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Functional Architectures of Local and Distal Regulation
of Gene Expression in Multiple Human Tissues

Xuanyao Liu,1,* Hilary K. Finucane,1,2 Alexander Gusev,1 Gaurav Bhatia,1 Steven Gazal,1

Luke O’Connor,1,3 Brendan Bulik-Sullivan,4,5,6 Fred A. Wright,7 Patrick F. Sullivan,8,9,10

Benjamin M. Neale,4,5,6 and Alkes L. Price1,4,11,*

Genetic variants that modulate gene expression levels play an important role in the etiology of human diseases and complex traits.

Although large-scale eQTL mapping studies routinely identify many local eQTLs, the molecular mechanisms by which genetic variants

regulate expression remain unclear, particularly for distal eQTLs, which these studies are not well powered to detect. Here, we leveraged

all variants (not just those thatpass stringent significance thresholds) to analyze the functional architectureof local anddistal regulationof

gene expression in 15 human tissues by employing an extension of stratified LD-score regression that produces robust results in simula-

tions. The top enriched functional categories in local regulation of peripheral-blood gene expression included coding regions (11.413),

conserved regions (4.673), and four histonemarks (p< 53 10�5 for all enrichments); local enrichmentswere similar across the 15 tissues.

We also observed substantial enrichments for distal regulation of peripheral-blood gene expression: coding regions (4.473), conserved

regions (4.513), and two histone marks (p < 33 10�7 for all enrichments). Analyses of the genetic correlation of gene expression across

tissues confirmed that local regulation of gene expression is largely shared across tissues but that distal regulation is highly tissue specific.

Our results elucidate the functional components of the genetic architecture of local and distal regulation of gene expression.
Introduction

Our understanding of the functional elements of the hu-

man genome has benefitted greatly from the explosion

of functional data generated by the ENCODE project and

the Roadmap Epigenomics Consortium.1,2 In particular, re-

searchers have gained new insights into the functional ef-

fects of genetic variants on many complex diseases and

traits.3–12 In parallel, large-scale expression quantitative

trail locus (eQTL) mapping studies in multiple human tis-

sues have revealed a large number of genetic variants that

affect gene expression13–19 (reviewed by Albert and Kru-

glyak20). Gene expression serves as an important interme-

diate cellular phenotype that affects complex diseases and

traits,21–24 and the functional effects of eQTLs provide

another lens through which researchers can investigate

molecular mechanisms.9,13–20,25–27

However, the underlying functional mechanisms of

eQTLs are still largely unclear. On one hand, previous

studies have produced different functional characteriza-

tions of local eQTLs (Table S1), possibly because of differ-

ences in the sets of annotations analyzed and/or the sam-

ple-size dependence of approaches that assess enrichment

by using only top eQTLs. On the other hand, functional

characterization of distal eQTLs has been limited,15,16

given that most studies are under-powered to detect distal

eQTLs.
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In this study, we extended a recently developed method,

stratified linkage disequilibrium (LD)-score regression,10

to partition the heritability of local and distal regulation

of gene expression across different functional categories.

Stratified LD-score regression makes use of summary asso-

ciation statistics of all genetic variants (not just the top sig-

nificant variants) and estimates the heritability explained

by each functional category while accounting for LD to

other functional categories; this approach is more power-

ful than other methods for detecting functional enrich-

ment (Figure 7 from Finucane et al.10). We extended the

method to produce aggregate estimates across all genes

for both local and distal regulation of gene expression;

our current simulations confirm that this extension to

gene expression data produces robust enrichment results.

By applying this method to large gene expression datasets

in multiple human tissues, we aimed to comprehensively

assess the functional enrichments of genetic variants on

local and distal regulation of gene expression and shed

light on the underlying molecular mechanisms.
Material and Methods

Gene Expression Datasets
Weanalyzedgeneexpression in15human tissues: peripheral blood

from Wright et al.,16 11 tissues with a sample size larger than 200
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Table 1. Gene Expression Datasets

Dataset Tissue Sample Size Data Type No. of SNPs
No. of Probes
and/or Genes

Wright et al.16 peripheral blood 3,754 expression array 1,142,515 42,044

GTEx19 adipose subcutaneous 298 RNA-seq 1,145,366 26,213

GTEx19 artery tibial 285 RNA-seq 1,141,287 24,383

GTEx19 cells – transformed fibroblasts 272 RNA-seq 1,145,366 22,963

GTEx19 esophagus mucosa 241 RNA-seq 1,131,019 25,070

GTEx19 esophagus muscularis 218 RNA-seq 1,130,356 24,416

GTEx19 lung 278 RNA-seq 1,144,671 27,671

GTEx19 muscle skeletal 361 RNA-seq 1,136,801 23,109

GTEx19 nerve tibial 256 RNA-seq 1,145,068 26,808

GTEx19 skin – sun exposed 302 RNA-seq 1,147,848 26,849

GTEx19 thyroid 278 RNA-seq 1,147,844 27,497

GTEx19 whole blood 338 RNA-seq 1,114,337 23,164

MuTHER13 adipose 776 expression array 878,954 22,058

MuTHER13 skin 667 expression array 878,954 22,058

MuTHER13 LCL 777 expression array 878,954 22,058

We analyzed gene expression data spanning 15 human tissues from three datasets. For each tissue, we list the sample size, data type, number of SNPs analyzed,
and number of probes and/or genes analyzed. We note that stratified LD-score regression restricts to HapMap 3 SNPs from the target dataset as a proxy for SNPs
with high-quality imputation.
from the Genotype-Tissue Expression (GTEx) project,19 and adi-

