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Abstract

A challenge in the structure-based design of specificity is modeling the negative states, i.e. the 

complexes that you do not want to form. This is a difficult problem because mutations predicted to 

destabilize the negative state might be accommodated by small conformational rearrangements. To 

overcome this challenge, we employ an iterative strategy that cycles between sequence design and 

protein docking in order to build up an ensemble of alternative negative state conformations for 

use in specificity prediction. We have applied our technique to the design of heterodimeric CH3 

interfaces in the Fc region of antibodies. Combining computationally- and rationally-designed 

mutations produced unique designs with heterodimer purities greater than 90%. Asymmetric Fc 

crystallization was able to resolve the interface mutations; the heterodimer structures confirmed 

that the interfaces formed as designed. With these CH3 mutations, and those made at the heavy-/

light-chain interface, we demonstrate one-step synthesis of four fully IgG bispecific antibodies.
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Introduction

Advances in computational protein design have led to a variety of design successes. Protein 

designers have stabilized existing proteins, designed new proteins de novo, created and 

manipulated protein complexes, and introduced catalytic active sites into proteins (Pantazes 

et al., 2011; Stranges and Kuhlman, 2013; Woolfson et al., 2015; Zanghellini, 2014). In 

these cases, the design problems challenge the designer in similar but slightly different 

ways: Does the protein have a low energy? Is the interface tightly packed? Does the protein 

form favorable contacts with the transition state? What these challenges share is a common 

narrow focus, each allowing the designer to develop a protocol that at any one time 

concentrates on only a single model of the protein being designed. These protocols often 

start from a conformation of the protein backbone and then optimize the side-chain identities 

and rotamers (Ponder and Richards, 1987) on that backbone. Most protocols then allow the 

backbone to relax in response to the new sequence and may iterate between sequence design 

and backbone movement (Mandell and Kortemme, 2009). There are other design problems, 

however, that cannot be solved by modeling a sequence in only a single context.

A specificity design problem, for example, might challenge the design protocol: do the 

mutations to protein A allow it to bind protein B but prevent it from binding protein C? It 

involves aspects of both positive design, as the AB interaction must be favored, and negative 
design (Hecht et al., 1990), as the AC interaction must be disfavored. Multistate design 

(MSD) (Davey and Chica, 2012), which designs for multiple protein states simultaneously, 

has proven itself useful in designing a single protein sequence to adopt multiple 

conformations (Ambroggio and Kuhlman, 2006; Fromer et al., 2009), in understanding what 

kind of sequences can adopt multiple conformations (Babor et al., 2011; Humphris and 

Kortemme, 2007; Willis et al., 2013), and in designing specificity such as when designing a 

protein to bind one target but to avoid another (Ashworth et al., 2010; Grigoryan et al., 2009; 

Zheng et al., 2014) or when organizing multimeric assemblies (Fallas and Hartgerink, 2012; 

Havranek and Harbury, 2003; Lewis et al., 2014).
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The requirement that a single sequence be shared between multiple states has meant that 

most MSD protocols are very similar. In an outer loop, they employ a search algorithm to 

explore sequence space, picking a single sequence in each iteration, and then in an inner 

loop, they thread that sequence onto each of the states to compute an energy for each one. 

MSD then aggregates the state energies to compute a fitness for the sequence, and this 

fitness guides the outer-loop search through sequence space.

Three features distinguish the various MSD efforts: the fitness function, the search algorithm 

used in the outer loop, and – the focus of this work – the energy function and associated 

conformational sampling routine used in the inner loop. The choice of energy function is 

tied intimately to the kind of sampling that is required. For an atomic-resolution energy 

function, the atomic coordinates have to be predicted, which means that after the new 

sequence is placed onto the backbone, at a minimum its rotamers have to be optimized (and 

rotamer optimization is computationally challenging (Pierce and Winfree, 2002)). When 

negative design is included, MSD will often design collisions into the negative states. 

