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Exome Genotyping Identifies Pleiotropic Variants
Associated with Red Blood Cell Traits
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Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic

variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals

from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified

16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] ¼ 3.3%, p ¼
23 10�10 for hemoglobin [HGB]) and HNF4A (rs1800961, MAF ¼ 2.4%, p < 33 10�8 for hematocrit [HCT] and HGB). In African Amer-

icans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF ¼ 8.7%, p ¼ 73 10�11)

and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts.

We also identified a rare missense variant in ALAS2 (rs201062903, MAF ¼ 0.2%) associated with lower mean corpuscular volume and

mean corpuscular hemoglobin (p < 8 3 10�9). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic

protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic

hemolytic anemia, associated with HGB and HCT (SKAT p < 8 3 10�7). These rare, low-frequency, and common RBC variants showed

pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation sug-

gest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the

architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.
Introduction

One in four cells in the human body is amature enucleated

red blood cell (RBC), also called an erythrocyte. RBC mean
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lifespan in adults is 100–120 days, requiring constant

renewal. To that end, we produce on average 2.4 million

RBCs per second in the bone marrow. This massive yet

well-orchestrated cell proliferation process is necessary to
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accommodate RBCs’ main function: to transport oxygen

from the lungs to the peripheral organs, and carbon diox-

ide from the organs to the lungs. Hemoglobin (HGB), the

metalloprotein that constitutes by far the most abundant
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Lund University, Malmö 221 00, Sweden; 39Skåne University Hospital, Malmö
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to shear stress and produce the vasodilator nitric oxide to

regulate vascular tonus.1 RBCs participate in antimicrobial

strategies to fight hemolytic pathogens2 and in the inflam-

matory response, acting as a reservoir for multiple chemo-

kines.3 Furthermore, the direct involvement of RBCs in

adhering to the vascular endothelium or supporting

thrombin generation may help to promote blood coagula-

tion or thrombosis.4,5

Given the paramount importance of RBCs in physi-

ology, it is not surprising that monitoring their features

is common practice in medicine to assess the overall

health of patients. An excessive number of circulating

RBCs (erythrocytosis [MIM: 133100]) can suggest a pri-

mary bone marrow disease, a myeloproliferative neoplasm

such as polycythemia vera (MIM: 263300), or chronic

hypoxemia due to congenital heart defects. Low HGB

concentration and hematocrit (HCT) levels (anemia) can

indicate inherited HGB or RBC structural gene mutations,

malnutrition, or kidney diseases. By considering the vol-

ume (mean corpuscular volume [MCV]), hemoglobin con-

tent (mean corpuscular hemoglobin [MCH] and mean

corpuscular hemoglobin concentration [MCHC]) or the

distribution width (RDW) of RBCs, a physician can distin-

guish between the different causes of anemia (e.g., micro-

cytic/hypochromic due to iron deficiency6). In addition,

epidemiological studies have correlated high RDW values

with a worse prognosis in heart failure patients.7 RDW is

also an independent predictor of overall mortality in

healthy individuals, as well as a predictor of mortality in

patients with various conditions such as cardiovascular

diseases, obesity, malignancies, and chronic kidney dis-

ease.8–12

RBC count and indices vary among individuals, and

40%–90% of this phenotypic variation is heritable.13–16

Identifying the genes and biological pathways that

contribute to this inter-individual variation in RBC traits

could highlight modifiers of severity and/or therapeutic

options for several hematological diseases. Already, large-

scale genome-wide association studies (GWASs) have

found dozens of SNPs associated with one or more of

these RBC traits.17,18 However, owing to their design,

GWASs are largely insensitive to rare (minor allele fre-

quency [MAF] < 1%) and low-frequency (1% % MAF <

5%) genetic variants. Using an exome array, we previously

performed an association study for HGB and HCT in

31,340 European-ancestry individuals and identified rare

coding or splice site variants in the erythropoietin and

b-globin genes.19 Within the framework of the Blood-

Cell Consortium (BCX),20,21 we now report a larger geno-

typing-based exome survey of seven RBC traits conducted

in up to 130,273 individuals, including 23,896 partici-

pants of non-European ancestry. With this experiment,

our initial goals were to expand the list of rare and low-

frequency coding or splice site variants associated with

RBC traits and to explore whether the exome array

can complement the GWAS approach to fine map RBC

causal genes.
10 The American Journal of Human Genetics 99, 8–21, July 7, 2016
Subjects and Methods

Study Participants
The Blood-Cell Consortium (BCX) aims to identify novel common

and rare variants associated with blood-cell traits using an exome

array. BCX is comprised of more than 134,021 participants from

24 discovery cohorts and five ancestries: European, African Amer-

ican, Hispanic, East Asian, and South Asian. Detailed description

of the participating cohorts is provided in Table S1. BCX is inter-

ested in the genetics of all main hematological measures and is

divided into three main working groups: RBC, white blood cell

(WBC),21 and platelet (PLT).20 For the RBC working group, we

analyzed seven traits available in up to 130,273 individuals: RBC

count (31012/L), HGB (g/dL), HCT (%), MCV (fL), MCH (pg),

MCHC (g/dL), and RDW (%) (Table S2). The BCX procedures

were in accordance with the institutional and national ethical

standards of the responsible committees and proper informed

consent was obtained.
Genotyping and Quality-Control Steps
Participants from the different studies were genotyped on one of

the following exome chip genotyping arrays: Illumina Exome-

Chip v.1.0, Illumina ExomeChip v.1.1_A, Illumina ExomeChip-

12 v.1.1, Affymetrix Axiom Biobank Plus GSKBB1, or Illumina

HumanOmniExpressExome Chip. Genotypes were then called

either (1) with the Illumina GenomeStudio GENCALL and subse-

quently recalled using zCALL or (2) by the Cohorts for Heart and

Aging Research in Genomic Epidemiology (CHARGE) Consortium

Exome Chip effort22 (Table S3). The same quality-control steps

were followed by each participating study. We excluded variants

with low genotyping success rate (<95%, except for WHI that

used a cutoff <90%) (Table S3). Samples with call rate < 95%

(except for SOLID-TIMI 52 and STABILITY that used 94.5% and

93.5% cutoffs, respectively) after joint or zCALL calling and with

outlying heterozygosity rate were also excluded. Other exclusions

were deviation from Hardy-Weinberg equilibrium (p < 1 3 10�6)