pose, skin, and lymphoblastoid cell lines (LCLs) from theMuTHER

cohort13 (Table 1). Our analyses required summary association sta-

tistics for genome-wide SNPs. For theWright et al. dataset, we used

summary statistics computed from the Netherlands Twin Registry

(NTR) and Netherlands Study of Depression and Anxiety (NESDA)

cohorts.16 Genotype and expression quality control and genotype

imputation were performed as previously described.16 Probe se-

quences were mapped to the human genome (UCSC Genome

Browser hg19), and probes with sequences that did not map, map-

ped to multiple locations, or overlapped a polymorphic SNP

(HapMap 3 and 1000 Genomes Project data) were removed. For

each gene, multiple probes were included if they passed quality

control. For the NTR cohort, t-statistics were computed for each

equally split twin set, and combined Z statistics were calculated

with empirical correlations among monozygotic and dizygotic

twins as previously described.28 Meta-analyzed Z statistics for the

NTR and NESDA cohorts were computed with inverse-variance

weighting by sample size. For the GTEx dataset, we used version 6

of the publicly available GTEx summary statistics in local re-

gions19 (seeWebResources). Genotype and expressionquality con-

trol was performed as previously described.19 Only reads that were

uniquely mapped, had proper pairs, and were contained 100%

within exon boundaries were included in gene-level read count.

One transcript per gene was used in our analyses. For the MuTHER

dataset, we recomputed local and distal summary statistics as

described in Grundberg et al.13 The use of raw genotypes and

expression profiles was approved by the King’s College London

Department of Twin Registry. Quality control of genotype and

expression is described in Grundberg et al.13 Only uniquely map-

ping probes with no mismatches and either an Ensembl or RefSeq

ID were retained for analysis. Probes encompassing a polymorphic

SNP (1000 Genomes Project release June 2010) were excluded. For
606 The American Journal of Human Genetics 100, 605–616, April 6,
each gene, multiple probes were included if they passed quality

control. Summary statistics were calculated with a two-step

mixed-model-based score test with the GenABEL and ProbABEL

packages29,30 (seeWeb Resources). The first step fits amixedmodel.

The fixed effects include age and batch for adipose and LCLs and

age, batch, and sampleprocessing for skin.Webuilt thekinshipma-

trix by randomly choosing 10,000 SNPs from the dataset. This step

was performed with the ‘‘polygenic()’’ function of the GenABEL

software. The second step performs a score test by using the

ProbABEL software. This step was performed with the –mmscore

option of the ProbABEL software.
Baseline Functional Categories
The57 functional categories thatwe analyzedconsist of 53baseline

categories10 (derived from 24 main annotations) that were deter-

mined to be important for complex traits and an additional four

categories (derived from two additional main annotations). The

26 main annotations were collected from various sources2,5,6,31–37

and included coding regions, untranslated regions (UTRs), pro-

moters, intronic regions, histone marks, DNase I hypersensitivity

sites (DHSs), predicted enhancers, conserved regions, and other

annotations (see below). We derived the 57 categories from the

26 main annotations by (1) adding a 500 bp window around

eachmain annotation as an additional category to keepheritability

estimates from being inflated by heritability in flanking regions

(see Finucane et al.10), (2) adding 100 bp windows around chro-

matin immunoprecipitation sequencing (ChIP-seq) peaks for

DHS, H3K4me1, H3K4me3, and H3K9ac annotations, and (3) add-

ing a category containing all SNPs.

All 57 functional categories are publicly available (see Web Re-

sources). The 26 main annotations are described in detail in Table

S2.We briefly describe a representative set of 14main annotations,
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ordered by annotation size (percentage of SNPs in the 1000 Ge-

nomes European reference genome), that are included in our

main figures (based on analyses that include all 57 annotations).

50 UTRs (0.5% of SNPs) and coding regions (1.5%) were derived

from RefSeq gene models and post-processed as previously

described.6 Transcription starting sites (TSSs, 1.9%) included com-

bined chromHMM and Segway annotations for six cell lines

obtained fromHoffman et al.34 Conserved regions (2.6%) inmam-

mals were obtained from Lindblad-Toh et al.32 and post-processed

as previously described.33 Promoters (3.1%) were also derived from

RefSeq gene models and post-processed as previously described.6

Enhancers (6.3%) were combined chromHMM and Segway anno-

tations for six cell lines obtained fromHoffman et al.34 H3K9ac an-

notations (12.6%) were a union across cell types, and the H3K9ac

marks for each cell type were obtained from Roadmap Epigenom-

ics1 and post-processed as previously described.5 Transcription fac-

tor binding sites (TFBSs, 13.2%) were obtained from ENCODE2

and post-processed as previously described.6 H3K4me3 annota-

tions (13.3%) were a union across cell types, and the H3K4me3

marks for each cell type were obtained from Roadmap Epigenom-

ics1 and post-processed as previously described.5 DHSs (16.8%)

were a union across cell types, and the DHSs for each cell type

were obtained from ENCODE2 and Roadmap1 and post-processed

as previously described.5 Super enhancers (Hnisz) (16.8%) were a

union across cell types and a subset of closely spaced H3K27ac

annotations from Hnisz et al.,36 given that super enhancers gener-

ally refer to sets of enhancers in close genomic proximity.38

H3K27ac (PGC2) marks (26.9%) were obtained from Roadmap1

and post-processed as previously described.37 H3K4me1 annota-

tions (42.7%) were a union across cell types, and the H3K4me1

marks for each cell type were obtained from Roadmap1 and

post-processed as previously described.5 Repressed annotations

(46.1%) were an intersection of chromHMM and Segway annota-

tions from six cell types.34 We finally note that the two additional

main annotations (not included in Finucane et al.10) consisted of

super enhancers and typical enhancers from Vahedi et al.39
Extension of Stratified LD-Score Regression
In a simple linear model,

yi ¼
X
j

Xijbj þ εi; (Equation 1)

where yi is a quantitative phenotype in individual i, Xij is the stan-

dardized genotype of individual i at SNP j, bj is the effect size of SNP

j, and εi is mean-zero noise. The total SNP heritability is defined as

h2
gðtotalÞ ¼

X
j

b2
j ; (Equation 2)

and the SNP heritability of category C is defined as

h2
gðCÞ ¼

X
j˛C

b2
j : (Equation 3)

