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Abstract. Land cover and its change have been linked to Buruli ulcer (BU), a rapidly emerging tropical disease.
However, it is unknown whether landscape structure affects the disease prevalence. To examine the association
between landscape pattern and BU presence, we obtained land cover information for 20 villages in southwestern
Ghana from high resolution satellite images, and analyzed the landscape pattern surrounding each village. Eight land-
scape metrics indicated that landscape patterns between BU case and reference villages were different (P < 0.05) at
the broad spatial extent examined (4 km). The logistic regression models showed that landscape fragmentation and diver-
sity indices were positively associated with BU presence in a village. Specifically, for each increase in patch density and
edge density by 100 units, the likelihood of BU presence in a village increased 2.51 (95% confidence interval [CI] =
1.36-4.61) and 4.18 (95% CI = 1.63-10.76) times, respectively. The results suggest that increased landscape fragmenta-

tion may pose a risk to the emergence of BU.

INTRODUCTION

Landscape disturbances alter ecosystem patterns and pro-
cesses, and are increasingly recognized to have cascading
effects on ecosystem functions at local to global scales. Spe-
cifically, human-driven land cover changes that cause habitat
loss and fragmentation have been associated with the out-
break and transmission of multiple infectious diseases.>> For
example, in the Amazon rainforest, deforestation was associ-
ated with increased malaria prevalence due to an increase in
suitable habitat of the malaria vector, Anopheles darlingi.*
The construction of dams in Senegal was found to be respon-
sible for the rise of the outbreaks of schistosomiasis due
to increases in water habitat beneficial to the vector (snails)
and parasite transmission.’ In the northeastern United States,
Lyme disease risk is associated with forest fragmentation,
largely through resultant modification of trophic interactions
that favor vector transmission.® These studies highlight an
increased understanding of landscape patterns and disease
risk, but to date few studies have evaluated the usefulness
of pattern metrics on Buruli ulcer (BU) prevalence,” despite
the fact the changes in land use have been previously
reported in association with the disease.®'® Understanding
how landscape patterns influence human disease could aid
the development of landscape-level management plans to
reduce disease risk.

BU is a skin infection caused by Mycobacterium ulcerans,
and has emerged in over 30 countries worldwide and become
the third most common disease caused by Mycobacteria, after
tuberculosis and leprosy.'! Though its transmission mode is
still unclear, it is generally recognized to be associated with
aquatic habitats'' and aquatic biting insects'”> as well as
nonbiting aquatic invertebrates'! although results are equiv-
ocal.’> Other landscape disturbances, such as deforestation
and agriculture, have also been linked to BU prevalence. In
Benin, the dynamics of BU disease were correlated with
human alterations to landscapes and natural land cover.’
Recently, in Ghana, Wu and others'® documented positive
relationships between BU prevalence and differences in min-
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ing and agriculture between endemic and nonendemic regions.
However, it is still unclear whether these changes in habitat
loss were indicative of changes in fragmentation and land-
scape structure, which may have differential effects on eco-
system processes'* that influence disease emergence.

Ghana is one of the most prevalent countries of BU dis-
ease, second only to Cote d’Ivoire.'® Rapid land cover
change has taken place in Ghana in recent decades. For
example, forest area has decreased roughly 2% per year
since the 1990s,'® while agriculture has grown very rapidly
and expanded at an annual rate of 5.5%.'7 In addition,
across Ghana, gold mining has increased sharply in recent
decades. From 2004 to 2009, overall gold production in
Ghana increased from 2.6% to 3.8% of global production,'®
which poses risks to environmental and human health."

In this study, we explore whether landscape patterns can
be used as an indicator of BU disease, given its importance
as a rapidly emerging tropical disease. Specifically, two ques-
tions are answered: 1) do landscape metrics for landscape
fragmentation and diversity differ between BU case and
reference villages and 2) to what degree is BU presence at
a village level associated with landscape metrics surrounding
villages? We hypothesized that BU case villages would have
higher levels of fragmentation and that the correlation would
be positive at broader spatial extents (e.g., 4 km away from
village center) if landscape heterogeneity increased.