However, there are two kinds of collisions: there are “true collisions” which will disrupt a 

negative state, and there are “false collisions” that can be relaxed away by moving the 

backbone. The problem for MSD is that, when it looks at a single fixed backbone, it cannot 

distinguish between true and false collisions. A potential solution to this problem is to use an 

ensemble of backbones to represent how the complexes might adjust to accommodate 

mutations. Davey and Chica found that considering many near-native conformations 

improved ΔΔG predictions (Davey and Chica, 2014). Here, we build on this result by using 

negative-state repertoires (NSRs) during the sequence optimization process, which involves 

sampling a large sequence space (~1940, i.e. 19 amino acids considered at 40 residue 

positions). We apply our method to an important problem in antibody engineering: the 

design of fully IgG bispecific antibodies (BsAbs).

The most common form of circulating antibodies, IgGs, are homodimers of heterodimers 

where two heavy chains (HCs) homodimerize with one another and form intermolecular 

disulfide bonds, and a light chain (LC) binds to each HC with a disulfide bond forming 

across the HC/LC interface. The HC is made of four domains: the VH, CH1, CH2, and CH3 

domains; the LC is made of two domains: VL and CL. A symmetric interface between the 

two HCs forms between the CH3 domains, and the disulfide bonds between the HCs form in 

the hinge region between CH1 and CH2. IgGs are often conceptualized as a capital letter “Y,” 

where the stem (aka Fc) represents the interface between the two HCs (each half stem 

comprising CH2 and CH3), and the two arms represent the HC/LC portion with each arm 

capable of binding an antigen with their VH/VL domains.

The alluring fact that each antibody has two arms has drawn many scientists to consider 

whether a single antibody could be engineered to bind two different antigens. Uses for such 

BsAbs include cancer and autoimmune therapy (Baeuerle and Reinhardt, 2009; Chan and 

Carter, 2010; Scott et al., 2012), tumor detection (Barbet et al., 1998), T cell redirection 

(Lum et al., 2006), and broadly, as affinity reagents to bring two proteins together. IgG 

antibodies and BsAbs make attractive therapeutics due to their long serum half-lives 

(mediated by Fc/Neonatal-receptor interactions (Chan and Carter, 2010)), their ability to 

recruit the patient’s own immune system (mediated by CH2/FcγR interactions (Nimmerjahn 
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and Ravetch, 2008)), and their flexibility to bind a wide variety of targets with exquisite 

specificity. However, actually constructing IgG BsAbs is not easy. A naïve mixture of two 

LCs and two HCs will result in the formation of ten different species, with the desired BsAb 

representing only 1/8th of the desired product (Suresh et al., 1986). To properly orchestrate 

the desired assembly between an A and B pair of light- and heavy chains in a single cell, 

LC-A must preferentially bind HC-A and not HC-B and vice versa (the light-chain pairing 

problem), and HC-A must heterodimerize with HC-B without homodimerizing with itself 

and vice versa (the heavy-chain pairing problem) (Klein et al., 2012; Spiess et al., 2015).

The heavy-chain pairing problem has been solved previously, through rational design using 

sterics (Atwell et al., 1997; Ridgway et al., 1996), electrostatics (Gunasekaran et al., 2010; 

Mimoto et al., 2014), or both (Choi et al., 2013) to disfavor homodimer formation; it has 

been solved by mixing IgG and IgA residues (Davis et al., 2010); and two groups 

approached it computationally (von Kreudenstein et al., 2013; Moore et al., 2011). It has not, 

to our knowledge, been solved using MSD.

This paper presents the use of NSRs in MSD to design CH3 mutations that when refined 

with additional rationally chosen mutations, produced designs yielding 93% pure 

heterodimer, comparable to previously published designs. It also includes the first 

asymmetrically crystallized CH3 interface, allowing direct observation of the mutant 

residues without averaging between the two chains. Finally, it demonstrates the utility of 

these CH3 mutations in the one-step generation of BsAbs when combined with Fab 

mutations that control light-chain pairing.