Stratified LD-score regression10 (see Web Resources) relies on the

fact that LD to a functional category enrichedwith heritability will

increase the c2 association statistics of a SNP more than LD to

other categories. More precisely,

E
�
c2

� ¼ N
X
c

tc lðj;CÞ þNaþ 1; (Equation 4)

whereN is the sample size, l(j,C) is the LD score of SNP j to category

C, defined as lðj;CÞ ¼ P
k˛Cr

2ðj; kÞ, and ameasures the contribution
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of confounding biases. (In this study, we employed constrained-

intercept LD-score regression,40 inwhicha is fixedat 0.) Performing

multiple linear regression of c2 on lðj;CÞ gives us an estimate ctC of

the coefficient tC, which represents the per-SNP contribution to

heritability of each category C. We estimate h2
gðCÞ via

ch2
g ðCÞ ¼

X
j˛C

dVar�bj

� ¼ X
j˛C

X
C0

:j˛C0
ctC0 : (Equation 5)

We applied stratified LD-score regression for both local and distal

regions of each gene.We defined local regions as the regions within

1Mbof the TSS of each gene and defined distal regions as the rest of

the genome (to be consistent with previous studies16). To test

whether the definition of local regions would affect our results, we

also considered a different definition of local regions (within 2 Mb

of the TSS) and determined that the estimates were not sensitive to

this choice (see Results). We used the 1000 Genomes (phase 1)

Europeans41 as a reference panel to calculate LD scores. Thus, the

LD score l(j,C) for regression SNP j is computed with reference SNP

k from 1000 Genomes with minor allele count > 5. In local and

distal analyses, reference SNPs were restricted to SNPs in local and

distal regions, respectively, and LD scores were calculated as

lðj;CÞ ¼ P
k˛C;k in localðdistalÞregionsr

2ðj; kÞ, such that we did not include

the effects of SNPs outside the local and distal regions, respectively.

Although we had access to individual-level genotype data, we used

1000Genomes instead of in-sample LDas a reference panel to calcu-

late LD scores because stratified LD-score regression requires LD

scores computedwith all 1000Genomes reference SNPswithminor

allele count> 5. Following Finucane et al.,10 we excluded SNPswith

c2 statistics > 80 to reduce variance. We evaluated different c2

thresholds (excluding SNPs with c2 > 25, 40, 80, or 300). In both

local and distal analyses, the estimated enrichments were not sensi-

tive to the choice of threshold (see Results). Following Finucane

et al.,10 we included in our regression only SNPs that appear in

HapMap 3, which we used as a proxy for well-imputed SNPs.

To obtain a genome-wide estimate of the proportion of heritabil-

ity of a category, prop h2
gðCÞ, for either local or distal regions, we

first calculated the average ctC and tC across all genes:

tC ¼
X
gene i

dtC;i : (Equation 6)

We included only genes whose total heritability estimate,ch2
g ðtotalÞ, was larger than 0.We applied this threshold both because

negative heritability is biologically infeasible and because this

reduced estimation noise and resulted in more stable estimates (see

Results). We then computed the average category-specific heritabil-

ity, h2
gðCÞ, and divided by the average total heritability h2

gðtotalÞ:

prop h2
gðCÞ ¼

h2
gðCÞ

h2
gðtotalÞ

¼
P

C0tC0MC0^CP
CtCMC

; (Equation 7)

where h2
gðCÞ denotes the average estimated heritability of category

C, h2
gðtotalÞ denotes the average total estimated heritability, MC is

the number of reference SNPs in category C, andMC0 ^C is the num-

ber of overlapping SNPs between categories C0 and C.

The enrichment of heritability is defined as

enrichmentðCÞ ¼ prop h2
gðCÞ

prop SNPsðCÞ; (Equation 8)

where prop SNPsðCÞ is the proportion of reference SNPs that lie in

category C.
rican Journal of Human Genetics 100, 605–616, April 6, 2017 607



Standard errors (SEs) were computed via block jackknife.

In detail, we computed the SE of prop h2
gðCÞ by partitioning

the genes by genomic location into 200 adjacent blocks and

jackknifing on genes. This accounts for possible correlations be-

tween nearby probes (analogous to the block jackknife on SNPs

employed by stratified LD-score regression10). We computed

the SE of enrichmentðCÞ by dividing the SE of prop h2
gðCÞ

by that of prop SNPsðCÞ. We computed the statistical sig-

nificance of enrichment by using a normal approximation.

We used the significance threshold of 0.05/nC, where nC is

the number of categories analyzed, to correct for multiple

testing.