METHODS

Study area. Our study area included 20 villages in south-
western Ghana, which were located in three study regions
(Figure 1). We selected two study regions (hereafter called
Subin and Ayanfuri) in a BU endemic area where BU cases
were clustered.’” A reference region (Kedadwen) was also
included, where BU has not been reported. These three
regions were selected after the discussion with a diverse team
of experts during an interdisciplinary workshop in 2008 and
then were confirmed by a field visit. The key characteristics of
these study areas, such as climate, the type of vegetation and
land cover, and geology, are similar or comparable (Supple-
mental Table 1). The area of each study area is near 580 km?.
Six villages from Subin region (V1-V6) and five villages from
Ayanfuri region (V7-V11) were selected as the BU case
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Ficure 1. The study areas (Subin, Ayanfuri, and Kedadwen) and village center locations in southwestern Ghana used for landscape met-

ric analysis.

villages. Five villages from Kedadwen region (V16-V20) were
selected as the reference villages. In addition, two villages in
which BU cases have not been reported were selected from
the Subin (V12 and V13) and Ayanfuri regions (V14 and
V15), respectively, as reference villages. These villages were
roughly randomly selected after the distance between villages
and the number of villages in these areas was taken into
account. In total, 11 villages with BU cases and nine villages
without BU cases were used.

BU disease data. Hospital-based BU data were collected
between 2007 and 2010. When patients with skin infections
visited hospitals and clinics, they were examined by experi-
enced doctors based on the symptoms of the infection. These
cases were confirmed by clinical diagnosis rather than labo-
ratory testing of pathogens because of technical difficulties.
Once a case was confirmed, the age, gender, residence, and
other information were recorded. Therefore, the village in
which a patient is living was identified.

Land cover and landscape pattern analysis. RapidEye sat-
ellite imagery with a spatial resolution of 5 m acquired in
January 2012 was used to obtain land over information in
the study areas. The images were classified into six types
of land cover classes (urban, mining area, water, grassland,

forest, and agriculture) using supervised classification with
a maximum likelihood algorithm'® (Supplemental Figure 1).
The ground truth information in the study areas was initially
collected based on participatory mapping activities in these
communities. Besides the participatory maps, highly resolved
(resolution < 5 m) QuickBird images, Google Earth maps, as
well as experts’ opinion, were used as the reference for land
cover classification.'” The classification was carried out with
ENVI class software (Exelis Inc., McLean, VA). To analyze
landscape patterns surrounding each village, buffers with
radii of 1, 2, and 4 km surrounding each village center were
created and clipped from classified satellite imagery using
ArcGIS 10.1 (ERSI, Redlands, CA). To examine the rela-
tionship between landscape-level metrics and BU at each of
the three buffer distances a total of 8 metrics were selected:
patch density (PD), edge density (ED), mean in Euclidean
nearest neighbor distance (ENN_MN), standard deviation in
Euclidean nearest neighbor distance (ENN_SD), Shannon’s
diversity index (SHDI), Simpson’s diversity index (SIDI),
Shannon’s evenness index (SHEI), and Simpson’s evenness
index (SIEI). These metrics were selected because they provide
complementary influences of land fragmentation and diversity
along several key metrics.?* The explanation and formulae
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of calculation of these metrics can be found elsewhere.”!
FRAGSTATS v.4.2 (Amherst, MA) was used for all met-
rics calculations.?!