Results

Negative-State Repertoires

The mpi_msd application in Rosetta implements an MSD protocol that, in its inner loop, 

threads a sequence on each of several states and performs a fixed-backbone rotamer 

optimization on each one (Leaver-Fay et al., 2011). By using fixed backbones, the protocol 

is able to reuse rotamer energies and thus run quickly. However, negative design across 

protein/protein interfaces often produces false collisions because most collisions across an 

interface can be resolved by pulling the chains slightly apart or by sheering them. Rigid-

body docking would unmask false collisions but docking would be too slow to run in MSD’s 

inner loop.

To let MSD see through false collisions, we instead use a repertoire of different backbone 

conformations for the negative states – a negative-state repertoire (NSR). Each sequence for 

one of the negative species (AA, or BB) is threaded onto each of the backbone 

conformations in the NSR, and then the lowest energy produced over the set is the one taken 

for that species. This means a collision that produces a high energy for one backbone 

conformation but a low energy in another will correctly be seen by MSD as a false collision.

We build each NSR iteratively, running MSD starting from a crystal structure and then 

docking the output homodimers. If docking identifies a false collision, then we add the 

backbone conformation that relieved the collision to the NSR (Figure 1). The efficacy of 
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NSRs at weeding out false collisions can be seen in comparing the differences in binding 

energies for the homodimers as measured before docking and after docking with and without 

NSRs (Figure S1). The improved agreement in these energies shows the value of NSRs and 

confirms our previous in silico observations in a different system (Leaver-Fay et al., 2011). 

Although NSRs do not avoid all false collisions, they improve over previous MSD 

approaches where negative states were modeled only onto the backbones of existing 

structures (Havranek and Harbury, 2003), or where the extra backbone conformations were 

generated using only the wild-type sequence (Allen et al., 2010; Davey and Chica, 2014).

Notation

This paper refers to CH3 mutations using a leading chain identifier; e.g. if chain A includes 

Y407A, and chain B includes K409V, it will refer to this pair as A_Y407A and B_K409V. 

Additionally, when describing unfavorable interactions in a homodimer, it will use lowercase 

letters to denote which side of the interface another residue is on, e.g. in the BB homodimer, 

B_K409V collides with a_Y407; both residues are on the same “B” species, but the collision 

is across the interface. The name “7.2” for this design designates it as a member of design 

family 7. The inverted design, design 7.2−1, swaps 7.2’s chain A and chain B mutations, to 

produce A_K409V and B_Y407A.

Round 1 Testing

We employed a multi-round design strategy. We sought from MSD a list of small, recurring 

subsets of mutations that would be unlikely to destabilize the heterodimer, yet would 

significantly destabilize one of the two homodimers. In the first round of experimental 

screening, we identified designs that destabilized their intended homodimer without 

destabilizing the heterodimer, and in the second round, combined those designs to eliminate 

both homodimers.

Starting from the 1L6X crystal structure of the CH3 interface (Idusogie et al., 2000), we built 

an NSR, and then performed several hundred MSD trajectories with this NSR followed by 

rigid-body docking. We examined the designs that produced the greatest binding-energy 

separation between the heterodimers and the homodimers, pruning away extraneous 

mutations. Design families were gathered as variations on common sets of mutations. Sixty-

six designs, falling into thirteen families (Table S1), were tested experimentally in the first 

round.

We screened the designs using two assays: 1) a gel-filtration assay and 2) a Förster 

resonance energy transfer (FRET) assay. The first assay expressed A chain mutations on a 

full HC (alongside a separate LC), and expressed B chain mutations on an Fc. Purified 

protein was passed through an Ultra-performance liquid chromatography (UPLC) sizing 

column, and eluted protein was measured by absorption at 280 nm. We transfected 

mammalian cells using A:B DNA ratios of either 1:1 or 4:1 (Figure S2A). In the second 

assay, chain A’s Fc was expressed with an N-terminally fused EGFR domain 3, and chain 

B’s Fc with an N-terminally fused VEGFR1 domain 3 (Figure S2B). Probing with 

fluorescently labeled anti-EGFR and anti-VEGFR Fabs gave an approximation to the 

concentration of each species that qualitatively matched our expectation; WT homodimers 
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showed more FRET signal than those of the positive controls (Figure S2C). The main 

benefit of using two assays was to filter out designs that performed well in one assay and 

poorly in the other; we favored those designs that performed well in both.