We also computed an area-under-the-curve (AUC) metric,

which quantifies the fact that larger categories (i.e., spanning a

larger fraction of the genome) are more informative than smaller

categories at a given enrichment level. In detail, for each cate-

gory, we calculated the area A under the curve y ¼ f(x), where

y is prop h2
gðCÞ and x is prop SNPsðCÞ (0 % x % 1). We defined

the AUC as A if A R 0.5 or as 1 � A if A < 0.5 (so that the

AUC of a category would be equal to the AUC of its comple-

ment). The SE of the AUC is calculated as the SE of prop h2
gðCÞ

divided by 2.
Simulations
We performed null simulations to assess type I error and causal

simulations to assess bias in estimates of local enrichment from

our extension of stratified LD-score regression. We focused our

simulations on analyses of local enrichment because analyses

of distal enrichment are very similar to the original version of

stratified LD-score regression, which has been shown by previous

simulations to produce robust results (Figures 1 and 2 from Finu-

cane et al.10). Simulations were performed with genotypes from

UK10K.42 Quality control included removing SNPs with minor

allele frequency < 0.01, missingness > 0.01, or Hardy-Weinberg

equilibrium p < 10�6. We randomly downsampled to one million

SNPs to match the SNP density of the real datasets analyzed

(Table 1). We simulated 42,000 gene expression phenotypes

(corresponding to 42,000 Wright et al. probes; Table 1) by using

genotypes from local regions, defined as within 1 Mb of the TSS

of a gene. We assumed a non-infinitesimal, additive model in

which 5% of SNPs (in local regions) are causal. In null simula-

tions, local SNPs affect gene expression phenotypes, but no func-

tional categories were enriched (tall SNPs ¼ 2 3 10�4 and tC ¼ 0

for all other categories), and the local heritability of each gene

was set to 0.149. In causal simulations, super enhancers from

Vahedi et al.39 (super enhancer [Vahedi], 2.1% of SNPs) and

H3K27ac (PGC2) (26.9% of SNPs) were chosen as representative

causal enriched categories, whereby tall SNPs ¼ 5 3 10�5 and

tsuper enhancerðVahediÞ ¼ tH3K27acðHniszÞ ¼ 5 3 10�4. We used super

enhancer (Vahedi) instead of super enhancer (Hnisz) to represent

small functional annotations (i.e., spanning a small fraction

of the genome) and thus were able to assess the robustness of

our methods for small annotations. The local heritability of

each gene was set to 0.221 in causal simulations. In both null

and causal simulations, we assessed the accuracy of both enrich-

ment estimates and block-jackknife SEs via ten rounds of

simulations.
Extension of Cross-Trait LD-Score Regression
Cross-trait LD-score regression40 relies on the fact that SNPs with

high LD scores will have a higher product of Z scores (for two
608 The American Journal of Human Genetics 100, 605–616, April 6,
genetically correlated traits) on average than SNPs with low LD

scores. More precisely,

E
�
z1jz2j

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
rg

M
lj þ rNsffiffiffiffiffiffiffiffiffiffiffiffi

N1N2

p ; (Equation 9)

whereNi is the sample size for study i, rg is genetic covariance,M is

the number of SNPs, lj is the LD score of SNP j, defined as

lj ¼
P

kr
2ðj; kÞ, Ns is the number of overlapping samples in the

two studies, and r is the phenotypic correlation among the over-

lapping samples.

In the simplemodel definedby Equation1, let bj be the effect size

of trait 1 at SNP j, and let gj be the effect size of trait 2 at SNP j. The

genetic covariance between trait 1 and trait 2 is defined as

rg ¼
X
j

bjgj: (Equation 10)

Genetic correlation is defined as

rg ¼
rgffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
g1h

2
g2

q : (Equation 11)

Regressing the product of Z scores of two traits on lj gives crg , an
estimate of rg. We can also estimate h2

g1 and h2
g2 from standard LD-

score regression;43 the genetic correlation can be estimated from

Equation 11.

We extended cross-trait LD-score regression to estimate, for a

givenpair of tissues, the aggregate genetic correlationof the expres-

sion over a large set of common probes between two tissues. We

included all probes with positive heritability estimates in each of

the two tissues. We estimated genetic correlation separately for

local and distal regions. For each pair of tissues and each common

probe i, we estimated the genetic covariance ðcrg;iÞ, as well as the to-

tal heritability of probe i in each tissue (bh2

g1;i and
bh2

g2;i). The aggre-

gate genetic correlation across all shared probes is estimated as

brg ¼ rgffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
g1h

2
g2

q ; (Equation 12)

where rg, h
2
g1, and h2

g2 are the averages ofcrg , bh2

g1;i, and
bh2

g2;i, respec-

tively, taken over probes i, whose bh2

g1;i and
bh2

g2;i are both greater

than 0. We estimated the SEs of brg by dividing the probes by

genomic locations into 200 blocks and performing a block jack-

knife on the probes as in Bulik-Sullivan et al.40
Software Availability
Open-source software implementing our extensions of stratified

LD-score regression and cross-trait LD-score regression is publicly

available as part of the LD-score regression software (see Web

Resources).
Results

Simulations

We performed null simulations, in which local SNPs affect

gene expression phenotypes but no functional categories

were enriched, to assess type I error of local enrichment

estimates of our extension of LD-score regression (see

Material and Methods). Type I error was well calibrated

across ten simulations: tall SNPs was accurately estimated
2017
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B

Figure 1. Simulations Assessing Type I Error and Bias of Local
Enrichment Estimates
(A) Null simulations demonstrate well-calibrated type I error,
given that estimated functional enrichments (average across ten
simulations) are not statistically different from 1 after Bonferroni
correction. Error bars represent 95% confidence intervals based
on empirical SEs of the average enrichment across ten simulations.
(B) Causal simulations demonstrate unbiased estimates of func-
tional enrichments. Red dots represent the true expected enrich-
ments. Center bars represent estimated enrichments (average
across ten simulations). Error bars represent 95% confidence inter-
vals based on empirical SEs of the average enrichment across
ten simulations. Although some estimated enrichments lie just
outside the 95% confidence intervals, they are not statistically
different from the true enrichments after Bonferroni correction.
Results are displayed for a representative set of 14 categories; nu-
merical results for all 57 categories (for null and causal simula-
tions) are reported in Tables S4 and S5.
(Table S3), and the enrichments of all 57 categories were

not statistically different from the true enrichment of 1

(Figure 1A and Table S4).

