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Abstract. Liquid water stored on the surface of ice sheets

and glaciers impacts surface mass balance, ice dynamics, and

heat transport. Multispectral remote sensing can be used to

detect supraglacial lakes and estimate their depth and area.

In this study, we use in situ spectral and bathymetric data

to assess lake depth retrieval using the recently launched

Landsat 8 Operational Land Imager (OLI). We also extend

our analysis to other multispectral sensors to evaluate their

performance with similar methods. Digital elevation mod-

els derived from WorldView stereo imagery (pre-lake fill-

ing and post-drainage) are used to validate spectrally derived

depths, combined with a lake edge determination from im-

agery. The optimal supraglacial lake depth retrieval is a phys-

ically based single-band model applied to two OLI bands

independently (red and panchromatic) that are then aver-

aged together. When OLI- and WorldView-derived depths

are differenced, they yield a mean and standard deviation of

0.0± 1.6 m. This method is then applied to OLI data for the

Sermeq Kujalleq (Jakobshavn Isbræ) region of Greenland to

study the spatial and intra-seasonal variability of supraglacial

lakes during summer 2014. We also give coefficients for es-

timating supraglacial lake depth using a similar method with

other multispectral sensors.

1 Introduction and Rationale

Supraglacial lakes in Greenland play a crucial role in the

ice sheet’s hydrological system. Together with supraglacial

streams (Smith et al., 2015), supraglacial lakes temporarily

store large quantities of meltwater which can promote the

opening of conduits to the bed through hydrofracture (Das et

al., 2008; Phillips et al., 2013; Selmes et al., 2011; Tedesco

et al., 2013) and thus influence ice dynamics (Joughin et al.,

2013; Parizek and Alley, 2004; Sundal et al., 2011; Zwally

et al., 2002). Supraglacial lakes also influence surface heat

fluxes by storing latent heat near the surface of the ice sheet

(Koenig et al., 2015). Finally, supraglacial lakes contribute to

multiple positive feedback processes, including ice shelf dis-

integration in Antarctica (Banwell et al., 2013; Glasser and

Scambos, 2008) and melt–albedo interactions (Leeson et al.,

2015).

Several multispectral remote sensing tools and methods

exist both for classifying (Johansson and Brown, 2013; Lee-

son et al., 2013; Sundal et al., 2011) and estimating the depth

of supraglacial lakes (Sneed and Hamilton, 2007) in Green-

land. MODIS (the MODerate Resolution Imaging Spectrora-

diometer) is able to provide moderate-resolution (∼ 250 m)

images with large spatial coverage (2330 km swath width) of

Greenland twice per day (e.g., Box and Ski, 2007; Fitzpatrick

et al., 2014). ASTER (the Advanced Spaceborne Thermal
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Emission and Reflection Radiometer; e.g., Sneed and Hamil-

ton, 2007) and Landsat (e.g., Banwell et al., 2014; Morriss et

al., 2013) have higher spatial resolution (10–30 m) but lower

spatial coverage and fewer acquisitions (16-day repeat).

Commercial sensors, such as DigitalGlobe’s WorldView-

2 and WorldView-3, provide high-resolution multispectral

measurements (∼ 2 m) that can be used to image small wa-

ter features, such as streams, over smaller areas (17 km wide

swath) at high temporal and spatial resolution (Chu, 2014;

Legleiter et al., 2014; Smith et al., 2015). However, com-

mercial imagery is collected largely “on demand” and cloud

cover can still be a confounding factor. Here we provide the

first regional-scale validation of supraglacial lake depth esti-

mation methods with all of the above multispectral sensors.

Lake depth retrieval is based upon the understanding that

deep water absorbs more energy than shallow water and

therefore will have lower reflectance of solar radiation. Some

methods use one band for a reflectance–depth relationship,

while others use a ratio of reflectances from two different

spectral bands (see Sect. 2). Satellite retrieval of supraglacial

lake depth is confounded by difficulty measuring the true

reflectance of dark/deep lakes, assumptions inherent in the

method about minimal quantities of suspended and dissolved

matter in lake water, the requirement for a smooth (i.e., not

wind-roughened) lake surface, and homogeneous and low-

slope lake bottoms (Sneed and Hamilton, 2011). In this study

we assume that it is possible to apply locally calibrated co-

efficients to broad areas (e.g., Legleiter et al., 2014) and that

minor variations in effects of atmospheric path radiance can

be ignored.

Landsat 8, launched in 2013, hosts a new multispectral

sensor, named the Operational Land Imager (OLI), suitable

for lake depth estimation. The OLI has enhanced radiomet-

ric resolution (12 bit versus 8 bit), a higher signal-to-noise

ratio, and an expanded dynamic range compared to Landsat

7’s Enhanced Thematic Mapper Plus (ETM+). While pub-

lished studies (see above) have largely used red and green

wavelengths, OLI’s two additional bands (coastal, 0.433–

0.453 µm; cirrus, 1.360–1.390 µm) and narrower multispec-

tral and panchromatic bands relative to ETM+, will provide

more spectral information and more unique (i.e., less auto-

correlated) reflectance values, respectively. These properties

lead to improvements for lake depth retrieval methods based

on band ratios. Furthermore, an increased scene collection

rate by Landsat 8 will lead to more opportunities to observe

ice sheets and their supraglacial lakes.

