis et al.
(1999).

Let x∗ be a point such that dist(x∗, l) ≤ r, then for any
j, P[gj(x

∗) = gj(l)] ≥ pM1 = p
log1/p2

N

1 = N−ρ. Hence,
P[∀j, gj(x∗) 6= gj(l)] ≤ (1 − Nρ)L = (1 − Nρ)N

ρ ≤ 1/e.
Thus, gj(x∗) = gj(l) holds for some 1 ≤ j ≤ L with
probability at least 1− 1/e. We denote this property as P1.

Next, consider set of points whose distances from l are
at least r(1 + ε), and which have the same hash code
with query l under hash function gj . We denote the set as
Sj = {x | dist(x, l) > r(1 + ε) and gj(x) = gj(l)} and
let S = ∪Sj . Note that the probability for one point in the
dataset belonging to Sj is P[dist(x, l) > r(1+ε) and gj(x) =
gj(l)] = P[dist(x, l) > r(1+ε)]P[gj(x) = gj(l) | dist(x, l) >

r(1 + ε)] ≤ 1 · pM2 = p
log1/p2

N

2 = 1/N . As a result,
E(|Sj |) ≤ 1/N · N = 1 and E(|S|) ≤ ∑L

j=1 E(|Sj |) ≤ L.
By Markov’s inequality, P[|S| > cL] ≤ E(|S|)

cL ≤ 1
c . As a

result, |S| < 2l with probability at least 1/2. As S denotes
the data items that the algorithm needs to search but are not
valid k-NN results, this property means that the search time
is bounded by |S| = O(L = Nρ). We denote this property as
P2.

Combining the above two properties, we can find that the
probability to obtain at least one point x∗ with dist(x∗, l) ≤ r
in bounded retrieval time O(Nρ) (i.e., |S| = 2L) is 1−((1−
P[P1]) + (1− P[P2])) ≥ 1/2− 1/e.
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