and gender mismatch. We performed principal-component anal-

ysis (PCA) or multidimensional scaling (MDS) and excluded sam-

ple outliers from the resulting plots through visual inspection,

using populations from the 1000 Genomes Project to anchor these

analyses. Keeping only autosomal and X chromosome variants for

the analysis, we aligned all variants on the forward strand and

created a uniform list of reference alleles using the --force alleles

command in PLINK.23 Finally, an indexed variant call format file

(VCF) was created by each study and checked for allele alignment

and any allele or strand flips using the checkVCF package.24 Prior

to performing meta-analyses of the association results provided by

each participating study, we ran the EasyQC protocol25 to check

for population allele frequency deviations and proper trait trans-

formation in each cohort.
Phenotype Modeling and Association Analyses
When possible, we excluded individuals with blood cancer, leuke-

mia, lymphoma, bone marrow transplant, congenital or heredi-

tary anemia, HIV, end-stage kidney disease, dialysis, splenectomy,

or cirrhosis and those with extreme measurements of RBC traits

(Table S1). We also excluded individuals on erythropoietin treat-

ment or chemotherapy. Additionally, we excluded pregnant

women and individuals with acute medical illness at the time

the complete blood count (CBC) was done. For the seven RBC

traits, within each study, we adjusted for age, age-squared, gender,



the first ten principal components, and, where applicable, other

study-specific covariates such as study center via a linear regres-

sion model. Within each study, we then applied inverse normal

transformation on the residuals and tested the phenotypes for as-

sociation with the ExomeChip variants using either RVtests

(v.20140416)26 or RAREMETALWORKER.0.4.9.27
Discovery Meta-analyses
Score files generated by RVtests or RAREMETALWORKER from

each participating study were used to carry out meta-analyses of

the single variant association results using RareMETALS v.5.9.28

All analyses were performed separately in each of European

American (EA) and African American (AA) ancestries. In the

multi-ancestry meta-analyses, we combined individuals of Euro-

pean, African American, Hispanic, East-Asian, and South-Asian an-

cestries (All). We included variants with allele frequency difference

between the highest and lowest MAF < 0.3 for EA and AA ances-

tries and < 0.6 for the combined ancestry meta-analyses. For the

gene-based analyses, we used score files and variance-covariance

matrices from the study-specific association results and applied

the sequence kernel association test (SKAT)29 and variable

threshold (VT) algorithms30 in RareMETALS considering only

missense, nonsense, and splice site variants with a MAF < 1%.

Gene-based analyses were also stratified by ancestry. Significance

thresholds were determined using Bonferroni correction assuming

~250,000 independent variants (p < 2 3 10�7 for the single-

variant analyses) and ~17,000 genes tested on the ExomeChip

(p < 3 3 10�6 for the gene-based tests).
Conditional Analysis and Replication
In order to identify independent signals, we performed condi-

tional analyses. In each round of conditional analysis, we condi-

tioned on the most significant single variant in a 1 Mb window.

These conditional analyses were performed at the meta-analysis

level using RareMETALS. We repeated this step until there

were no new signals identified in each region, defined as p <

23 10�7. We then checked for linkage disequilibrium (LD) within

the list of variants that was retained from the conditional analyses.

For variants that were inmoderate-to-strong LD (r2R 0.3), we kept

the most significant. We attempted replication of the final list of

independent variants in eight additional studies that contributed

a total of 27,480 individuals (n ¼ 21,473 for EA and n ¼ 6,007

for AA) (Table S4). The division of discovery and replication sam-

ples was dictated by timing because we collected all groups we

were aware of for initial discovery and then found others who

could participate only much later and hence were used for replica-

tion. These studies followed similar analytical procedures and

steps as those followed by the discovery analysis (see above).

A joint meta-analysis of the discovery and the replication results

was carried out using a fixed-effects model and inverse-variance

weighting as implemented in METAL.31 We considered as repli-

cated markers those with a nominal preplication< 0.05 and an effect

on phenotype in the same direction as in the discovery results.
Allelic Imbalance and Expression of CD36
We checked for allelic imbalance (AI) of the rs3211938 variant in

CD36 (MIM: 173510) as well as the expression of the gene in 12

samples of fetal liver erythroblasts obtained from anonymous do-

nors. Details on the protocol including RNA extraction

and sequencing can be found elsewhere.32 We calculated the

difference in the ratio of reads of the reference allele (T) and the
T

alternate allele (G) of rs3211938. In brief, reads overlapping

rs3211938 were counted with samtools (v.1.1) mpileup software

using genome build hg19. We kept uniquely mapping reads using

-q 50 argument (mapping quality > 50) and sites with base

quality > 10. Statistical significance of the difference in the ratio

of reads between the reference allele and the alternate allele was

assessed with a binomial test. For each sample, we summed all

reads overlapping all heterozygous SNPs and calculated the ex-

pected ratio within each SNP allele combination. Reads that fall

in the top 25th coverage percentile were down-sampled so that

the highest covered sites do not bias the expected ratio.33 For

rs3211938, the expected T:G ratio was 0.507.
Expression Quantitative Trait Loci Analysis
We cross-referenced our list of RBC novel variants with more than