In this paper we investigate retrieval methods for

supraglacial lake depth from OLI data. We use in situ spec-

tral measurements from a supraglacial lake in Greenland to

emulate satellite reflectance and compare them with depth

data from the same lake to test several techniques to extract

lake depth. We then apply the best methods to OLI imagery

for case study areas in northwestern Greenland and the Ser-

meq Kujalleq (Jakobshavn Isbræ) area. We validate depth es-

timates using digital elevation models (DEMs) derived from

stereo submeter imagery. We discuss best practices for de-

riving lake depths using OLI and the implications of these

conclusions for other multispectral sensors. Analysis of 2014

imagery yields information about supraglacial lake size, dis-

tribution, and seasonal behavior.

2 Methods

2.1 Physically based lake depth

The depth of a supraglacial lake can be approximated as (af-

ter Philpot, 1989)

z= [ln(Ad −R∞)− ln(Rlake−R∞)]/g, (1)

where z is lake depth in meters,Ad is the lake bottom albedo,

R∞ is the reflectance of optically deep water, Rlake is the re-

flectance of a lake pixel, and g is related to the losses in up-

ward and downward travel through the water column (units:

m−1). Based upon a description of the processes that take

place as light enters, passes through, and exits a lake, this

method has been used successfully in both Greenland and

Antarctica (e.g., Banwell et al., 2014; Sneed and Hamilton,

2007). It is physically based and therefore easy to adjust

when measurements of lake water and lake bed properties

are available. However, this method assumes that lake wa-

ter has little to no dissolved or suspended matter and would

be severely impacted by surface waves (wind-driven ripples,

choppy waves, etc.). Additionally, it requires that the lake

bottoms have low slopes and a homogeneous albedo (Sneed

and Hamilton, 2011). While most of these assumptions hold

for supraglacial lakes in Greenland (Sneed and Hamilton,

2011), lake bottoms are known to be too inhomogeneous to

support the approach generally. In addition, optically deep

water (i.e., deep lakes or ocean where the upwelling radi-

ance originates from the water column without any bottom

signal contribution) is not always available in inland Land-

sat scenes. The effects of these shortcomings on supraglacial

lake depth retrievals have not been quantified.

In this study, for application to OLI imagery, R∞ was ob-

tained from dark ocean or lake water in the scene, following

Sneed and Hamilton (2007, 2011). If no coast was available

in the scene containing the lake, R∞ was obtained from an-

other scene further along the path (with an implicit assump-

tion of similar atmospheric conditions). The parameter g was

calculated following earlier studies (Smith and Baker, 1981;

Sneed and Hamilton, 2007) but with an updated absorption

coefficient from Pope and Fry (1997, Table 3); for more de-

tails, see the Supplement.

Ad was obtained from the reflectance immediately outside

identified lake areas. However, in order to test this approxi-

mation for Ad , we also solve for lake bottom albedo rather

than assuming it to be the same as the surrounding ice. We

use spectral mixture analysis (Lillesand et al., 2007) to define

a fractional coverage of ice (ri) and cryoconite (rc = 1− ri)

in each lake bottom pixel. To create a determinable equation
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after introducing this new unknown (ri), we use reflectances

from two OLI spectral bands (indicated with subscripts 1 and

2, below) and derive end-member reflectances for ice (Ri1

or Ri2) and cryoconite (Rc1 or Rc2) using glacier reflectance

spectra from Pope and Rees (2014b) in conjunction with OLI

spectral response functions in both bands (Barsi et al., 2014).

We input these parameters into Eq. (1) and then combine the

expressions by equating lake depth, thus obtaining

[
ri (Ri1−Rc1)+Rc1−R∞1

Rw1−R∞1

]
g2 = [

ri (Ri2−Rc2)+Rc2−R∞2

Rw2−R∞2

]
g1 . (2)

After Eq. (2) is solved for ri, the bottom albedo for one OLI

spectral band can be calculated and subsequently used to

compute lake depth:

Ad1 = riRi1+ (1− ri)Rc1 (3)

z=
log(Rlake1−R∞1)− log(Ad1−R∞1)

−g1

, (4)

where Rlake1 is water leaving reflectance (as in Eq. 1) for the

first band in the pair used and z is lake depth.

2.2 Empirically derived lake depth

The second method we consider uses spectral band ratios to

derive water depth. It has been used in shallow marine set-

tings (e.g., Dierssen et al., 2003) and alluvial rivers (e.g.,

Legleiter and Overstreet, 2012) and has been adapted for use

on the Greenland Ice Sheet (Legleiter et al., 2014). While

the physically based method above is highly dependent on

Ad and g, earlier studies show that the spectral band-ratio

method is expected to be more robust to variations in these

parameters (Legleiter et al., 2009; Stumpf et al., 2003). This

is because the method relies on relative behavior in two dif-

ferent wavelengths, as opposed to absolute optical behavior.

This spectral band-ratio method employs an empirically

derived quadratic formula to relate lake depths to the ratio of

the reflectance of two spectral bands (R1 and R2):

z= a+ bX+ cX2, (5)

X = ln(R1/R2). (6)

This empirical method requires the derivation of calibrated

coefficients (i.e., a, b, and c), and coefficients vary depend-

ing on which sensors and bands are used (Legleiter et al.,

2014). We calculate these coefficients using a known set

of reflectances and depths (from in situ measurements, see

Sects. 3.1 and 4.1).