Of the thirteen families, eleven contained members that shifted the observed 

homodimer:heterodimer ratio in the intended direction, though some more effectively than 

others (Table S2). The majority of the designs tested in this first round (37 of 66) performed 

well in at least one of the two assays; however, we could not carry all of them forward into 

round 2. Several of the designs gave nearly 90% heterodimer when expressed at a 1:1 ratio, 

in particular, those from families 7 and 11, whose mutations are shown in Figure 2.

We sought and obtained crystal structures for nine of these designs to determine the extent 

of structural rearrangement induced by the mutations. Previous structures of CH3 

heterodimers, however, did not resolve their interfaces. Although the center of each CH3 

interface is asymmetric, the rest of the Fc is not, so the crystal lattice formed without placing 

the A and B chains consistently. As a result, the residues at the interface were averaged, 

rendering the most intriguing part of the structure invisible (Elliott et al., 2014; Gunasekaran 

et al., 2010; Strop et al., 2012). We sought to avoid this averaging by crystallizing the two 

chains with chain A bound to the Fc-III peptide (DeLano, 2000) at the hinge between CH2 

and CH3, but where chain B’s ability to bind Fc-III had been ablated by three mutations: 

M252E, I253A, & H435A.

With this asymmetric crystallization strategy, we solved eleven crystal structures of our 

designed heterodimers (Table S3) and two of the previously published heterodimers: the 

knobs-into-holes (KH) design (Atwell et al., 1997), PDB ID 5DI8, and Amgen’s charge 

swap design (DD-KK) (Gunasekaran et al., 2010), PDB ID 5DK2. The CH3 interfaces 

showed very little structural rearrangement so that the crystal structures very closely 

resembled both the design models and the starting crystal structure. The RMSDs between 

the crystal structures and the design models for the backbone heavy-atoms of the 60 

interface residues (see Supplemental Methods) ranged between 0.24 and 0.33 Å, with a 

mean of 0.27 Å. Of the 20 non-alanine, non-glycine mutations in the nine crystal structures, 

Rosetta correctly predicted both the χ1 and χ2 dihedrals to within 20° for 14 of them. Figures 

3 and 4 compare the design models and crystal structures for two of the more important 

designs to emerge from this round, designs 7.8 and 11.2 (PDB IDs 5DJZ and 5DJ0).

As a final test before advancing designs into round 2, we performed differential scanning 

calorimetry (DSC) to determine the mutations’ effect on stability (Table S2). Most of the 

designs tested decreased the midpoint of thermal unfolding (Tm) of the CH3 domain by 

about 12° C which appeared to be linked to the mutation of K409, though a handful 

produced destabilizations in the range between 3 and 8° C. None of the designs resulted in 

an increased melting temperature. Twenty four designs were selected for combination in 

round 2.

Round 2 Testing

We combined pairs of designs selected from round 1 and screened them computationally by 

running rigid-body docking on the three dimers. From these simulations, we selected an 
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additional 44 combinations for testing in the UPLC and FRET assays. Surprisingly, very few 

of the design combinations formed heterodimers with purities we had anticipated. Four 

combinations of round 1 designs showed high heterodimer yields and seemed promising 

(Table S4); repeated assays showed that design 20.8 (composed from designs 11.2 & 7.4−1) 

expressed well with the greatest consistency, so we looked to refine this design.

Design refinement

We first attempted to refine design 20.8. We grafted 7.4−1’s mutations onto the crystal 

structure of design 11.2 to generate a model of 20.8 and fed this model back into MSD to 

look for additional mutations to improve the total energy of the heterodimer while 

continuing to disfavor the homodimers. We synthesized an additional 24 designs (Table S5). 

Of these additional designs, most showed worsened heterodimer purity. Rosetta had 

suggested a reversion to wild type at A_K409 (A_K409V in the parental 7.4−1 design), 

which it predicted would improve the total energy of the heterodimer; however, all of the 

designs that contained this mutation displayed a significant increase in the formation of the 

AA homodimer, indicating that the collision between A_K409V and b_Y407 was critical in 

preventing homodimer formation.