Statistical analysis. To test for the difference in individ-
ual landscape metric between BU case and reference vil-
lages (question 1), we used one-way analysis of variance
(ANOVA). Multivariate analysis of variance (MANOVA)
was conducted to test the overall difference in landscape
patterns between two groups of villages. Before conducting
ANOVA and MANOVA, we validated some assumptions
for these analyses, including normality, homogeneity of vari-
ances and covariances, linearity, and outliers of dependent
variables. Because some variables were highly correlated
(Pearson r > 0.9, P < 0.01), we only put one of these highly
correlated variables in the model for MANOVA. Therefore,
three dependent variables, ED, ENN_SD, and SHDI were
included in MANOVA. To reduce type I error, we adjusted
multiple comparisons with a Bonferroni correction. The
same methods were used to test the difference in land cover
components between two groups of villages. The relation-
ship between land cover classes was examined with Pearson
correlation analysis. To examine BU presence in villages as
a function of landscape metrics, buffer radius, and land
cover (question 2), we used logistic regression models. The
dependent variable was BU presence in a village, which
followed a binomial distribution. Specifically, if a village
had BU cases, the value was set to one, otherwise, the
value was set to zero. First, univariate logistic regression
models were used to examine the association between BU
presence and an individual variable. Then multivariable logis-
tic regression models were used to examine the association
between BU risk and the multiple variables simultaneously.
Before carrying out multivariable logistic regression, the col-
linearity between independent variables (landscape metrics)
was examined by Pearson correlation analysis and vari-
ance inflation factors (VIF). If the collinearity was identified
(e.g., r> 0.6, P < 0.01, or VIF > 5), only one of these corre-
lated variables was put into the model. The fit of model
was evaluated using Akaike’s Information (AIC) as the cri-
terion, which assumes the model is better fitted if the value
of AIC is smaller."® The association between the likelihood
of BU presence in a village and landscape metrics was
assessed by an odds ratio and 95% confidence intervals,
calculated from the logistic regression models. Since the
ranges of the metrics are different in magnitude (e.g., PD
ranged from 332 to 1,278, while SIDI ranged from 0.39 to
0.74), the effects of the increase by one unit in these metrics
are not comparable. To address this issue, we normalized
the metrics to obtain a reasonable scale,?? for example,
SIDI,cw = SIDI x 10. In addition, to evaluate how sensitive
the models to the reference village selection, univariable
logistic regression models were used to examine the associ-
ation between the presence of BU and landscape metrics
in BU endemic areas that included nine BU case villages
and four reference villages.

RESULTS

In total, 73 cases were confirmed in 11 villages between
2007 and 2010. Among these cases, 40 cases were male and
33 cases were female, 34% of total cases were young peo-
ple (0-19), 44% were adults (20-60), and 22% were older

people (60 and above). The highest number of cases was
reported in Dunkwa (33 cases), followed by Ayanfuri,
Subin, and Nkonya (14, nine, and five cases, respectively).
Pokukrom, Nkotumso, and Nyinawusu reported four cases
in each village. The remaining villages only reported one or
two cases (Supplemental Figure 2).

Land cover components between BU case villages and
reference villages were significantly different (Figure 2 and
Supplemental Table 2). At 4 km, except the percentage of
agricultural area, the percentages of other five types of land
cover classes were significantly different between BU cases
villages and references villages (P < 0.01). The differences
in land cover components between two groups of villages at
2 km were similar as those observed at 4 km, except the dif-
ferences in the percentages of urban, mining, and forest
areas were significant at the level of 0.05, instead of 0.01.
However, at 1 km, the differences in land cover components
between two groups of villages were only significant for
the percentages of water area (P < 0.05) and grassland
(P < 0.01). In the BU case villages, the percentage of agri-
culture was the dominant land cover class at all buffer
distances, followed by grassland, forest, urban, water, and
mining. As the buffer distance increased, the percentages
of agricultural area and forest increased, while the percent-
ages of urban area and grassland decreased. In the reference
villages, the predominant land cover classes differed signifi-
cantly with buffer distance. Agriculture was the predominant
land cover class at 1 and 2 km, while forest became the pre-
dominant land cover class at 4 km. Pearson correlation anal-
ysis of the percentages of land cover classes at 4 km indicated
that strong positive correlations (P < 0.01) existed between
water, grassland, and mining areas, while negative correla-
tions existed between forest and urban, and between forest
and agriculture (Supplemental Table 3).