3 Data

We use three data sets in this study: in situ reflectance spec-

tra and lake depth, OLI imagery, and DEMs derived from

stereo WorldView imagery. We use in situ data to test differ-

ent lake retrieval methods for a range of spectral bands. Then,

we calculate lake depth with a range of the most promising

methods using OLI imagery. We then use WorldView DEMs

to validate the OLI-derived lake depths. The detailed work-

flow of software (including MATLAB and shell scripts that

call GDAL utilities) used for data analysis and presentation

in this study will be fully described and documented in a sub-

sequent paper (Pope, 2016).

3.1 In situ data

In summer 2010, Tedesco and Steiner (2011) used a small

remote-controlled boat equipped with a compact spectro-

radiometer and a small sonar to collect coincident lake-

bottom reflectance and depth over one lake in West Green-

land (Tedesco et al., 2015). We use 2226 unique sample

points from that study to evaluate the performance of the

remote sensing methods described above. Field spectra are

convolved to account for the spectral response of the space-

borne sensors as follows:

rnb =

∞∫
0

r (λ)R (λ)dλ

∞∫
0

R(λ)dλ

, (7)

where rnb is the narrowband reflectance, r(λ) is the spec-

tral reflectance, R(λ) is the relative spectral response (Barsi

et al., 2014), and λ is the wavelength. In order to emulate

sensor dynamic range and radiometric resolution, we impose

minimum and maximum reflectances and round reflectance

values to the appropriate precision (i.e., 8 or 12 bit; see Pope

and Rees, 2014a). We then regress the convolved reflectances

and in situ depth measurements to test the goodness of fit of

the physically based relationship presented in Eq. (1) and the

empirical method described in Eqs.(5) and (6).

3.2 OLI imagery

Landsat 8 launched on 11 February 2013 and became op-

erational on 30 May 2013 (Roy et al., 2014). OLI collects

spectral data gridded at 30 m spatial resolution (15 m for

panchromatic data). We calculate top-of-atmosphere (TOA)

reflectance using calibration coefficients provided in the im-

age metadata and a solar elevation cosine correction (USGS,

2013). Based on a sensitivity analysis of path radiance to wa-

ter vapor and ozone using an atmospheric radiative transfer

model (see Sect. 5), we do not atmospherically correct the

images.

We choose two study areas for applying OLI imagery

(see Fig. 1). One site located in northwestern Greenland (in-

cluding Sverdrup Gletsjer, Dietrichson Gletsjer, Sermersuaq,

and Kjer Gletsjer, on Melville Bay; 56.2966–58.7186◦W,

74.9685–75.7808◦ N) is an area with a high concentration of

lakes and was imaged four times by OLI throughout summer

2013. A larger region farther to the south is examined using

all available OLI scenes collected over the Sermeq Kujalleq

www.the-cryosphere.net/10/15/2016/ The Cryosphere, 10, 15–27, 2016
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Figure 1. Regional map showing the two study regions for lake

depth estimation using OLI imagery. The northwestern Greenland

study region is identified with a single box indicating a subscene

area. The Sermeq Kujalleq study region shows WRS-2 path/row

outlines for Landsat scenes color-coded and dashed to indicate the

mean latitude and average elevation of ice within the scenes (see

Sect. 4.4 and Table S2). The background is elevation from the

Greenland Ice Mapping Project (GIMP) DEM (Howat et al., 2014,

2015).

region in West Greenland in 2014. For a list of all OLI scenes

used in this study, see Table S2 in the Supplement.

Using the calculated TOA reflectances, we define

supraglacial lake extent using the ratio between the blue and

red bands (Banwell et al., 2014; Box and Ski, 2007). How-

ever, since OLI bands are slightly different from those of past

sensors, we could not use published thresholds for extent. We

set the threshold for this ratio at 1.5 (versus 1.05–1.25 for

ETM+ in Banwell et al., 2014) based upon visual compari-

son with the imagery. We then visually inspected and man-

ually adjusted the threshold mask to remove coastal water

areas (i.e., not on the ice sheet) and clouds. Although Lee-

son et al. (2013) describe such thresholding as too coarse for

low-resolution imagery (i.e., MODIS), they do acknowledge

its utility for higher-resolution imagery (ASTER, Landsat,

etc.). We remove regions four pixels or smaller (i.e., small

lakes likely comprised solely of mixed pixels) or less than

two pixels wide (i.e., linear features likely to be channels,

not lakes) from the lake mask.

We interpolate the lake mask using a nearest neighbor al-

gorithm in order to apply the physically based method to the

higher-resolution panchromatic band. Where both panchro-

matic and spectral bands were used together, we bilinearly

interpolate the panchromatic image to 30 m resolution.

3.3 WorldView DEMs

We use submeter (∼ 0.5 m pixel−1) stereo imagery from

WorldView-1 and WorldView-2 to create DEMs of lake ar-

eas both before filling and after drainage. Similar validation

for ASTER has been carried out with airborne LiDAR from

before lake drainage (Georgiou et al., 2009) and for estimat-

ing lake drainage volumes (Stevens et al., 2015). We gen-

erate the high-resolution WorldView DEMs using the open-

source NASA Ames Stereo Pipeline tool (Moratto et al.,

2010; Shean et al., 2016). For both the Sermeq Kujalleq and

northwestern sites, we use DEMs from 6 different days, for

a total of 12 DEMs (see Table S2).

WorldView-1 image data have a geolocation accuracy of

better than 4.0 m horizontal 90 % circular error of probabil-

ity and WorldView-2 better than 3.5 m (DigitalGlobe, 2014).

Thus, the imagery and DEMs are more precisely positioned

than the 15–30 m OLI.