After obtaining the crystal structure of 20.8 (PDB ID 5DJY), we rationally designed three 

more mutations: a) A_T366M (A_T366V in the parental 7.4−1 design) to fill much of the 

cavity vacated by B_Y407A, b) B_E356G to relieve tension between A_Y349S and b_E356, 

and c) B_S364R (B_S364Q in the parental 11.2 design) to repel a_K370 in the BB 

homodimer. These mutations lead to designs 20.8.34, which included A_T366M and 

B_E356G, and 20.8.37, which included A_T366M and B_S364R. We were able to obtain a 

crystal structure of 20.8.34 (Figure 5, PDB ID 5DK0), which very closely resembled the 

crystal structures of 20.8 and 11.2 before it. We also obtained crystal structures of the AA 

and BB homodimers for 20.8.37 (Figure S3, Table S6). These structures very closely 

resemble the recently published KH homodimers (Elliott et al., 2014) where the CH2 and 

CH3 are paired in a head-to-tail orientation. Because those homodimers were expressed in E. 
coli, it was not clear whether the CH2/CH3 interface was real or an artifact of missing CH2-

domain glycosylation. As our homodimers were expressed in mammalian cells, this head-to-

tail arrangement appears to be real. We also observed this head-to-tail arrangement in our 

UPLC assay in the formation of a “long dimer” (Figure 6), with the long dimer forming even 

for WT.

In parallel, we explored refinements on design 7.8 from round 1. Design 7.8 showed high 

heterodimer purity but still formed more BB homodimer than desired, which was especially 

apparent in the 4:1 UPLC experiments of 7.8−1 (Figure S4). We manually searched for 

mutations that could introduce an unfavorable electrostatic interaction between the BB 

partners, and identified a mutation, B_Q347R, that could be paired with A_K360D to form a 

salt bridge across the heterodimeric interface; B_Q347R in the BB homodimer, however, 

would interact unfavorably with the wild type a_K360. We modeled these mutations in 

Rosetta using the FastRelax protocol (Khatib et al., 2011) and found that B_Q347R could 

escape its unfavorable interaction with a_K360 by forming a salt bridge with the 

neighboring b_E345; Rosetta predicted that B_E345R would prevent B_Q347R’s escape. 
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The design containing these mutations, 7.8.60, showed decreased BB homodimer formation 

by UPLC. In the 1:1 assay of 7.8.60−1, the formation of the standard AA dimer decreased to 

0.4%, and the formation of the AA-long dimer also decreased compared to 7.8−1.

We compared our designs against a set of existing CH3 heterodimer designs: the KH design, 

the DD-KK charge-swap design, and the sterics-based design published by Zymeworks 

(ZW1) (von Kreudenstein et al., 2013). In the UPLC assays, these three designs formed 

heterodimers with between 91 and 94% purity (Table 1, Figure 6), whereas our design 7.8.60 

achieved 93% purity. The DD-KK, KH, and ZW1 designs also showed significant AA 

homodimer formation in the 4:1::A:B assay in both the regular and inverted forms, with the 

exception of the (non-inverted) ZW1 design, which formed very little.

BsAb Production

We tested how well our CH3 designs correctly assembled into IgG BsAbs in mammalian 

cells (the norm for antibody manufacture). We chose four different IgG1 mAbs – 

Pertuzumab (anti-HER-2), Matuzumab (anti-EGFR), BHA10 (anti-LTβR) and MetMAb 

(anti-cMet) – and paired them to form four possible BsAbs: Pertuzumab with BHA10, 

Pertuzumab with Matuzumab, MetMab with BHA10, and MetMab with Matuzumab (Figure 

7, Table S7). We combined our previously published orthogonal Fab interface mutations 

(Lewis et al., 2014) with designs 7.8.60 and with 20.8.34 and compared their BsAb 

assembly against designs with a wild-type CH3 sequence. Each of the four putative BsAbs 

were expressed transiently in 293F cells, affinity purified, and characterized for assembly 

using liquid chromatography with in-line mass spectrometry (LCMS). LCMS gave a readout 

on the percentage of correctly assembled BsAb and the percentage and identity of 

misassembled byproducts. Both 20.8.34 and 7.8.60 designs formed very high purity BsAbs, 

each averaging 93% purity over the four target BsAbs. In three of the four cases, at least one 

of the two designs formed > 95% pure BsAb. Our previous work showed the LCMS 

experiment accurately predicted BsAb binding behavior (Lewis et al., 2014).