We also performed causal simulations to assess bias in

local enrichment estimates by using super enhancer (Va-

hedi) andH3K27ac (PGC2) as the causal enriched categories

(see Material andMethods). We note that true local enrich-

ments of non-causal functional categories are different
The Ame
from 1 because of overlap with causal categories (Table

S5). We observed unbiased estimates of local enrichment

across ten simulations for all 57 functional categories,

including those occupying less than 1% of the whole

genome (Figure 1B and Table S5).

To evaluate whether the block-jackknife SEs were well

calibrated, we compared them with empirical standard de-

viations across null and causal simulations.We determined

that block-jackknife SEs were well calibrated: on average

across 57 categories, they were 1.0443 larger than the

empirical standard deviations from ten null simulations

(Table S4) and 1.0043 larger than the empirical standard

deviations from ten causal simulations (Table S5).

The average local heritability across genes in tennull sim-

ulations was estimated to be 0.151 (SE ¼ 0.0001; range ¼
0.1505–0.1520; actual h2

g ¼ 0.149), and the average local

heritability across genes in ten causal simulations was esti-

mated to be 0.203 (SE ¼ 0.0003; range ¼ 0.2019–0.2044;

actual h2
g ¼ 0.221), indicating close to unbiased estimates

of total local heritability. More than 99% of the simulated

genes were estimated to have h2
gðtotalÞ larger than 0 in the

causal simulations. To assess whether restricting the anal-

ysis to genes with positive estimated heritability would

create bias, we performed additional simulations in which

the local heritability of each gene was set to 0.022, causing

more genes to have negative estimated heritability. Our re-

sults showed that choosing different thresholds onch2
g ðtotalÞ did not affect our estimates of local enrichment

(Figure S1).

Functional Architectures of Local Regulation of Gene

Expression in 15 Human Tissues

We partitioned local gene expression heritability across

functional categories in three datasets spanning 15 human

tissues13,16,19 (Table 1; see Material and Methods). We

analyzed 57 functional categories: 53 baseline categories

from Finucane et al.10 and four categories based on super

enhancers and typical enhancers fromVahedi et al.39 (Table

S2; see Material and Methods). We estimated the enrich-

ment of each functional category, defined as the proportion

of heritability in that category divided by the proportion of

SNPs in that category (see Material and Methods).

We first analyzed the Wright et al. gene expression array

dataset, which had the largest sample size (n ¼ 3,754) and

included only a single tissue type, peripheral blood.16

Many functional categories were significantly enriched

(Figure 2A; Table S6); several of these have been implicated

in previous studies9,13–20,25–27 (Table S1), but some have

not. We observed that conserved regions were significantly

enriched (4.663; SE ¼ 0.57; p ¼ 1.98 3 10�10). Although

the function of conserved regions in gene regulatory pro-

grams has previously been reported in yeast,44 previous ev-

idence of functional enrichments of conserved regions on

gene expression in humans is limited.25,26 We further

determined that the enrichment observed in conserved re-

gions is largely attributed to conserved coding regions

(15.773; SE ¼ 1.48; p < 10�12; Figure S2A). However, this
rican Journal of Human Genetics 100, 605–616, April 6, 2017 609
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Figure 2. Functional Enrichments for Local Regulation of Gene
Expression
(A) Local enrichment of each category in peripheral blood (Wright
et al. dataset, n ¼ 3,754). Error bars represent 95% confidence in-
tervals. Results for the AUC metric are displayed in Figure S6.
(B) Local enrichment of each category across 15 tissues. Purple
shading indicates enriched categories (enrichment > 1), orange
shading indicates depleted categories (enrichment < 1), and aster-
isks indicate significant enrichment or depletion after correction
for 57 hypotheses tested. Sample sizes of each dataset are reported
in Table 1. Results are displayed for a representative set of 14 cate-
gories; numerical results for all 57 categories are reported in Table
S6, Tables S7 and S8. Estimates of the total local h2

g for each tissue
(average across all genes) are provided in Table S18. A description
of each functional category is provided in Table S2.
is not the case in complex traits, for which overlapping

conserved coding regions and conserved non-coding re-

gions were equally enriched (Figure S2B). Super enhancer

(Hnisz) was also significantly enriched (2.333; SE ¼ 0.26;

p ¼ 4.82 3 10�7), supporting the role of super enhancers

in local regulation of gene expression.

We also confirmed and quantified functional enrich-

ments reported in previous studies of local regulation of

gene expression in humans. We observed a large enrich-
610 The American Journal of Human Genetics 100, 605–616, April 6,
ment in coding regions (11.413; SE ¼ 0.87; p < 10�12),

which confirmed previous findings9,14 (Table S1) and is

consistentwith a recent study reporting that exonic regions

are often involved in transcription factor binding45 or

contain splicing signals.46 This suggests that the impact of

coding variants on complex traits could sometimes be due

to their effect on expression levels rather than changes in

protein sequences. The histone marks H3K4me3, H3K9ac,

H3K4me1, and H3K27ac (PGC2) were significantly en-

riched (1.663–3.203; SE ¼ 0.16–0.27; p ¼ 4.93 3 10�5 to

1.11 3 10�16), consistent with previous findings14,19,26

(Table S1) and confirming the role of histonemarks in local

regulation of gene expression. 50 UTRs were also signifi-

cantly enriched (10.303; SE ¼ 1.46; p ¼ 1.68 3 10�10).