The vertical accuracy of the derived DEM products is less

than 5.0 m 90 % vertical error of probability with submeter

relative vertical precision (Mitchell, 2010). Differencing a

WorldView DEM with an Airborne Topographic Mapper Li-

DAR profile over a pronounced basin in northeastern Green-

land provided a standard deviation over the spread of eleva-

tions of 0.25 m. Considered conservatively, differencing one

WorldView DEM with a second DEM collected 1 year later

provided a standard deviation of 0.58 m for the elevation dif-

ferences (Willis et al., 2015). Stacks of 13 and 17 overlapping

WorldView-1 and WorldView-2 DEMs over Summit Station

and Tracy Glacier, Greenland, provide absolute vertical ac-

curacy estimates of ∼ 2.0–3.0 m relative to airborne LiDAR

measurements (∼ 10 cm accuracy). After removing absolute

horizontal and vertical offsets from all DEMs, the relative

vertical accuracy (1σ ) for the stack was ∼ 15–30 cm (Shean

et al., 2016).

We resample the DEMs to the same grid as OLI imagery

using cubic interpolation. The OLI and WorldView acquisi-

tions are from different dates; although lake basins do ab-

late during the summer, this should not have significant im-

pact on the results presented here, because most supraglacial

lakes in Greenland remain fixed over bedrock-controlled sur-

face depressions (Lampkin and VanderBerg, 2011). Using

the lake mask, we identify a shoreline for a given date (see

Sect. 3.2), which is then used to derive lake depth. We re-

move outliers of impossibly shallow (i.e., negative depth) or

deep (> 65 m) values as errors in the DEM. In addition, we

remove lakes having a standard deviation in lake elevation

along the shoreline of larger than 1.5 m. These steps also

mitigated any potential bias caused by temporal offset be-
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Table 1. Laboratory-based and in situ derived water absorption coefficients for lake depth estimation using the physically based method (g,

see Eq. 1) and empirical method (a, b, and c; see Eqs. 5–6). Regression statistics (correlation coefficient and root mean squared error) for

lake depth estimates using field spectra convolved to emulate multispectral bands are also included. Asterisks indicate the methods applied

to OLI data in this paper. Bold text indicates recommended bands for lake depth estimation with OLI. See Table S1 for results from other

multispectral sensors.

Satellite and band Lab-based Regressed r RMSE (m)

g (m−1) g (m−1)

OLI 1 (coastal) 0.0178 0.0093 0.0494 11.03

OLI 2 (blue) 0.0341 0.025 0.2886 3.10

*OLI 3 (green) 0.1413 0.01 0.7842 0.78

*OLI 4 (red) 0.7507 0.80 0.9624 0.28

*OLI 8 (panchromatic) 0.3817 0.36 0.8422 0.63

ETM+ 1 (blue) Gain H 0.0334 0.03 0.2626 3.34

ETM+ 1 (blue) Gain L 0.0334 0.03 0.2625 3.34

ETM+ 2 (green) Gain H 0.1665 0.15 0.7892 0.77

ETM+ 2 (green) Gain L 0.1665 0.14 0.7890 0.77

ETM+ 3 (red) Gain H 0.8049 0.83 0.9548 0.31

ETM+ 3 (red) Gain L 0.8049 0.83 0.9412 0.37

OLI 1 and 2 (coastal and blue) – – 0.7871 2.57

OLI 1 and 3 (coastal and green) – – 0.9208 1.10

OLI 1 and 4 (coastal and red) – – 0.8987 1.34

OLI 2 and 3 (blue and green) – – 0.9401 0.88

OLI 2 and 3 (blue and red) – – 0.8885 1.41

OLI 3 and 4 (green and red) – 0.6063 1.74

Satellite and bands a b c r RMSE (m)

OLI 3 and 4 (green and red) −13.8398 40.0344 −23.4057 0.4537 0.89

OLI 2 and 4 (blue and red) 3.4414 −9.0500 7.8243 0.8610 0.51

OLI 1 and 2 (coastal and blue) 0.9750 18.1837 145.7811 0.8031 0.59

OLI 1 and 3 (coastal and green) 0.1488 5.0370 5.0473 0.9228 0.38

OLI 1 and 4 (coastal and red) 4.8374 −11.2317 8.2001 0.8964 0.44

OLI 1 and 8 (coastal and pan) 1.6240 −5.9696 12.4983 0.9473 0.32

ETM+ 2 and 3 (green and red) L 1.4794 −3.2173 2.8860 0.8855 0.46

ETM+ 2 and 3 (green and red) H 2.3102 −4.4616 3.2802 0.8970 0.44

ETM+ 1 and 3 (blue and red) L 4.0925 −5.3290 2.4296 0.9655 0.26

ETM+ 1 and 3 (blue and red) H 4.2825 −5.4754 2.4225 0.9694 0.24

tween DEM and spectral depth measurements. After filter-

ing, over 250 000 pixels (30 m) in total remained for spectral

lake depth validation over 6 days in 2013 and 6 days in 2014.