100 separate expression quantitative trait loci (eQTL) published

datasets. Datasets were collected through publications, publically

available sources, and private collaborations. A general overview

of a subset of>50 eQTL studies has been published,34 with specific

citations for >100 datasets included in the current query followed

here. A complete list of tissues and studies used can be found in the

Supplemental Data. We considered SNPs that are themselves

expression SNPs (eSNP) when they meet a p < 0.0001 threshold

or when they are in LD (r2 > 0.3) with the best eSNP (p < 0.0001).
Results

Single-Variant Meta-analyses

We meta-analyzed ExomeChip results for seven RBC-

related phenotypes (RBC count, HCT, HGB, MCH,

MCHC, MCV, and RDW) available in up to 130,273 indi-

viduals from 24 studies and 5 ancestries (Tables S1–S3

and Figure S1). Across these different phenotypes, a total

of 226 variants reached exome-wide significance (p <

2 3 10�7) in the combined ancestry analyses (Figures 1

and S2). Given that some of these RBC traits are correlated

(Figure S3), these associated variants highlight 71 different

loci (defined using a 1 Mb interval). Overall, we observed

only modest inflation of the test statistics (lGC ¼ 1.03–

1.05), consistent with little confounding due to technical

artifacts, population stratification, or cryptic relatedness.

In order to identify independent variants, we performed

conditional analyses at the meta-analysis level adjusting

for the effect of the most significant variant in a 1 Mb

region in a stepwise manner (Subjects and Methods).

After this analysis, we obtained a list of 126 indepen-

dent variants associated with at least one RBC trait at p <

2 3 10�7 (Table S5). Selecting only variants that lie more

than 1 Mb away from a known GWAS locus resulted in

23 independent variants located within 20 novel RBC

loci, where novel is used to define loci not found in the ex-

isting literature (Table 1). We attempted to replicate these

126 variants in 8 independent cohorts totaling 27,480

participants (Table S5). Overall, we observed a strong repli-

cation, with 94 of the 126 variants showing consistent

direction of effect between the discovery and replication

analyses (binomial p¼ 33 10�8; Table S5). Of the 23 novel

RBC variants, we replicated 16 at nominal p < 0.05 for at
he American Journal of Human Genetics 99, 8–21, July 7, 2016 11



Figure 1. Quantile-Quantile Plots of Single-Variant Association Results in the All AncestryMeta-analyses for the Seven Red Blood Cell
Traits Analyzed
(A) Distribution of the single variant results for all variants tested on the exome array.
(B) Only markers with a minor allele frequency < 5% are shown here.
(C) Variants outside of known RBC GWAS regions. Variants that are within 1 Mb from a previously published RBC GWAS locus were
excluded for this QQ plot.
Abbreviations are as follows: HCT, hematocrit; HGB, hemoglobin; RBC, red blood cell count; MCV, mean corpuscular volume; MCHC,
mean corpuscular hemoglobin concentration; MCH, mean corpuscular hemoglobin; RDW, red blood cell distribution width.
least one RBC trait (binomial p ¼ 3 3 10�16; Table 1). Out

of these 16 novel and replicated RBC variants, there are five

missense variants, including two variants with MAF < 5%

in MAP1A (MIM: 600178) and HNF4A (MIM: 600281) and

one nonsense variant in CD36 (Table 1). Among the re-

maining nine novel and replicated RBC variants, there

are five intronic, one synonymous, one 50 UTR, and one in-

tergenic marker (Table 1).

Prioritization of Candidate Genes and Genetic

Variants

Our single-variant analyses in EA samples identified one

rare missense variant in ALAS2 (MIM: 301300) associated

with MCV and MCH (rs201062903, p.Pro507Leu

[c.1559C>T], MAF ¼ 0.2%) (Table 1). The association

with this variant did not replicate, potentially because of

limited statistical power (the replication sample size for

this rare marker was 5,044; see also Discussion). ALAS2 en-

codes 5-aminolevulinate synthase 2, the rate-controlling

enzyme of erythroid heme synthesis. Additionally, rare

mutations in ALAS2 cause X-linked sideroblastic anemia

(MIM: 300751) and erythropoietic protoporphyria (MIM:

300752). Thus, despite the lack of replication, ALAS2

remains an excellent candidate gene to modulate RBC

traits. The ALAS2 p.Pro507Leu variant, which is not re-

ported in the ClinVar database, maps between two amino

acids (Tyr506 and Thr508) that are important for catalytic

activity and known to be mutated in cases of sideroblastic

anemia.35

Two low-frequency missense variants identified in our

analyses implicate MAP1A and HNF4A in RBC biology

(Table 1). MAP1A encodes microtubule-associated protein

1A, a gene highly expressed in the nervous system and

mostly studied in the context of neuronal diseases,

although it is expressed in many additional tissues,
12 The American Journal of Human Genetics 99, 8–21, July 7, 2016
including hematopoietic cells.36 Deletion of MAP1A in

the mouse causes defects in synaptic plasticity.37 This

observation is interesting given that inactivation of

ANK1 (MIM: 612641), another gene that encodes a cyto-

skeleton protein and is expressed in neurons and RBCs, is

associated with neurological dysfunction in the mouse

and spherocytosis and hemolytic anemia in humans

(MIM: 182900). Our meta-analyses confirmed two known

independent ANK1 variants associated with MCHC: an in-

tronic SNP (rs4737009, MAF ¼ 19.8%, p ¼ 1.3 3 10�8)

and a low-frequency missense variant (rs34664882,

p.Ala1462Val, MAF ¼ 2.9%, p ¼ 1.7 3 10�16) (Table S5;

N.P., U.M.S., J.B.-J., and M.-H.C., unpublished data).17

In the accompanying BCX PLT article,20 we report that

the same MAP1A rs55707100 allele (p.Pro2349Leu

[c.7046C>T]) associated here with decreased HGB concen-

tration is also associated with increased PLTcount. Further-

more, recent studies have identified associations between

rs55707100 and HDL-cholesterol and triglyceride levels

(S. Mukherjee, 2015, ASHG, conference). Adding to the

complexity, the GTEx dataset indicates that rs55707100

is an expression quantitative trait locus (eQTL) for ADAL

(peQTL ¼ 93 10�11) but not forMAP1A.38 ADAL is a poorly

characterized adenosine deaminase-like protein that is

highly expressed in human erythroblasts. However, the

eQTL association between rs55707100 and ADAL could

simply reflect ‘‘LD shadowing’’ from nearby markers that

are much stronger eQTL variants for ADAL. Indeed,

rs3742971 (a common variant located in ADAL’s 50 UTR)

is in partial LD with rs55707100 (r2 ¼ 0.18 in Eu-

ropean populations from the 1000 Genomes Pro-

ject) and strongly associated with ADAL expression levels

(peQTL ¼ 6 3 10�49).