This enrichment could be driven by the promoter

(4.773; SE ¼ 0.39; p < 10�12), which overlaps the 50 UTR

and directly affects transcription and other regulatory se-

quences in the 50 UTR, such as upstream open reading

frames.47,48 We also observed significant enrichments at

DHSs, enhancers, and TFBSs, consistent with previous

studies (Table S1).

We analyzed additional RNA sequencing (RNA-seq)

(GTEx) and gene expression array (MuTHER) datasets span-

ning a total of 15 tissues (Table 1; see Material and

Methods). Theheritability enrichmentswere highly consis-

tent across the 15 tissues, despite thewidely varying sample

sizes and different assays (Figure 2B; Tables S6–S8), which

indicates that the functional architecture of local regula-

tion of gene expression is consistent across different tissues.

We note that in contrast to stratified LD-score regression,

methods for assessing functional enrichment with only

top eQTLs could produce enrichment estimates that are

highly dependent on sample size (see Discussion).

We compared the functional enrichments that we esti-

mated for local regulation of gene expression in peripheral

blood with functional enrichments that we previously re-

ported for a meta-analysis of nine independent complex

traits10 for 53 baseline functional categories. We observed

amoderately strong correlation (inverse-variance-weighted

Pearson r ¼ 0.66; Figure 3). The enrichments for local regu-

lation of gene expression were comparable to the enrich-

ments for complex traits for most functional categories:

enrichments for only 3 and 2 out of 53 categories were

significantly smaller and larger, respectively, for local regu-

lation of gene expression after Bonferroni correction (Table

S9). In particular, conserved regions exhibited a signifi-

cantly lower enrichment in local regulation of gene expres-

sion, suggesting that variants in conserved regions could

affect complex traits throughmechanisms other than local

regulation of gene expression. Notably, because of the large

number of genes in each gene expression dataset, analyzing

gene expression as an intermediate phenotype generally re-

sulted in smaller SEs than analyses of complex traits in very

large sample sizes, leading to enrichments that were more

statistically significant (Figure 3; Table S9). Thus, gene

expression data can be a particularly valuable means of as-

sessing functionally important genomic regions.
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Figure 3. Comparison of Functional Enrichments for Local
Regulation of Gene Expression in Peripheral Blood and Nine
Complex Traits
Enrichments for complex traits are meta-analyzed enrichments of
nine complex traits and diseases from Finucane et al.10 Error bars
represent 95% confidence intervals. The red dashed line represents
y¼ x. Results are displayed for a representative set of 14 categories;
numerical results for all 53 categories are reported in Table S9.
H3K27ac (PGC2) is denoted as H3K27ac in the figure. A descrip-
tion of each functional category is provided in Table S2.
We performed several secondary analyses that did not

substantially change our results. First, we included dis-

tance from the TSS (510, 20, and 30 kb from the TSS of

the corresponding gene) as additional functional cate-

gories to assess whether distance from the TSS might

explain some of the observed enrichments. The annota-

tion defined by510 kb to the TSS exhibited the largest in-

crease in per-SNP heritability when conditioned on other

annotations (t) among all annotations in the model,

consistent with previous work emphasizing the impor-

tance of distance to TSS.25 However, no significant differ-

ences were observed in t estimates for other functional

categories after the distance-to-TSS annotations were

included in the model (Figure S3). This indicates that the

enrichments we observed for other functional categories

are independent of the effect of distance to TSS. Second,

we evaluated whether estimates of local enrichment are

sensitive to the definition of local regions. We extended

local regions from 1 to 2 Mb around the TSS and ob-

tained comparable results (Figure S4). Third, we evaluated

whether estimates of local enrichment are sensitive to

the choice of threshold on c2 statistics (see Material and

Methods). We applied different c2 thresholds (excluding

SNPs with c2 > 40, 80 [default], and 300) and obtained

comparable results (Table S10). Fourth, we evaluated the

impact of the choice of ch2
g ðtotalÞ threshold on estimates

of local enrichment (see Material and Methods). We deter-

mined that applying a threshold on ch2
g ðtotalÞ reduces the
The Ame
estimation noise and that enrichment estimates are stable

as long as the probes with extremely negative estimates are

removed (Figure S5 and Table S11). We also modified the

analysis by including only probes whose heritability esti-

mates were significantly positive (p < 0.05 before Bonfer-

roni correction). The enrichment was also consistent

with the estimates obtained after application of ch2
g ðtotalÞ

thresholds (Figure S5).

Functional Architectures of Distal Regulation of Gene

Expression in Four Human Tissues

Functional characterization of distal regulation of gene

expression has been limited because of the low statistical

power to identify distal eQTLs. We partitioned distal gene

expression heritability across functional categories in

four human tissues. We first analyzed the Wright et al.

gene expression array dataset.16 Many functional cate-

gories were significantly enriched in the distal analysis

(Figure 4A; Figure S6 and Table S12). In particular, we again

observed significant enrichments at conserved regions

(4.513; SE ¼ 0.41; p < 10�12), coding regions (4.473;

SE ¼ 0.52; p ¼ 1.79 3 10�11), and super enhancer (Hnisz)

regions (1.823; SE ¼ 0.03; p < 10�12). To test the hypoth-

esis that only SNPs in expressed genes should affect expres-

sion levels of other genes distally, we added an additional

coding annotation by considering coding regions of highly

expressed genes in whole blood (RPKM > 5 in GTEx whole

blood; 8% of genes). We observed a substantially larger

enrichment of 17.233 (SE ¼ 5.76; p ¼ 0.005; see Table

S13), which is consistent with an important contribution

of expressed genes (such as transcription factors) in the

distal regulatory control of gene expression. To our knowl-

edge, the enrichment in distal coding regions of expressed

genes has not been reported in previous studies in humans

or model organisms.20 In addition, two histone marks

were significantly enriched: H3K27ac (PGC2) (1.563;

