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Abstract

One dimeric matrine-type alkaloid, ochrocephalamine A (1), was isolated from the poisonous 

plant Oxytropis ochrocephala Bunge. Its structure was elucidated by spectroscopic data and 

single-crystal X-ray diffraction. The insecticidal and cytotoxic activities of 1 were evaluated.
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The plant Oxytropis ochrocephala Bunge is a common poisonous plant found in the western 

grasslands of China1–2. After ingesting the plant, livestock gradually develop a chronic 

neurological disease, characterized by a staggering gait and muscular incoordination, giving 

rise to the vivid name ‘locoweed’ for this poisonous plant3. Previous phytochemical 

investigations on O. ochrocephala provided quinolizidine and indolizidine alkaloids, as well 

as flavonoids and saponins4–10.

Quinolizidine alkaloids are important natural products exhibiting a broad array of 

pharmacological activities, such as antineoplastic, antibacterial, antiviral, and insecticidal 

properties11. Recently, we reported the synthesis of sophoridine derivatives as potential 

antitumor agents12. As part of our ongoing research program to identify bioactive 

constituents, particularly from this alkaloid class, we obtained a new quinolizidine alkaloid, 

ochrocephalamine A (1), from O. ochrocephala. Herein, we describe the isolation, structural 

elucidation and bioactivity of this compound.

The whole plant (20.0 kg) of O. ochrocephala was percolated three times with 95% EtOH to 

give a crude extract (3.0 kg). The extract was concentrated to dryness under reduced 

pressure, followed by partitioning between CH2Cl2 and 2% HCl. The aqueous phase was 

then adjusted to pH 11 with 3% NaOH and extracted with CH2Cl2 to give crude alkaloids 

(100 g). The crude alkaloids were subjected to a silica gel column chromatography eluted 

with CH2Cl2/MeOH (1:0 to 0:1) to obtain fractions A, B and C. Fraction B was 

chromatographed on silica gel [CH2Cl2/MeOH (10:1)] and then RP-18 (30% MeOH) 

columns to yield ochrocephalamine A (1, 20 mg).

Ochrocephalamine A (1)13 was obtained as a light-yellow solid (CH2Cl2), and its molecular 

formula was established as C30H42N4O2 by HR-EI-MS (m/z 490.3296 [M]+, calcd 

490.3308), requiring 12 degrees of unsaturation. The 1H NMR data of 1 (Table 1) showed 

two groups of signals characteristic for a matrine-type alkaloid at δH 4.29 (1H, dd, J = 12.8, 

4.0 Hz) and 3.11 (1H, br t, J = 12.8 Hz) and at 4.09 (1H, dd, J = 12.8, 7.2 Hz) and 3.80 (1H, 

br t, J = 12.8 Hz)14. In addition, two coupled olefinic protons [δH 7.30 (1H, d, J = 7.6 Hz), 

6.51 (1H, d, J = 7.6 Hz)] were distinguished by NMR analysis. The 13C-NMR data (Table 1) 

accounted for 30 carbon signals, classified as four sp2 quaternary carbons including two 

lactam-CO signals at δC 170.9 and 164.6, two sp2 and eight sp3 methines, and 16 

methylenes. Six sp2 carbons accounted for 4 out of the 12 degrees of unsaturation, and the 

remaining 8 degrees required that 1 is an octacyclic system.

Comprehensive analysis of the 1D NMR data suggested that 1 contains two matrine-type 

alkaloid moieties, sophoramine and matrine15. Considering the octacyclic ring system of 1, 

this compound was likely a dimeric alkaloid of sophoramine and matrine connected through 

a C-C bond. Accordingly, the methine of sophoramine at C-14 (δC 116.4) and methylene of 

matrine at C-13 (δC 19.2)15 were replaced by the quaternary carbon (δC 130.1) and methine 
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(δC 30.0), respectively, in 1. The HMBC correlations from H-13 to C-15, C-11 and C-13′, 

H2-14′ to C-15′, C-13′ and C-14, H-13′ to C-15′ and C-14′, and H2-12′ to C-7′, C-11′, 

C-13′ and C-14 confirmed the C-14–C-13′connection. Thus, the gross planar structure of 

ochrocephalamine A was established as shown (Figure 2a).

Determinations of the stereo configurations of 1 were particularly challenging. The ROESY 

correlations of H-17′α to H-5′, H-6′ to H-7′ indicated H-5′, H-6′ and H-7′ were α 
configuration10. H-11α was assigned in β-configuration on the basis of the mutual ROESY 

between H-17′β and H-11′10. The relative configuration of H-13′ could not be determined 

by a ROESY experiment due to unobserved correlations between H-11′ and H-13′ as well 

as H-11′ and H-14′. Additionally, the relative configuration of H-5, H-6 and H-7 also can’t 

be determined by ROESY experiment due to unobserved correlations between one of them 

with another confirmed proton configuration. Thus, we attempted to prepare crystals of 1 for 

X-ray determination. Eventually, a single crystal of this compound was obtained from EtOH. 

The connection between C-14 and C-13′ was confirmed by X-ray crystallographic 

diffraction with CuKα radiation and the relative configurations of H-5, H-6, H-7 and H-13′ 
were α-configuration (Figure 2b)13,16. The absolute configurations of 1 were also 

determined by the refined Hooft parameter value 0.01(6) for 1892 Bijovet pairs with a 

probability of 1.000 as shown in Figure 2b16.

From a biogenetic point of view, matrine could react with known sophoridine through a 

Michael addition reaction to give the intermediate B. Aromatization of this intermediate 

would then yield 1.

We evaluated the contact toxicity of 1 against Spodoptera litura third-instar larvae by the 

micro-drip method. One μL of 1 (3 mg/mL in EtOH) was dropped on the pronotum of 

larvae. After five days, 50% of larvae were killed. In cytotoxicity assays, compound 1 was 

not active against A549, KB, KB-VIN, and MDA-MB-231 cell lines (ED50 > 20 μM).

O. ochrocephala is widely distributed in the grasslands of eastern and central Asia, Australia, 

and western North and South America, where it poses an extreme risk to grazing animals, 

resulting in a chronic neurological disease1,3. The indolizidine alkaloid swainsonine is 

claimed as the constituent poisonous to livestock3. In view of the plant itself, poisonous 

secondary metabolites can improve the plant’s chances of survival and reproduction by 

deterring animals, such as sheep, cattle, and horses. In addition, quinolizidine 

alkaloids8–9, 17, such as 1, play an important role in defense against insects. Biogenetically, 

indolizidine and quinolizidine alkaloids originate from the same precursor L-lysine18. The 

use of one biogenetic pathway to produce two different types of alkaloids involved in plant 

defense against both livestock and insects, respectively, is a smart and efficient strategy to 

combat the survival challenge.
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• Ochrocephalamine A (1) was isolated from Oxytropis ochrocephala 
Bunge.

• The poisonous plant O. ochrocephala poses an extreme risk to grazing 

animals.

• Compound 1 is a dimeric matrine-type alkaloid.

• Its structure was solved from spectral data and single-crystal X-ray 

diffraction.

• Compound 1 showed contact toxicity against Spodoptera litura third-

instar larvae.
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Figure 1. 
The structure of ochrocephalamine A (1)
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Figure 2. 
a) key HMBC correlations of 1, b) X-ray crystal structure of 1.
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Scheme 1. 
Biogenetic pathway proposed of ochrocephalamine A (1)
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