The second low-frequency missense variant associated

with HGB and HCT maps within the coding sequence of



Table 1. Association Results of Variants in Novel Loci Associated with Red Blood Cell Traits

Marker Info Discovery Replication Combined

Trait Position A1/A2 SNP Annotation Gene n AF (A2) Beta (SE) p Value n AF (A2) Beta (SE) p Value Beta (SE) p Value

RDW-EA 1: 25,768,937 A/G rs10903129* intron TMEM57-RHD 45,573 0.544 0.037 (0.007) 1.19 3 10�7 18,475 0.560 0.023 (0.011) 0.0373 0.033 (0.006) 2.41 3 10�8

RDW-All 1: 25,768,937 A/G rs10903129* intron TMEM57-RHD 56,194 0.568 0.034 (0.006) 9.58 3 10�8 24,474 0.600 0.021 (0.01) 0.0252 0.03 (0.005) 1.32 3 10�8

HCT-All 1: 155,162,067 C/T rs4072037* synonymous MUC1 109,875 0.554 0.025 (0.005) 5.82 3 10�8 25,006 0.563 0.038 (0.009) 5.96 3 10�5 0.027 (0.004) 3.47 3 10�11

HGB-All 2: 27,741,237 T/C rs780094 intron GCKR 130,273 0.626 0.024 (0.004) 7.14 3 10�8 3,162 0.626 �0.012 (0.026) 0.6410 0.023 (0.044) 1.68 3 10�7

RBC-All 2: 219,509,618 C/A rs2230115* missense ZNF142 74,488 0.509 0.033 (0.006) 9.74 3 10�9 27,442 0.477 0.024 (0.01) 0.0167 0.031 (0.005) 7.11 3 10�10

HCT-All 3: 56,771,251 A/C rs3772219* missense ARHGEF3 109,875 0.338 �0.028 (0.005) 2.38 3 10�9 25,006 0.366 �0.021 (0.01) 0.0292 �0.027 (0.004) 2.56 3 10�10

HGB-All 3: 56,771,251 A/C rs3772219* missense ARHGEF3 130,273 0.336 �0.026 (0.004) 3.76 3 10�9 27,749 0.367 �0.02 (0.009) 0.0331 �0.025 (0.004) 4.33 3 10�10

HCT-EA 4: 88,008,782 G/A rs236985 intron AFF1 87,444 0.394 0.032 (0.005) 3.89 3 10�10 19,968 0.405 0.02 (0.011) 0.0626 0.03 (0.005) 1.14 3 10�10

RBC-EA 4: 88,008,782 G/A rs236985* intron AFF1 60,231 0.393 0.034 (0.006) 3.50 3 10�8 21,435 0.405 0.023 (0.011) 0.0273 0.031 (0.005) 4.22 3 10�9

HGB-EA 4: 88,030,261 G/T rs442177* intron AFF1 106,377 0.595 �0.034 (0.005) 3.97 3 10�13 21,743 0.586 �0.029 (0.01) 0.0052 �0.033 (0.004) 8.23 3 10�15

RDW-EA 5: 127,371,588 A/G rs10063647* intron LINC01184-
SLC12A2

45,573 0.463 �0.05 (0.007) 1.72 3 10�13 18,475 0.480 �0.033 (0.011) 0.0018 �0.045 (0.006) 2.88 3 10�15

RDW-All 5: 127,371,588 A/G rs10063647* intron LINC01184-
SLC12A2

56,194 0.506 �0.044 (0.006) 2.11 3 10�12 24,474 0.545 �0.03 (0.01) 0.0014 �0.04 (0.005) 2.37 3 10�14

RDW-EA 5: 127,522,543 C/T rs10089* utr_5p LINC01184-
SLC12A2

45,573 0.21 0.051 (0.008) 8.45 3 10�10 16,692 0.215 0.058 (0.014) 2.71 3 10�5 0.053 (0.007) 1.15 3 10�13

RDW-All 5: 127,522,543 C/T rs10089* utr_5p LINC01184-
SLC12A2

56,194 0.207 0.044 (0.008) 4.08 3 10�9 22,691 0.208 0.045 (0.012) 0.0001 0.044 (0.006) 2.73 3 10�12

HGB-All 6: 7,247,344 C/A rs35742417* missense RREB1 130,273 0.174 0.030 (0.005) 1.17 3 10�8 4,074 0.207 0.065 (0.028) 0.0190 0.032 (0.005) 1.50 3 10�9

RDW-AA 7: 80,300,449 T/G rs3211938* nonsense CD36 6,666 0.087 0.174 (0.031) 2.36 3 10�8 5,999 0.086 0.139 (0.032) 1.83 3 10�5 0.161 (0.025) 7.09 3 10�11

RDW-All 7: 80,300,449 T/G rs3211938* nonsense CD36 55,510 0.012 0.171 (0.029) 5.29 3 10�9 22,691 0.023 0.139 (0.032) 1.61 3 10�5 0.157 (0.022) 5.12 3 10�13

RDW-EA 8: 126,490,972 A/T rs2954029* intergenic TRIB1 45,573 0.46 0.036 (0.007) 1.53 3 10�7 16,692 0.466 0.026 (0.011) 0.0210 0.034 (0.006) 1.29 3 10�8

RDW-All 8: 126,490,972 A/T rs2954029* intergenic TRIB1 56,194 0.439 0.032 (0.006) 1.83 3 10�7 22,691 0.432 0.021 (0.01) 0.0298 0.029 (0.005) 2.54 3 10�8