Landscape patterns were significantly different between
BU case villages and reference villages at the radii of 4 and
2 km, but not significant at the radius of 1 km. At 4 km, PD,
ED, ENN_MN, and ENN_SD were different between BU
case and reference villages (P < 0.05). SHDI, SHEI, SIDI,
and SIEI also differed between BU case and reference
villages (P < 0.01). At 2 km, only SHDI, SHEI, SIDI, and
SIEI were significantly different, while no metrics were sig-
nificantly different between BU case villages and reference
villages at 1 km (Table 1 and Supplemental Table 4).

Univariate logistic regression showed PD, ED, and four
diversity indices (SHDI, SHEI, SIDI, and SIEI) were posi-
tively associated with BU across all villages (Supplemental
Table 5). The similar associations were obtained when only
villages in endemic areas were included in the models (Sup-
plemental Table 6). In the multivariable logistic regression
model, the above metrics had significantly positive associa-
tions with the presence of BU after controlling buffer radius
and the percentage of forest area. Specifically, model results
indicated that an increase in PD and ED by 100 units were
associated with the increases in likelihood of BU presence in
a village by 2.51 and 4.18 times, respectively. When diversity
indices increased by 0.1 units, the likelihood increased 2.50—
10.92 times (Table 2).

DISCUSSION

We compared land cover and landscape patterns in BU-
endemic areas with nonendemic areas and examined the
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FiGure 2. Comparison of land cover classes in villages with Buruli ulcer (BU) and without BU (the error represents 95% confidence inter-

val). #* P < 0.01, * P < 0.05.

association between landscape pattern and BU using high
resolution satellite images at multiple spatial extents. Our
results indicate that increases in land cover fragmentation
and landscape diversity were associated with the presence
of BU disease in a village in Ghana. The finding is consis-
tent with recent studies highlighting the close relationship
between human health and landscape changes due to distur-
bance."'%** Although the relationship between land cover
and BU disease has been examined in several studies,’!!

the comparison of fine-scale landscape patterns and associ-
ated metrics between endemic and nonendemic areas has
rarely been presented.’

It is increasingly recognized that landscape structure plays
an important role in disease transmission.”*® In terrestrial
systems, environmental changes driven by human activities
affect the form, size, and connectivity of patches in a land-
scape, leading to habitat fragmentation, which is considered
as a health risk because it may alter the density, abundance,

TaBLE 1

Comparison of landscape pattern metrics in BU case villages and reference villages with one-way ANOVA at different spatial scales

4 km (N = 20) 2 km (N = 20) 1 km (N = 20)
Variable Mean + SD (N = 60) F value P F value P F value P
PD 683 + 259 4.515 0.048 2.260 0.150 0.690 0.417
ED 588 + 139 6.112 0.024 2.810 0.111 0.640 0.436
ENN_MN 24.38 + 2.88 5.150 0.036 0.580 0.455 0.180 0.677
ENN_SD 30 + 8 6.540 0.020 0.610 0.443 0.070 0.797
SHDI 1.20 + 0.21 18.820 < 0.001 7.520 0.013 3.470 0.079
SHEI 0.62 + 0.11 19.460 < 0.001 7.430 0.014 3.000 0.100
SIDI 0.62 + 0.08 8.720 0.009 6.130 0.024 3.520 0.077
SIEI 0.73 + 0.10 8.850 0.008 6.370 0.021 3.400 0.082

ANOVA = analysis of variance; BU = Buruli ulcer; ED = edge density; ENN_MN = mean in Euclidean nearest neighbor distance; ENN_SD = standard deviation in Euclidean nearest neighbor
distance; MANOVA = multivariate analysis of variance; PD = patch density; SHDI = Shannon’s diversity index; SHEI = Shannon’s evenness index; SIDI = Simpson’s diversity index;
SIEI = Simpson’s evenness index; SD = standard deviation. Full names of metrics are described in the text. MANOVA test indicates the overall difference in landscape pattern between
BU case village and reference villages is significant at the radii of 4 km (F = 5.83, P = 0.007) and 2 km (F = 3.43, P = 0.042), but not significant at the radius of 1 km (F = 2.14, P = 0.135).