SE ¼ 0.06; p < 10�12) and H3K4me3 (1.563; SE ¼ 0.11;

p ¼ 2.29 3 10�7). H3K4me1 and H3K9ac were not signifi-

cant after correction for 57 hypotheses tested, but broadly

defined H3K4me1 regions (H3K4me1 extended by 500 bp;

60.9% of SNPs) explained 98.0% of distal heritability

(1.613; SE ¼ 0.02; p < 10�12). These results suggest that

most SNPs that affect distal gene regulation lie near regions

marked by H3K4me1. We note that previous studies of

distal eQTLs in blood reported distal enrichments only in

50 UTRs16 (whose enrichment in our analyses was not sta-

tistically significant after correction for multiple testing:

2.963; SE ¼ 0.80; p ¼ 0.013) and in enhancer regions of

myeloid and lymphoid cell lines15 (we similarly detected

distal enrichment in enhancers as defined by Hoffman

et al.34: 2.583; SE ¼ 0.20; p < 10�12). We are not aware

of any other previous results on distal enrichment.

We compared the enrichments in distal regulation of

gene expression with the local enrichments estimated

above across the 57 categories and observed a strong cor-

relation (inverse-variance-weighted Pearson r ¼ 0.90;

Figure 4B; Table S12). The enrichments in distal and local
rican Journal of Human Genetics 100, 605–616, April 6, 2017 611
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Figure 4. Functional Enrichments for Distal Regulation of Gene
Expression
(A) The distal enrichment of each category in peripheral blood
(Wright et al.16 dataset, n ¼ 3,754). Error bars represent 95% con-
fidence intervals. Results for the area under curve (AUC) metric are
displayed in Figure S6.
(B) Comparison of functional enrichments for distal gene expres-
sion regulation versus local gene expression regulation in periph-
eral blood. Error bars represent 95% confidence intervals. The
red dashed line represents y ¼ x. H3K27ac (PGC2) is denoted as
H3K27ac in the figure. A description of each functional category
is provided in Table S2.
regulation of gene expression were comparable for most

functional categories: enrichments for only 11 and 4 out

of 57 categories were significantly smaller and larger,

respectively, for distal regulation of gene expression after

Bonferroni correction (Table S12). This suggests that the

dearth of previously reported functional enrichments for

distal regulation of gene expression is due to the low power

of approaches based on top distal eQTLs (which most

studies are underpowered to detect) and not due to the

absence of functional enrichments.

We performed two secondary analyses. First, we evalu-

ated the impact of applying a ch2
g ðtotalÞ threshold on esti-

mates of distal enrichment (see Material and Methods).

Similar to local analyses, we determined that applying a

threshold produces quantitatively smaller but more precise

estimates (Figure S5C and Table S11C). Second, we esti-

mated functional enrichments separately for intra- and
612 The American Journal of Human Genetics 100, 605–616, April 6,
inter-chromosomal distal regions. We observed that the

enrichment of inter-chromosomal distal regions was com-

parable to the total distal enrichment, indicating that func-

tional elements on chromosomes different from those of

the expressed gene are actively involved in regulation of

gene expression (Figure S7 and Table S14). In particular,

this implies that the definition of distal regions (which in-

cludes intra-chromosomal regions > 1 Mb from the TSS)

has little effect on enrichment estimates. In some cases,

larger enrichments were observed for inter-chromosomal

distal regions than for intra-chromosomal distal regions,

but many of these differences were not statistically signif-

icant and could be due to estimation noise.

We also analyzed distal enrichment in theMuTHER gene

expression array dataset (Table 1) and observed many sig-

nificant enrichments (Figure S8 and Table S15). We did

not include the GTEx dataset in the distal analysis because

of its smaller sample size.
Genetic Correlation of Gene Expression between

Different Tissues

We extended cross-trait LD-score regression40 to estimate

the pairwise genetic correlations of local gene expression

between different tissues (see Material and Methods). Pair-

wise genetic correlations were estimated separately in 11

GTEx tissues and in three MuTHER tissues (Figure 5; Tables

S16 and S17). The average pairwise genetic correlation was

0.75 (average SE ¼ 0.02). The lowest genetic correlation

was observed between adipose tissue and skin in MuTHER

data (r ¼ 0.51; SE ¼ 0.17), although it was not statistically

significant in comparison with correlations from other

MuTHER data. The remaining 57 pairwise correlations

were all larger than 0.675, indicating that local regulation

of gene expression is highly correlated across tissues,

consistent with previous studies.13,19,49–51

We also estimated the pairwise genetic correlations of

distal gene expression between the three MuTHER tissues

(Figure 5; Table S17). Interestingly, the average pairwise

genetic correlation was much smaller at 0.08 (average

SE¼ 0.01), indicating that distal regulation of gene expres-

sion is highly tissue specific. This is consistent with previ-

ous work,49 although relatively few previous studies have

investigated the sharing of distal regulation of gene expres-

sion across tissues because of the low power to detect distal

eQTLs. We also note that this does not contradict our

finding of consistent distal enrichments across tissues

(Figure S8), because it is possible that different tissues

have different distal eQTLs that nonetheless reside in the

same functional categories.
Discussion

In this study, we comprehensively investigated functional

enrichments for both local and distal regulation of gene

expression in multiple human tissues by applying an

extension of stratified LD-score regression10 to large gene
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Figure 5. Pairwise Local and Distal Ge-
netic Correlation across Tissues
(A) Pairwise local genetic correlations
across 11 GTEx tissues.
(B) Local (upper left) and distal (lower
right) genetic correlations across three
MuTHER tissues. Numerical results are re-
ported in Tables S16 and S17.
expression datasets. We detected widespread functional

enrichments for both local and distal gene regulation,

including enrichments at coding regions, conserved re-

gions, super enhancers, and several histone marks; some

of the local enrichments and most of the distal enrich-

ments were not identified in previous studies (Table S1).