MCH-All 10: 105,659,826 T/C rs2487999 missense OBFC1 66,318 0.869 0.047 (0.009) 4.12 3 10�8 26,749 0.861 0.025 (0.013) 0.0601 0.041 (0.007) 1.75 3 10�8

MCH-AA 11: 92,722,761 G/A rs1447352 intergenic MTNR1B 8,273 0.557 0.089 (0.016) 1.85 3 10�8 5,038 0.562 �0.022 (0.02) 0.2713 0.07 (0.014) 1.08 3 10�6

HGB-EA 15: 43,820,717 C/T rs55707100* missense MAP1A 106,377 0.033 �0.071 (0.013) 1.65 3 10�8 21,743 0.0223 �0.099 (0.033) 0.0028 �0.075 (0.012) 2.31 3 10�10

MCV-AA 16: 1,551,082 A/G rs2667662* intron TELO2 10,849 0.725 �0.099 (0.015) 1.79 3 10�10 5,034 0.724 �0.093 (0.022) 3.02 3 10�5 �0.098 (0.014) 7.32 3 10�12

MCV-AA 16: 2,812,939 C/A rs2240140* missense SRRM2 8,525 0.118 0.134 (0.025) 7.08 3 10�8 6,002 0.124 0.106 (0.027) 0.0001 0.128 (0.022) 5.24 3 10�9

(Continued on next page)
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Table 1. Continued

Marker Info Discovery Replication Combined

Trait Position A1/A2 SNP Annotation Gene n AF (A2) Beta (SE) p Value n AF (A2) Beta (SE) p Value Beta (SE) p Value

HCT-EA 17: 59,017,025 T/C rs8080784 intron BCAS3-TBX2 79,344 0.158 �0.039 (0.007) 2.62 3 10�8 19,968 0.148 0.011 (0.014) 0.4349 �0.029 (0.006) 3.39 3 10�6

HGB-EA 17: 59,483,766 C/T rs8068318 intron BCAS3-TBX2 106,377 0.722 �0.026 (0.005) 1.53 3 10�7 21,743 0.730 �0.021 (0.011) 0.0565 �0.025 (0.005) 2.55 3 10�8

MCV-EA 20: 31,140,165 C/T rs4911241* intron NOL4L 61,462 0.241 �0.04 (0.007) 1.25 3 10�8 21,714 0.252 �0.025 (0.012) 0.0302 �0.036 (0.006) 2.01 3 10�9

RDW-EA 20: 31,140,165 C/T rs4911241* intron NOL4L 45,573 0.242 0.043 (0.008) 5.79 3 10�8 18,475 0.240 0.049 (0.012) 7.44 3 10�5 0.045 (0.007) 2.01 3 10�11

RDW-All 20: 31,140,165 C/T rs4911241* intron NOL4L 56,194 0.235 0.038 (0.007) 1.56 3 10�7 24,474 0.222 0.044 (0.011) 6.10 3 10�5 0.04 (0.006) 4.60 3 10�11

HCT-EA 20: 43,042,364 C/T rs1800961* missense HNF4A 79,344 0.024 0.083 (0.015) 1.44 3 10�8 19,968 0.033 0.082 (0.028) 0.0037 0.083 (0.013) 1.91 3 10�10

HGB-EA 20: 43,042,364 C/T rs1800961* missense HNF4A 98,277 0.032 0.073 (0.013) 2.53 3 10�8 21,743 0.032 0.062 (0.027) 0.0232 0.071 (0.012) 1.93 3 10�9

HCT-All 20: 43,042,364 C/T rs1800961* missense HNF4A 100,313 0.022 0.077 (0.014) 2.31 3 10�8 25,006 0.027 0.091 (0.028) 0.0010 0.08 (0.012) 9.88 3 10�11

HGB-All 22: 44,324,727 C/G rs738409 missense PNPLA3 130,273 0.223 0.028 (0.005) 2.24 3 10�8 4,074 0.218 0.053 (0.027) 0.0504 0.029 (0.005) 4.81 3 10�9

MCH-EA X: 55,039,960 G/A rs201062903 missense ALAS2 52,758 0.002 �0.324 (0.053) 7.32 3 10�10 5,855 0.001 �0.291 (0.235) 0.215 �0.323 (0.052) 5.81 3 10�10

MCH-All X: 55,039,960 G/A rs201062903 missense ALAS2 65,067 0.002 �0.322 (0.051) 3.36 3 10�10 10,893 0.001 �0.276 (0.224) 0.218 �0.321 (0.051) 2.68 3 10�10

MCV-EA X: 55,039,960 G/A rs201062903 missense ALAS2 60,211 0.002 �0.285 (0.049) 7.11 3 10�9 5,044 0.001 �0.178 (0.248) 0.472 �0.282 (0.049) 6.11 3 10�9

Variants in novel loci with p< 23 10�7 and that were retained after conditional analyses are presented here. All variants are>1Mb apart from a known GWAS signal for RBC traits. Chromosome positions are given on human
genome build hg19. Allele frequency and effect size are given for the alternate (A2) allele. Replication was carried out in six cohorts for EA and two cohorts for AA and was performed in RareMetals; meta-analyses of the
discovery and replication cohorts are presented under ‘‘Combined’’ and were carried out in METAL. Asterisks (*) indicate variants that replicated with a nominal p< 0.05. Abbreviations are as follows: EA, European American;
AA, African American; All, combined ancestry (EA þ AA þ Asians þ Hispanics); A1, reference allele; A2, alternate allele; N, sample size; AF, allele frequency; SE, standard error; HCT, hematocrit; HGB, hemoglobin; RBC, red
blood cell count; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; MCH, mean corpuscular hemoglobin; RDW, red blood cell distribution width.
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Figure 2. CD36 Expression in Human
Erythroblasts
(A) In a dataset of 12 human fetal liver
erythroblasts, all samples were homozy-
gous at rs3211938 for the reference T-allele
with the exception of one heterozygous
sample (FL11). FL11 demonstrated strong
allelic imbalance: we observed 705 reads
for the reference allele (T) and 126
reads for the alternate allele (G) (binomial
p ¼ 4.9 3 10�95).
(B) FL11 (in green) shows the lowest
CD36 expression level when compared to
the other 11 samples. Abbreviation is as
follows: FPKM, fragments per kilobase of
transcript per million mapped reads.
the transcription factor HNF4A (Table 1). This marker,