Multivariable logistic regression analysis of the association between BU risk and landscape metrics in southwestern Ghana

LANDSCAPE FRAGMENTATION AS A RISK FACTOR FOR BU

TABLE 2

67

OR
Model ID Variables B Point estimate 95% CI P AIC

1 PD,cw 0.92 2.51 1.36 4.61 0.003 54.32
Forest -0.12 0.89 0.83 0.95 < 0.001
Buffer radius 0.63 1.88 0.95 3.72 0.070

2 ED,cw 1.43 4.18 1.63 10.76 0.003 56.62
Forest -0.10 0.90 0.86 0.95 < 0.001
Buffer radius 0.59 1.80 0.93 3.49 0.083

3 SHDI,cw 0.91 2.50 1.52 4.09 < 0.001 52.12
Forest -0.08 0.93 0.89 0.97 0.001
Buffer radius 0.35 1.42 0.77 2.63 0.264

4 SHEI,.., 1.81 6.13 2.28 16.49 < 0.001 52.27
Forest -0.08 0.93 0.88 0.97 0.001
Buffer radius 0.37 1.45 0.78 2.69 0.240

5 SIDI, ey 2.39 10.92 2.84 41.98 0.001 52.30
Forest -0.09 0.91 0.87 0.96 < 0.001
Buffer radius 0.38 1.46 0.79 2.68 0.226

6 SIEIL cw 2.09 8.10 2.48 26.44 0.001 52.07
Forest -0.09 0.91 0.87 0.96 < 0.001
Buffer radius 0.39 1.48 0.80 2.74 0.207

AIC = Akaike’s information criterion; BU = Buruli ulcer; CI = confidence interval; ED = edge density; OR = odds ratio; PD = patch density; SHDI = Shannon’s diversity index; SHEI =
Shannon’s evenness index; SIDI = Simpson’s diversity index; SIEI = Simpson’s evenness index. PD,,, = PD/100; ED,,c.y = ED/100; SHDI,,o,, = SHDI x 10; SHEI,o\, = SHEI x 10; SIDI, ¢y, =

SIDI x 10; SIEI,e, = SIEI x 10. Each model has three independent variables, including buffer radius, the percentage of forest area and a landscape metric.

and geographic distribution of hosts, vectors, and pathogens
involved in disease transmission and change the ecology of
microorganisms,”’ as has been shown for Lyme disease in
the northeastern United States.”> As another example, habi-
tat fragmentation was associated with the increase in hanta-
virus hosts, potentially increasing the potential for an outbreak
of hantavirus infection in Panama.”” Our results reveal that
several landscape pattern metrics, for example, PD, ED,
SHDI, and SIDI, were significantly different between BU
case villages and reference villages, and two landscape frag-
mentation indices, PD and ED, were significantly and posi-
tively associated with BU presence in a village.

There are two primary reasons that fragmentation may be
associated with BU. First, landscape fragmentation increases
the probability that vectors in the preferred habitat encoun-
ter habitat edges, which results in a higher chance of the vectors
moving into other habitats, facilitating disease transmission.*®
Second, the increase in landscape fragmentation may enhance
human exposure to the disease, as evidenced by the effect of
forest fragmentation on Lyme disease.?* Specifically, the high
resolution satellite images revealed that many mining activi-
ties existed in the endemic areas, contributing to landscape
fragmentation®*; given the large number of people working
and living near mining communities or small scale farms, the
landscape structure of these environments may contribute to
increased exposure to the bacterium that causes the disease.
Both of these ideas will require further research.