4 Results

4.1 In situ results

The results (Table 1) of depth–reflectance regressions for

all methods are shown in Fig. 2. We base the bands tested

here using in situ data upon those identified in the literature

(e.g., Box and Ski, 2007; Sneed and Hamilton, 2007; Tedesco

and Steiner, 2011), as well as the OLI’s new coastal band

and the significantly narrowed panchromatic band (0.500–

0.680 µm, at 15 m spatial resolution). ETM+ high and low

gain results are virtually indistinguishable, and so only low

gain results are shown here. For each regression, we use the

correlation coefficient (r) and the root mean square error

(RMSE, relative to sonar depths) to assess the performance

of each method. The results of the physically based method

show that the OLI blue and coastal bands do not perform

well relative to other bands (RMSE of 3.10 and 11.03 m,

respectively; r of 0.29 and 0.05, respectively). The OLI

Band 3 (green, 0.525–0.600 µm; 0.78 m, r = 0.78) performs

as well as legacy ETM+’s Band 2 (green, 0.525–0.605 µm;

0.77 m, r = 0.79). Finally, both OLI Band 4 (red, 0.640–

0.670 µm) and Band 8 (panchromatic, 0.500–0.680 µm) out-

perform their analogous ETM+ bands (RMSE of 0.28 and

0.63 m, respectively; r of 0.96 and 0.84, respectively).

Red light attenuates more strongly in water than green or

blue light. So, for the same lake depth, there will be a larger

(and easier to measure) change in net reflectance for red

wavelengths than shorter wavelengths. However, the rapid at-

www.the-cryosphere.net/10/15/2016/ The Cryosphere, 10, 15–27, 2016
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c)

d)

a)

b)

OLI

ETM+ L

Figure 2. Regression plots for in situ measured reflectance spectra used to emulate OLI and ETM+ reflectance and sonar-measured depths,

including OLI single band (a), ETM+ low gain single band (b), OLI coastal and panchromatic (c), and OLI coastal and green (d). Statistics

for all regressions are reported in Table 1.

tenuation of red light means that only shallower lakes may be

measured in this band. The maximum in situ lake depth mea-

surement is ∼ 5 m, well within the red light limit, but deeper

lakes may exist in the overall study area. We address this

issue below by using many Landsat scenes and WorldView

DEMs.

We investigate the two-band physically based method

(where Ad was calculated) with a range of emulated OLI

bands (see Table 1). We find similarly high correlation co-

efficients (r = 0.94) to the regression method. Nevertheless,

only the combination of blue and green bands had an RMSE

below 1 m. This method appears to slightly overestimate lake

depths. We investigate the reasons for this with the OLI and

WorldView data below.

Applying the empirical method using field data (see Ta-

ble 1, Fig. 2) indicates that the more continuous bands of

the ETM+ outperform the narrower (less spectrally auto-

correlated) bands of the OLI when estimating lake depths.

However, the addition of the coastal band should allow the

OLI still to perform quite well (r > 0.92, RMSE < 0.38), in

particular when paired with the green or panchromatic bands.

Our analysis shows that supraglacial lake depth retrievals

using OLI are as good as or better than ETM+ retrievals. We

identify the best methods for OLI (identified with asterisks

in Table 1) based on the highest correlation coefficients and

lowest RMSEs. We then apply these methods to OLI data and

validate them with WorldView stereo DEMs.

4.2 2013 northwestern Greenland results

In the northwestern Greenland study area, we identified 694

lakes on 2 July 2013 with a total area of 27.2 km2, 1259

lakes totaling 43.7 km2 on 18 July 2013, 955 lakes totaling

38.8 km2 on 3 August 2013, and 274 lakes totaling 8.6 km2

on 19 August 2013. We calculate lake depths with all previ-

ously discussed methods, as well as an average between the

two best single-band depth estimates. Total lake volume in

the study area increased in early July, stayed almost constant

as lake growth areas moved higher in elevation over the fol-

lowing three weeks, and then decreased again toward the end

of August as cooler conditions prevailed (see Fig. 3). While

all methods show the same pattern of surface water storage,

the total water volumes derived with the different methods

differ by over a factor of 2.

4.3 Comparison with DEMs

For both of our case study regions, northwestern and south-

western Greenland, we difference all overlapping areas of

OLI-derived lake depths and WorldView-derived DEMs. The

statistics of this comparison are shown in Fig. 4. As seen

in the northwestern Greenland case study, the results are di-

vided into two groups. OLI-derived depths using Band 3,

Bands 2 and 3, a ratio of Bands 1 and 3, and a ratio of

Bands 1 and 8 all considerably overestimate lake depth rel-

ative to the DEMs. However, the physically based single-

band method for the red band (OLI Band 4) only slightly un-

derestimates lake depth (−0.1± 1.7 m), while the panchro-

The Cryosphere, 10, 15–27, 2016 www.the-cryosphere.net/10/15/2016/



A. Pope et al.: Estimating supraglacial lake depth in West Greenland 21

1 July 10 July 20 July 1 August 10 August 20 August

Figure 3. Total water volume stored in supraglacial lakes in the

northwestern Greenland study region for the summer of 2014 de-

rived using OLI. Based on analysis, “Band Average 4 and 8” is

likely to be the most accurate (see Fig. 4).

matic band (OLI Band 8) slightly overestimates lake depth

(0.1± 1.4 m).

Combining these two best-performing bands, the result-

ing spectral and DEM-derived lake depths are in close agree-

ment, showing a difference of 0.0± 1.6 m. We infer that the

optimal method for estimating supraglacial lake depth with

OLI is to take an average of the physically based (see Eq. 1)

depths as derived from the red and panchromatic channels

(bold in Table 1). It is likely that the spread in depths is the

result of a combination of factors including temporal offset

between DEM and spectral data collection, image coregis-

tration, and atmospheric effects, as well as uncertainties in-

herent in the lake depth retrievals. Despite meter-scale uncer-

tainties (1.6 m) at the pixel level, the mean lake depth derived

from these methods agrees well.