rs1800961 (p.Thr117Ile [c.350C>T]), has previously been

associated with HDL and total cholesterol, C-reactive pro-

tein, fibrinogen, and coagulation factor VII levels.39–42 Mu-

tations in HNF4A cause maturity-onset diabetes of the

young (MODY [MIM: 125851]) and a common intronic

SNP in HNF4A (rs4812829) has been associated with

type 2 diabetes (MIM: 125853) risk.43 The missense

rs1800961 associated with HGB and HCT is only in weak

LD with rs4812829 (r2 ¼ 0.021 in EA populations from

the 1000 Genomes Project). Querying recently released

ExomeChip data from Type 2 Diabetes Genetics (Web Re-

sources), we found that rs1800961 is also associated with

T2D risk in ~82,000 participants (p ¼ 9.5 3 10�7, odds

ratio ¼ 1.16). HNF4A is expressed in the kidney and could

influence HGB andHCT through the regulation of erythro-

poietin production.44 It is also abundantly expressed in the

liver, where it could indirectly affect HGB and HCT levels

through an effect on blood lipid levels (see Discussion).

HNF4A is detectable at low levels in erythroblasts, and

the BLUEPRINT Project has found that some HNF4A iso-

forms may be more highly expressed in this cell type

(Figure S4).45

In AA, we identified a nonsense variant (rs3211938,

p.Tyr325Ter [c.975T>G], MAF ¼ 8.7%, p ¼ 7.1 3 10�11)

in CD36 associated with RDW. This variant displays a

wide variation in allele frequency between AA and EA

(MAFEA ¼ 0.01%). The association is slightly improved in

the ancestry-combined meta-analysis (p ¼ 5.1 3 10�13)

because there is also evidence of association in Hispanics

(MAF ¼ 1.9%, p ¼ 0.022) (Table 1). We examined a dataset

of ex vivo differentiated human erythroblasts to determine

whether this CD36 nonsense variant shows allelic imbal-

ance (AI).32 All samples were homozygous at rs3211938

for the reference allele with the exception of one heterozy-

gous sample (FL11). FL11 had the lowest level of CD36

expression among the 12 samples tested and demonstrated

strong AI where we observe 705 sequence reads for the

reference allele (T) versus 126 for the alternate allele (G)

(p¼ 4.93 10�95; Figure 2). To confirm this finding in inde-

pendent samples, we queried the GTEx dataset, which has
T

compiled RNA-sequencing and genotype information

from multiple human tissues.38 GTEx does not include

data for human erythroblasts. However, it detected a

strong eQTL effect of rs3211938 on CD36 expression in

whole blood (peQTL ¼ 1.1 3 10�15), with carriers of the

G-allele expressing less CD36 (Figure S5). Furthermore,

GTEx reported evidence for moderate AI inmultiple tissues

for CD36-rs3211938, with the G-allele being under-repre-

sented among sequence reads (Figure S5). These results

strongly support our observations in human erythroblasts.

eQTL Analysis

To prioritize additional causal genes at RBC loci that

contain non-coding variants, we cross-referenced our list

of novel variants withmore than 100 published eQTL data-

sets (Subjects and Methods). Overall, 12 variants were sig-

nificant eQTLs in a wide variety of tissues (Table S6). The

most interesting eQTL finding is the association between

rs10903129, a common marker associated with RDW in

our analyses and located within an intron of TMEM57

(MIM: 610301), and the expression of RHD (MIM:

111680) in whole blood. RHD is located 112 kb down-

stream of TMEM57 and encodes the D antigen of the clin-

ically significant Rhesus (Rh) blood group. rs10903129 has

also been associated with total cholesterol levels and eryth-

rocyte sedimentation rate (ESR).46,47 The association with

ESR is particularly intriguing given that it is considered a

non-specific indicator of inflammation. As described

above, RDW is also abnormal in chronic diseases, such as

atherosclerosis and diabetes, which have an important

inflammation component.

Gene-Based Association Testing

Despite our large sample size, statistical power remains

limited for rare variants ofweak-to-moderate phenotypic ef-

fect. To try to capture these genetic factors, we performed

gene-based testing by aggregating coding and splice site var-

iants with MAF < 1% within each gene (Subjects and

Methods). The SKAT analyses identified two genes: ALAS2

associated with MCH and PKLR (MIM: 609712) associated

with HGB and HCT (Table 2). The ALAS2 signal was driven
he American Journal of Human Genetics 99, 8–21, July 7, 2016 15



Table 2. Gene-Based Association Results

Trait Gene n
Number of
Variants Analyzed

VT SKAT

Top Variant Top-Variant MAF Top-Variant p Valuep Value p Value

HGB-EA PKLR 106,377 15 1.92 3 10�5 7.02 3 10�7 rs116100695 0.003 1.17 3 10�5

HGB-All PKLR 130,273 15 0.00016 6.57 3 10�7 rs116100695 0.003 1.94 3 10�5

HCT-All PKLR 109,875 15 3.96 3 10�5 7.95 3 10�7 rs116100695 0.003 2.49 3 10�5

MCH-EA ALAS2 54,009 11 4.78 3 10�6 5.79 3 10�7 rs201062903 0.002 7.32 3 10�10

MCHC-All ALPK3 84,841 28 1.95 3 10�6 0.793 rs202037221 3.0 3 10�5 0.0005

Gene-based results of the VT and SKAT algorithms for genes associated with RBC traits at p < 3 3 10�6. We analyzed non-synonymous coding (nonsense,
missense) and splice site variants with a minor allele frequency (MAF) < 1%. Abbreviations are as follows: EA, European American; All, combined ancestry
(EA þ AA þ Asians þ Hispanics); n, sample size; HCT, hematocrit; HGB, hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCH, mean corpus-
cular hemoglobin.
by a single rare missense variant (rs201062903) and was

described above. PKLR encodes the erythrocyte pyruvate ki-

nase (PK) that catalyzes the last step of glycolysis. PK defi-

ciency, usually caused by recessive mutations, is one of the

main causes of non-spherocytic hemolytic anemia (MIM:

266200). In fact, one of the variants identified in our meta-

analysis (rs116100695, p.Arg486Trp [c.1456T>G], MAF ¼
0.3%, betaHGB ¼ �0.242 g/dl, pHGB ¼ 1.2 3 10�5) is a

frequent cause of PK deficiency in Italian and Spanish sub-

jects.48,49 This variant was confirmed in the replication co-

horts (preplication ¼ 0.039; Table S7). Two additional PKLR

rare missense variants contribute to the gene-based associa-

tion statistic with HGB andHCT: rs61755431 (p.Arg569Gln

[c.1706G>A], MAF ¼ 0.2%, betaHGB ¼ �0.179 g/dl, pHGB ¼
0.006) and rs8177988 (p.Val506Ile [c.1516G>A], MAF ¼
0.6%, betaHGB ¼ þ0.116 g/dl, pHGB ¼ 0.003). It is note-

worthy that the p.Val506Ile substitution is associated with

increased HGB concentration given that this amino acid

maps to a PKLR structural domain necessary for protein

interaction.50 This heterogeneity of effect among the PKLR

missense variants might explain why SKAT’s result is

more significant than VT’s for this gene (Table 2). A third

gene, ALPK3, was identified only in the VT analysis for

association with MCHC (Table 2). ALPK3 encodes a kinase

previously implicated in cardiomyocyte differentiation.51

We could not test for replication because of the rarity of

ALPK3’s coding alleles (Table S7).

RBC Variants and Pleiotropic Effects

Besides the overlap within the RBC traits themselves, we

identified seven novel RBC variants associated with other

blood-cell type traits or with lipid levels (Figure 3 and Ta-

ble 3). To assess whether the genetic associations with

RBC traits are independent of lipid levels, we performed

additional analyses in a subset of BCX participants from

three of our studies (FHS, MHIBB, and WHI) ranging

from ~10,000 to 23,000 individuals. We repeated the

association analyses for five RBC loci (TMEM57-RHD

rs10903129, AFF1 rs442177, TRIB1 rs2954029, MAP1A

rs55707100, andHNF4A rs1800961) additionally adjusting

for the respective lipid trait and combined the results

across the three studies using fixed-effect meta-analysis
16 The American Journal of Human Genetics 99, 8–21, July 7, 2016
(Table S8). There was little or no change in the effect size

or p values associated with the five RBC trait loci upon

adjustment for the corresponding lipid trait, suggesting

that the RBC and lipid associations are independent of

one another and thus represent true ‘‘pleiotropic’’ genetic

effects.

A correlated response to or role in inflammation might

explain why some of the RBC variants are also associated

with WBC, PLT, or lipid traits. Another plausible explana-

tion for the concomitant association of several markers

with RBC,WBC, and PLT phenotypes could be a more gen-

eral effect of these genes on the proliferation or differentia-

tion of hematopoietic progenitor cells. This is most

likely the case for JAK2 (MIM: 147796) and SH2B3

(MIM: 605093), two key regulators of hematopoietic cells

(Figure 3). In this category, we also observed twonovel find-

ings,AFF1 (MIM: 159557) andNOL4L, which are associated

with RBC and WBC phenotypes and have been previously

implicated in leukemia.53,54 Finally, we identified a novel

missense variant in ARHGEF3 (MIM: 612115) associated

with HGB and HCT. In addition to its association with

PLT traits, ARHGEF3 plays a role in the regulation of iron

uptake and erythroid cell maturation.55
Discussion

We present multi-ethnic meta-analyses of seven RBC traits

using ExomeChip results of 130,273 individuals. Our sta-

tistical thresholds to declare significance at the discovery

stage (p < 2 3 10�7 in the single-variant analyses) was

adjusted for the approximate number of variants geno-

typed on the ExomeChip (Bonferroni correction for

250,000 variants), but we decided not to adjust it for the

seven RBC phenotypes tested because of the high correla-

tion between some of these traits (Figure S3). Instead, we

relied on independent replication to distinguish true

from probably false positive associations. Despite the

limited size of our replication set (27,480 individuals), it

was encouraging to detect a strong replication of direction

of effect for known and novel RBC variants, suggesting a

low false discovery rate. In total, we identified 23 novel



Figure 3. Venn Diagram Summarizing Pleiotropic Effects for
Genetic Variants Associated with Red Blood Cell Traits
We considered variants only if their association p values with
white blood cell (WBC) traits, platelet (PLT) traits, or with lipid
levels was p < 1 3 10�4. Results for WBC and PLT are from the
accompanying Blood-Cell Consortium articles.20,21 Results for
lipids have previously been published (Table 3). Genes highlighted
in red are novel RBC trait findings.
variants associated with RBC traits in the single-variant an-

alyses and a collection of three rare missense variants in

PKLR associated with HGB and HCT in the gene-based an-

alyses. Out of the 23 novel RBC variants, 16 were replicated

at p < 0.05 in the independent samples (Table 1). To

inform our replication criteria, we conducted a power anal-

ysis using a sample size of 20,000 and considering multiple

combinations of allele frequencies and effect sizes. Based

on allele frequency and effect size, one of our most difficult

to replicate variants was rs1800961 (MAF ¼ 0.022, Beta ¼
0.028). However, we still had approximately 56% power

to detect this association in the replication stage.