We also confirmed that local regulation of gene expression

is highly genetically correlated across tissues, whereas

distal regulation is highly tissue specific.49

The functional enrichments that we detected for local

regulation of gene expression were generally more statisti-

cally significant than enrichments that we previously re-

ported for analyses of complex traits in very large sample

sizes.10 This emphasizes the value of studying gene expres-

sion as an intermediate phenotype for studying complex

diseases and traits, particularly in analyses of functional

enrichment. Our systematic investigation of enrichment

of local regulation of gene expression across 15 tissues iden-

tified highly consistent enrichments across tissues, despite

the widely varying samples sizes and different assays.

This conclusion was possible because the heritability

approach employed by stratified LD-score regression pro-

duces enrichment estimates that are independent of sam-

ple size,10 in the sense that small sample size does not

bias point estimates (although small sample size could limit

power to detect significant enrichments). On the other

hand, methods for assessing functional enrichment by us-

ing only top eQTLs could be highly dependent on sample

size because the enrichment of associated variants in regu-

latory annotations could vary with effect size (see Table 1

from Sveinbjornsson et al.11). In addition, our results on

enrichment of distal regulation of gene expression repre-

sent a substantial advance over previous results on func-

tional enrichment of distal eQTLs, which were limited by

the small number of individually significant distal eQTLs

detected by previous studies. Our results highlight the

advantages of leveraging genome-wide polygenic signals
The American Journal of Human
over restricting to top eQTLs in efforts

to identify functional enrichments.

Our work has several limitations.

First, stratified LD-score regression

models only additive effects and

cannot capture non-additive effects or

epistasis, which could play an impor-

tant role in regulating gene expres-

sion.52–56 Second, stratified LD-score

regression analyzes summary-level

data and thus does not take advantage
of the additional information available in individual-level

data. Although functional-enrichment analyses of individ-

ual-level data can be performed with restricted maximum

likelihood (REML) and its extensions,57–59 those methods

are applicable only to a small number of non-overlapping

functional annotations; to our knowledge, all current

methods that are applicable to a large number of overlap-

ping functional annotations are based on summary statis-

tics,60 whereas analyzing one annotation at a time can pro-

duce severely biased results (see Figure 2b from Finucane

et al.10). Third, stratified LD-score regression is designed

for highly polygenic traits and does not take full advantage

of non-infinitesimal genetic architectures, which are a

particularly likely characteristic of local regulation of gene

expression.61 Our highly consistent local enrichments

across 15 tissues indicate that the method does produce

robust results for analyses of local gene expression, but

methods that account for non-infinitesimal genetic archi-

tectures might produce even more precise estimates. How-

ever, to our knowledge, existing methods for heritability

analysis that model non-infinitesimal genetic archi-

tectures62,63 are not applicable to enrichment analyses

involving a large number of overlapping functional annota-

tions. Fourth, stratified LD-score regression is designed to

partition the heritability explained by common variants,

but rare variants could also play an important role in regu-

lating gene expression.64 Fifth, the functional enrichments

thatwe inferred are relative local anddistalh2
g values that are

small in absolute terms (Tables S18 and S19); however, other

studies have also inferred low values of gene expression

heritability.13,16,24 The low average estimates of heritability

canbeattributed to environmentalnoise, includingnoise in

measurements of gene expression. (The fact that individual

estimates are sometimes negative can be attributed to esti-

mation noise; we did not constrain our estimates to the

plausible 0–1 range, which could lead to bias in the average

of the estimates.) However, the low inferred heritability of
Genetics 100, 605–616, April 6, 2017 613



gene expression has not precluded important biological dis-

coveries. Sixth, our results on functional enrichment were

based on eQTLs anddidnot consider splicingQTLs (sQTLs),

a rich area for future investigation.18,46,65,66 Seventh, we

detected no significant cell-type-specific local enrichments

and only limited cell-type-specific distal enrichments (see

Tables S20–S22), although similar analyses have detected

strong cell-type-specific enrichments for complex traits.10

Theabsenceof local cell-type-specific enrichments is consis-

tentwithour observation that local functional enrichments

are highly consistent across different tissues, and future

analyses might need to restrict to appropriate gene sets

(and/or consider sQTLs) to detect cell-type-specific signals.

Despite these limitations, our findings shed light on the

genetic architecture andmolecularmechanisms underlying

the regulation of gene expression and demonstrate that

gene expression is an appropriate intermediate phenotype

for analyzing functional enrichments of complex diseases

and traits.
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S.A., Oddson, A., Másson, G., Holm, H., Kong, A., Thorsteins-

dottir, U., Sulem, P., et al. (2016). Weighting sequence variants

based on their annotation increases power of whole-genome

association studies. Nat. Genet. 48, 314–317.

12. Schork, A.J., Thompson, W.K., Pham, P., Torkamani, A., Rod-

dey, J.C., Sullivan, P.F., Kelsoe, J.R., O’Donovan, M.C., Furberg,

H., Schork, N.J., et al.; Tobacco and Genetics Consortium; Bi-

polar Disorder Psychiatric Genomics Consortium; and Schizo-

phrenia Psychiatric Genomics Consortium (2013). All SNPs

are not created equal: genome-wide association studies reveal

a consistent pattern of enrichment among functionally anno-

tated SNPs. PLoS Genet. 9, e1003449.

13. Grundberg, E., Small, K.S., Hedman, Å.K., Nica, A.C., Buil, A.,
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