4.4 2014 Sermeq Kujalleq area results

We apply the lake depth algorithm (i.e., average of single-

band depths from OLI red and panchromatic bands) to 34

OLI images from the summer of 2014 over the Sermeq Ku-

jalleq area (see Figs. 1 and 5). The total meltwater storage in

supraglacial lakes peaked near 3 km3 across the entire study

area in mid-July 2014. There are many shallow lakes (0.3 to

1.5 m depth) and many lakes with depths of 2.5 to 4 m. Few

lakes exceed 5.5 m depth (see Fig. 6a). The preponderance

of shallow lake pixels reflects the fact that the observed lakes

have low surface slopes at their edges.

If the water stored in supraglacial lakes in row 12 of path

008 in mid-July were spread across the whole 25 246 km2 of

ice in the scene, it would have an average depth of almost

3 cm. In other scenes, calculations provide average depths

of 0.5 to 1.5 cm. Our maximum observed value is almost

as high as the volume in supraglacial streams measured by

Smith et al. (2015), reinforcing the potentially daily turnover

of a well-connected surface system they observed. Indeed,
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Figure 4. Statistics for the difference in supraglacial lake depth

from physically based and empirical methods derived from OLI
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(solid lines) and median/quartiles (dotted lines). An average of the

Band 4 and Band 8 methods is used for our mapping (Figs. 5 and 6).

The method showing the least bias and lowest errors is an average

of Band 4 (red) and Band 8 (panchromatic) single-band physically

based retrievals, with a mean offset of 0.0± 1.6 m (as indicated by

the bar at the bottom of the diagram). Discrepancies in lake depth

estimation for physically based retrievals can be traced to differ-

ences between lab-measured and in situ regressed water absorption

coefficients (see Table 1).
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Figure 5. Total water stored in supraglacial lakes over the 2014

summer using single Landsat 8 scenes (as indicated by WRS-2

path/row annotations) covering the Sermeq Kujalleq region (see

Fig. 1, Table S1). All scenes are shown together in (a). (b) shows

only the low-elevation coastal scenes, demonstrating delayed lake

formation at higher latitudes. (c) shows both elevation and latitude

effects in driving supraglacial water storage for scenes in WRS-2

path 8. (d) shows latitude and elevation effects for scenes in WRS-2

path 6. All sub-figures are on the same grid as part (a).
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Tedesco et al. (2012) observe bare ice melt rates next to

supraglacial lakes in West Greenland of ∼ 2.5–3 cm day−1,

similar to those observed by van den Broeke et al. (2011).

This implies that lakes are storing on the order of 1 day’s

worth of melt (or less), indicating daily or subdaily residence

times, depending on connectivity.

The Sermeq Kujalleq data set also provides a time series

that shows lake growth and drainage/freezing (see Fig. 5a).

There are many factors that contribute to lake growth and

drainage, including temperature, insolation, albedo, topog-

raphy, and ice dynamics. These complex drivers are related

to the more easily quantified mean elevation and latitude of

each scene. For example, isolating the coastal scenes shows

the delayed onset of melt and earlier shutdown in the north

compared to the south (see Fig. 5b).

To further refine our investigation of geographic factors

associated with lake depth over the summer season, we ex-

amine single swaths of OLI imagery through time. Path 008

(in the WRS-2 reference scheme; Irons et al., 2012), which

transects the lower Sermeq Kujalleq, shows a strong influ-

ence both of elevation and latitude in rates of lake growth

and water storage (Fig. 5c). Isolating Path 006, however, con-

flates the effects of elevation and latitude on surface meltwa-

ter storage, but because we have more temporal coverage (see

Fig. 5d) we see the decline of total lake volume as summer

progresses toward autumn. Again, higher latitude and eleva-

tion delay melt onset (i.e., Path 006, Row 012). For 006/013

and 006/014, it is likely that the reduced ice sheet area within

006/014 is the explanation for the reduced meltwater volume.

Rates of increase and decay of lake volume are similar for

this pair.

The distribution of lake depths (by pixel) with elevation

is shown in Fig. 6b. Lakes are distributed from ∼ 300 to

∼ 2100 m elevation. Maximum lake depths occur at about

1200 m a.s.l. At lower elevations, lake depths recorded by our

method vary significantly, likely due to rapid lake growth and

drainage across a range of dates at lower elevations, versus

the higher elevation maximum depths mostly derived from an

OLI image on 30 July 2014. From 1200 to 2100 m, measured

lake depths decline steadily with less variation. This likely

reflects a combination of factors, including the variations in

induced surface topography of the ice sheet as it flows over

undulating bedrock (Lampkin and VanderBerg, 2011). At

higher elevations, slow flow leads to low-amplitude ice sur-

face topography thus shallower depressions, and there is also

less available meltwater to fill ice-surface depressions. In ad-

dition, while lakes are less likely to variably fill and drain at

higher elevations, there was also reduced imagery available

from∼ 30 July 2014 onwards. Therefore, the more consistent

maximum depths at higher elevations are a combination of

incomplete temporal coverage and elevation. Further down,

more melt and higher amplitude topography from faster ice

flow facilitate lake formation. However, below 1200 m, in-

creased ablation begins to reduce this topography. In addi-

tion, the volume of melt available will determine whether

depressions are large enough to hold lakes or instead drain

via connecting supraglacial channels. The melt volume and

therefore the relationship between lakes and channels will

thus vary both seasonally and with elevation (Lampkin and

VanderBerg, 2014).