We identified a nonsense variant in CD36 associated

with RDW in African Americans. CD36 is a type B scav-

enger receptor located on the surface of many cell types,

including endothelial cells, platelets, monocytes, and

erythrocytes. CD36 is a marker of erythroid progenitor dif-

ferentiation56 and might also be involved in macrophage-

mediated clearance of red blood cells.57 Furthermore,

CD36 plays a role in many biological pathways such as

lipid metabolism/transport and atherosclerosis, hemosta-

sis, and inflammation.58 The nonsense CD36 variant iden-

tified in our RDW meta-analysis (rs3211938, Table 1) has

previously been associated with platelet count, HDL

cholesterol, and C-reactive protein levels in African Amer-

icans59,60 andmalaria resistance in Africans.61,62 The CD36

locus shows a signature of natural selection in AA popula-

tions63 and the MAF of rs3211938 varies widely between
T

continents: in the 1000 Genomes Project, the minor allele

is absent from European populations but reaches fre-

quency of 24%–29% in some African populations.64 To

characterize the molecular mechanism by which

rs3211938 can impact RDW, we identified one heterozy-

gous sample among a collection of ex vivo differentiated

human erythroblasts.32 In erythroblasts from this donor,

we noted a strong allelic imbalance (Figure 2). Importantly,

this result was confirmed in independent samples from the

GTex dataset (Figure S5). At the molecular level, this CD36

expression phenotype could be explained by nonsense-

mediated mRNA decay or the regulatory effect of non-cod-

ing genetic variants in LD with rs3211938.

We observed that many new RBC variants are pleio-

tropic, being often associated with more than one RBC in-

dex as well as with WBC, PLT, and lipid traits (Figure 3).

These shared effects could imply that the underlying

causal genes at these RBC loci generally controlled blood

cell proliferation or modulate inflammatory responses.

An additional explanation for the link between RBC traits

and lipid variants might be the cholesterol content of RBC

membranes. As mentioned earlier, RBC corresponds to a

large fraction (~25%) of the cells found in the human

body. Genetic variation that modulates RBC count or vol-

ume could impact circulating lipid levels. In support of this

hypothesis, it has been observed that a thalassemia allele is

strongly associated with cholesterol levels in the Sardinian

population.65 In total, we found ten loci associated with

lipid levels and RBC indices, including four novel RBC var-

iants (AFF1, TMEM57-RHD, TRIB1, HNF4A) (Figure 3).

In summary, our multi-ethnic meta-analyses have

expanded the genetic knowledge of erythrocyte biology

and identified new common, low-frequency, and rare RBC

variants. Many of the new RBC variants are pleiotropic,

affecting other complex traits such asWBC, PLT, and blood

lipid levels. Although our report demonstrates the utility of

the ExomeChip for genetic discovery, it also highlights the

challenge to attribute gene causality based only on associa-

tion results. This is particularly evident for loci with com-

mon variants, for which coding and non-coding markers

are often statistically equivalent. For instance, we found

no examples of RBC coding variants that entirely explain

RBC GWAS signals among the seven loci that had both a

sentinel GWAS variant and ExomeChip coding markers.

Although increasing sample sizes will continue to yield

additional RBC loci, it has become incredibly clear that

only a combination of well-powered genetic studies, tran-

scriptomic and epigenomic surveys, and functional experi-

ments (e.g., using genome editing) will ultimately pinpoint

causal variants and genes that control RBC phenotypes.
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Table 3. Overlap of Red Blood Cell Markers with Other Blood Cell Traits and/or Lipid

SNP Position A1/A2 AF (A2) Annotation Gene Trait Beta p Value

rs10903129 1: 25,768,937 A/G 0.568 intron TMEM57-RHD RDW 0.037 1.19 3 10�7

TC46 0.061 5.40 3 10�10

PLT �0.021 7.06 3 10�6

rs3772219 3: 56,771,251 A/C 0.338 missense ARHGEF3 HCT* �0.028 2.38 3 10�9

HGB* �0.026 3.76 3 10�9

PLT 0.031 5.93 3 10�10

rs442177 4: 88,030,261 G/T 0.595 intron AFF1 HGB �0.034 3.97 3 10�13

TG40 �0.031 1.00 3 10�18

BASO �0.030 1.99 3 10�5

rs2954029 8: 126,490,972 A/T 0.439 intergenic TRIB1 RDW 0.036 1.53 3 10�7

TG40 �0.076 1.00 3 10�7

rs55707100 15: 43,820,717 C/T 0.033 missense MAP1A HGB �0.071 1.65 3 10�8

PLT 0.095 7.03 3 10�14

TG52 0.090 1.40 3 10�17

rs4911241 20: 31,140,165 C/T 0.241 intron NOL4L MCV �0.040 1.25 3 10�8

RDW 0.043 5.79 3 10�8

BASO �0.051 1.35 3 10�10

MONO �0.033 3.57 3 10�5

rs1800961 20: 43,042,364 C/T 0.032 missense HNF4A HCT 0.083 1.44 3 10�8

HGB 0.073 2.53 3 10�8

HDL40 �0.127 2.00 3 10�34

Shown here are significant novel variants from the RBC traits association analyses that overlap with other blood-cell traits or with lipids. Results for the white blood
cell and platelet traits are from the Blood Cell Consortium, and results for lipids are from the published literature. Results are presented for European-ancestry
individuals, except in the presence of an asterisk (*), which stands for result from ‘‘All’’ ancestry. The allele frequency and direction of the effect (beta) is given
for the A2 allele. Abbreviations are as follows: A1, reference allele; A2, alternate allele; AF, allele frequency; HCT, hematocrit; HGB, hemoglobin; MCV, mean
corpuscular volume; RDW, red blood cell distribution width; TC, total cholesterol; PLT, platelet; TG, triglycerides; WBC, white blood cells; BASO, basophils;
MONO, monocytes; HDL, HDL cholesterol.
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