Scale is an unavoidable issue in ecology because it influ-
ences the results of landscape pattern analysis.® In this
study, we analyzed landscape pattern around each village at
three spatial extents (radii at 1, 2, and 4 km), which were
also used in other studies to analyze landscape context.”® In
a study on the relationship between BU and landscape met-
rics in Benin, radii from 0.8 to 2 km were used,’” which were
also included as radii in this study. Our results indicated that
eight metrics were significantly different between BU case
villages and reference villages at the distance of 4 km, four
metrics were significantly different at the distance of 2 km,

while none were significantly different at the distance of
1 km, suggesting the importance of landscape heterogeneity
and context at broader spatial extents, consistent with the
result from a previous study.?’ Collectively, the MANOVA
suggested results were different at 4 and 2 km but not signifi-
cant at 1 km. Both mean and standard deviation of land-
scape metrics declined with increasing radii, indicating that
the difference was not caused by changes in variance with
scale (Supplemental Table 3). Moreover, the landscape met-
rics are calculated at patch, class, or landscape levels, not
for individual pixels, constraining the influence of increased
sampling units with scale. Finally, the multivariate regression
indicated a greater influence of landscape metrics and land
cover than distance, per se.

Ultimately, understanding the effects of landscape struc-
ture on disease transmission can help to predict and control
disease outbreaks. To date, the use of land cover and land-
scape pattern metrics as predictors for BU presence or risks
has been explored.7’9’30 However, studies on the relationship
between landscape diversity and BU disease are still rare.
Brou and others® reported that landscape diversity was
related to BU in Cote d’Ivoire. They found that the BU
risk zones were located at irrigated rice field cultures areas,
banana fields, and areas close to dams used for irrigation.
However, their study did not measure any landscape diver-
sity index and quantify the relationship between BU and the
landscape diversity index. Campbell and others’ examined
three landscape metrics with BU risks but did not find posi-
tive associations, which could be explained by several rea-
sons. First, Campbell and others examined the landscape at
relatively small scales (radii ranged from 0.8 to 2 km). Our
study showed that stronger associations were observed at
4 km. Second, Campbell and others used Landsat ETM +
imagery with the spatial resolution of 30 m, which is rela-
tively coarse and not favorable for landscape pattern analy-
sis. In addition, Campbell and others only chose a limited set
of metrics (three). Our study used higher resolution imagery,
broader spatial extents, and a broader set of metrics, and
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revealed positive associations between BU with several land-
scape fragmentation and diversity metrics.

In this study, we used metrics to quantify landscape diver-
sity for each village and found that they were significantly
different between BU case villages and reference villages at
the 4 km extent. The results suggested that landscape con-
text could be used to predict BU presence at the village
level. It follows that these metrics can be used to prioritize
the location of conservation and health treatment activities,
independent of the availability of disease data, which is often
limited and uncertain in rural areas.

It should be cautioned that the BU cases used in this
study were collected from hospitals and clinics only. There-
fore, patients who did not visit hospitals or clinics were not
recorded in our dataset. In addition, BU cases were con-
firmed through symptoms but not laboratory tests. It cannot
completely rule out false-positive patients. As a result, our
BU cases might be either underestimated or overestimated.

In summary, our analyses demonstrated the connection
between land cover disturbance and BU disease in south-
western Ghana. Specifically, we found that there were sig-
nificant differences in landscape pattern metrics between
BU case villages and reference villages, suggesting that the
increased fragmentation and diversity of landscape structure
may be potential risk factors for the emergence of BU dis-
ease. Understanding these connections may provide insights
to reduce the risk of BU disease in Ghana, and other areas
experiencing rapid land cover change and provide a metric
for prioritizing conservation and health activities in data-
poor regions.
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