5 Discussion

5.1 Retrieval performance factors

The depths returned by the empirical (band-ratio) method

considerably overestimate lake depths relative to the World-

View DEMs. The method is entirely dependent upon the cal-

ibration of the input parameters (i.e., a, b, and c). The param-

eters used in this study are in turn based solely upon extrapo-

lation from in situ measurements at a single lake. Therefore,

it is possible that the lake used for calibration is not represen-

tative of lakes in our study region. Legleiter et al. (2014) note

that the coefficients for the empirical method may be scale

dependent, and values calculated from field data may not

be appropriate for the 30 m OLI pixels. Indeed, other work

(Moussavi et al., 2016) both calibrates and validates spec-

trally derived depths with WorldView DEMs to show that

the band-ratio/empirical method and single-band/physically

based method perform similarly well. The use of a ratio of

coastal and green reflectances performed well for lake depth

retrieval using WorldView-2 imagery (Legleiter et al., 2014).

Therefore the band-ratio method may, with better param-

eters, produce results consistent with the physically based

single-band approaches.

The physically based depth retrievals show a large spread

in total water volume returns. Physically based depth re-

trievals rely on accurate bottom albedos (Ad) and water ab-

sorption coefficient (g). While Ad is derived from the im-

agery, g is always calculated for each spectral band based on

laboratory measurements and is therefore consistent across

all OLI scenes. Comparison of laboratory-measured g with

those derived from in situ data (see Table 1) shows that when

the laboratory-measured g is higher than that obtained from

regressing in situ data, lake depths are overestimated and vice

versa. For example, OLI Band 3 (green) shows a 70 % dif-

ference in directly measured and regressed g, and it overesti-

mates lake depths by a mean of 2.4± 2.1 m relative to World-

View DEMs. By contrast, Band 4 (red) and Band 8 (panchro-

matic) have very small differences between measured and

regressed g (−0.06 and 0.06 %, respectively) and yield ac-

curate lake depth estimates (−0.1± 1.7 m and 0.1± 1.4 m,

respectively) relative to WorldView DEMs.

Water absorption properties also vary with wavelength.

For example, poor performance in blue and coastal bands

is related to very low absorption. Red wavelengths attenuate

relatively quickly in water, and this is described by a rela-

tively high g (0.7507 m−1) compared to green (0.1413 m−1).

This high g for red light makes it less sensitive to errors in

g than green wavelengths. Lake depth estimates using a red
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Figure 6. Statistics of lake depth and elevation distribution for all Sermeq Kujalleq region 2014 OLI imagery (see Table S2). (a) Histogram

of lake depths. (b) Maximum lake depth in 1 m elevation bins as derived from the GIMP DEM (Howat et al., 2014, 2015).

channel are also less sensitive to Ad than with a green chan-

nel (Tedesco and Steiner, 2011), again due to the high ab-

sorption for longer wavelengths. Ultimately, as long as the

sensor radiometry is able to measure the return from deep-

water pixels, longer wavelengths (i.e., red) can return gener-

ally more accurate lake depths because they are less sensitive

to the input parameters.

5.2 Revisiting lake depth retrievals

To evaluate other studies in the literature and compare them

with our results, we apply the same methods we use (i.e., lab-

measured absorption/scattering parameters and appropriate

spectral response functions) to calculate gs for ETM+ bands

(see Table 1). Tedesco and Steiner (2011) studied the accu-

racy of ETM+’s green band for lake depth estimation. They

tested different multipliers of the diffuse attenuation coeffi-

cient for downwelling light to get the water absorption coeffi-

cient g. They showed that for ETM+’s green band, sonar and

spectral depths correlated better when a larger multiplier was

used. This is broadly consistent with the 70 % offset between

observed and theoretical values that we observe (Table 1).

They also find that this offset “cannot be easily explained,

aside from a possible chlorophyll concentration in the water,

currently considered to be unlikely”. Morriss et al. (2013)

used ETM+’s red band and extracted a higher value of g

(0.86 m−1); this is very close to the regressed value we ob-

serve of 0.83 m−1 (see Table 1), and so we expect their depth

estimates to be slightly overestimated.

Banwell et al. (2014) and Arnold et al. (2014) also used

ETM+’s green band with a g of 0.1954 m−1, ∼ 40 % higher

than our regressed value of 0.14 m−1, leading to depths over-

estimated by∼ 30 %. Because the comparisons of Greenland

and Antarctic lakes (Banwell et al., 2014) are based on rela-

tive depths, their conclusions are likely still valid. Arnold et

al. (2014) concluded that their model under-predicted water

depths, which could in reality mean that their model is be-

having correctly but their validation data (i.e., ETM+ lake

depths) were biased.

Using the same process as for Landsat sensors, we calcu-

lated gs for ASTER, MODIS, and WorldView-2 bands (see

Table S1). Sneed and Hamilton (2007, 2011) used ASTER’s

green band for lake depth estimation (g = 0.1180 m−1). This

is ∼ 20 % smaller than the regressed value of 0.15 m−1 (see

Table S1). They will therefore have likely underestimated

lake depth (Sneed and Hamilton, 2007).

For all three studies, the regressed gs are much closer to

the updated lab-based gs (see Sect. 2.1 and the Supplement)

than those used in the studies. Adoption of the new gs pre-

sented here in Tables 1 and S1 would therefore likely lead to

improved lake depth estimates.

5.3 Sensitivity analysis

For all sensors, wavelengths, and input parameters, an im-

portant consideration for reflectance-derived lake depth is the

atmospheric correction used to prepare the multispectral im-

agery. All imagery is processed to TOA reflectance, which

means that there is some extraneous path radiance remnant

in the data. Therefore, TOA values will slightly overesti-

mate the true reflectance. This offset will not be the same

between bands and will influence the retrieved lake depths as

discussed below.

The single-band physically based model requires that the

reflectance of optically deep water be derived for each scene

separately. Effectively, this shifts the exponential decay curve

of light in lake water but does not change its shape. There-

fore, as long as path radiance is assumed to be homogeneous

across the 185 km wide OLI scene, TOA reflectance is suf-

ficient for lake depth estimation. To test this assumption,

the MODTRAN radiative transfer model (Berk et al., 2005)

was used to simulate path radiance on a day for which OLI

data were used in northwestern Greenland (18 July 2013)

to investigate variations associated with variable water va-

por and ozone across a Landsat scene. According to MODIS
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retrievals (accurate to 30 DU; Borbas et al., 2011), ozone

variability within a Landsat scene is on the order of ap-

proximately ±50 DU, which translates to a path radiance of

±1.6 % in the red channel. For lake depth, this can propa-

gate to a ∼ 20 % error in lake depth. Much of this error ap-

pears largely random for a given point in time and space.

Thus, while it decreases confidence in individual lake depth

retrievals, averaged water volume retrieval should not be bi-

ased. For water vapor there was a 0.3 % change in path ra-

diance between the minimum and maximum Landsat scene

values, making it a small contributor to overall error. Be-

tween days, however, path radiance effects due to water va-

por may vary by an order of magnitude more.

For the multiple-band methods, the differential change

in path radiance has larger effects. Sensitivity tests showed

that a 3 % change in path radiance for one or both bands

changed water volumes on the order of 10–30 %. Therefore,

a more rigorous atmospheric correction is necessary in or-

der to apply multi-band lake depth algorithms. Still, for the

study here, because validation is conducted across 12 non-

consecutive days in both spring and autumn, we do not ex-

pect atmospheric conditions to bias our conclusions.

There are additional limitations to our method. As dis-

cussed above, OLI lake depth estimates (average single-band

estimates from red and panchromatic bands) are robust for re-

gional averages but not single pixels. In addition, the thresh-

old used to identify lake extent may need to be adjusted for

different regions and scenes (e.g., Banwell et al., 2014; Box

and Ski, 2007). Lake depth retrievals are also sensitive to

variations in ice albedo, as well as to the presence of ice lids

on the surface of supraglacial lakes, which can be common

both in early and late summer. Cloud cover and Landsat’s 16-

day revisit time also limit the conclusions that can be drawn

from OLI lake depths. Many studies have used daily MODIS

data to identify and track supraglacial lakes (e.g., Liang et

al., 2012; Selmes et al., 2011; Sundal et al., 2011). Fusing

the higher temporal resolution of MODIS (or additional sen-

sors such as ESA’s upcoming Sentinel-2) and higher spatial

resolution of OLI, along with more in situ calibration and

validation data, should lead to unique insights to supraglacial

water storage.

6 Conclusion

Examination of the evolution of water storage on the sur-

face of ice sheets and glaciers is important for understanding

mass balance, dynamics, and heat transport throughout the

ice mass. In this study, in situ data were used to test the ca-

pability of Landsat 8’s Operational Land Imager to estimate

supraglacial lake depth. Promising methods were applied to

two sets of OLI observations. Patterns of water storage were

similar from the two methods, but a factor of 2 difference

was calculated for the total water volume. WorldView DEMs

were used to assess which of the methods was most accurate.

The best method identified for OLI was an average of the

depth derived from single-band physically based retrievals of

Band 4 (red) and Band 8 (panchromatic); the mean difference

between spectrally derived and DEM-derived lake depths is

only 0.0± 1.6 m, showing no bias but some spread. There-

fore, this method is recommended for future lake depth re-

trievals with OLI, especially for regional studies. This is the

first time supraglacial lake depths have been validated across

multiple dates and regions.

Discrepancies between spectrally and DEM-derived

depths appear to be explained by differences between lab-

measured and in situ derived water absorption coefficients

(g). The success of other sensors and bands in deriving

supraglacial lake depth can thus be inferred from these gs.

With this insight, multispectral lake depth estimates in the

literature were revisited. Lake extent studies can now be ex-

panded to include lake volume with higher confidence. Up-

dated gs are provided (see Tables 1 and S1), but further in

situ data collection and satellite-based studies are needed to

build more robust methods.

The recommended depth retrieval method was applied to

all available OLI imagery for summer 2014 for the Sermeq

Kujalleq (Jakobshavn) region of West Greenland. Seasonal

and regional trends in lake depth (deepening and then shal-

lowing), evolution (proceeding inland/up-glacier and north-

wards through the summer), and distribution (∼ 300 to

∼ 2100 m a.s.l.) were observed. At most, lakes contain a sim-

ilar magnitude of water to supraglacial streams, but this may

not be true for other parts of Greenland. Both elevation (and,

relatedly, accumulation/melt forcing) and surface topography

play a role in lake formation and extent, behavior that we

expect to be modified but observable in other regions. Fur-

ther work moving forward will need to contextualize Land-

sat data with other remote sensing imagery, fieldwork, and

model outputs.

The Supplement related to this article is available online

at doi:10.5194/tc-10-15-2016-supplement.
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