Discussion

This paper has presented a new technique for performing negative design at protein/protein 

interfaces – that of using negative-state repertoires. The extra fixed-backbone conformations 

mimicked real docking trajectories and allowed MSD to better see the structural effect of a 

mutation on a negative state. As a result, eleven of the thirteen design families tested in the 

first round destabilized their intended homodimer. Our top computationally designed 

heterodimers achieved between 80 and 90% pure heterodimer. To make them comparable to 

other published CH3 heterodimers, however, required additional rationally designed 

mutations based on X-ray structures to minimize residual homodimer formation. This paper 

has also presented a novel crystallization technique that was able to resolve the asymmetry 

at the CH3 interface; the crystal structures of our heterodimers matched the design models 

closely, and the structures of the previously-published KH and DD-KK heterodimers 

represent the first fully-resolved view of their interfaces.

It is likely that allowing slight internal backbone flexibility would further improve MSD. 

Though the use of NSRs mimics some degree of flexibility – rigid-body flexibility – the 
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NSRs do not incorporate internal-geometry flexibility and there is evidence that this 

flexibility is valuable. The crystal structures for 11.2 and 20.8.34, for instance, both showed 

sufficient variability in their Cα-Cβ bond vectors to fit larger residues than otherwise 

appeared possible or to form better hydrogen bonds with polar residues. However, naïvely 

opening up backbone flexibility without aggressively sampling backbone conformation 

space is unlikely to improve predictions since the space is enormous and the energy 

landscape is rugged: the noise arising from energy minima in regions far away from the CH3 

interface would likely overpower any signal from new low-energy sequences. Aggressive 

sampling, however, would dramatically increase running time, which is already long. 

Perhaps incorporating additional low-energy backbone conformations that are held fixed 

throughout simulation could sufficiently mimic internal backbone flexibility (Davey and 

Chica, 2014).

Since the 1980s, the idea of producing fully IgG BsAbs has been a paramount goal for those 

in the field of antibody engineering (Milstein and Cuello, 1983). Chimeric or humanized/

fully human IgG antibodies have demonstrated their utility in the treatment of many 

different diseases with >40 approved and 100s in clinical trials (Ecker et al., 2015) and their 

advantageous properties (stability, solubility, manufacturability, pharmacokinetics) are well 

documented. Fully IgG BsAbs should maintain these attributes, which may pose an 

advantage over non-native BsAb formats such as tandem scFvs, diabodies, and even IgG-

like formats such as IgG-scFvs and dual variable domain Igs (DVD-Igs) (Spiess et al., 

2015). However, fully IgG BsAbs have been challenging to manufacture compared to some 

of the antibody fragment (Fv, scFv, or diabody) approaches due to the complex 

heterotetrameric assembly of the native IgG architecture. Nonetheless, several new strategies 

have been described in the past few years for generating IgG BsAbs either through post 

expression/purification biochemical methods (Labrijn et al., 2013; Spiess et al., 2013; Strop 

et al., 2012) or by the direct expression of correctly assembled IgG BsAbs (Bostrom et al., 

2009; Lewis et al., 2014; Liu et al., 2015; Mazor et al., 2015; Schaefer et al., 2011). Here we 

demonstrate the ability to express and assemble fully IgG BsAbs using a single cell 

mammalian process amenable for transfer to standard industry manufacturing protocols 

using both Fab designs (Lewis et al., 2014) and CH3 heterodimer designs generated 

exclusively by our MSD design processes.

Experimental Procedures

Computational Methods

MSD (sequence optimization) and rigid-body docking (backbone optimization) were iterated 

between to build up an NSR (Figure 1). Conformations for the homodimers generated by 

docking with a large difference in binding energies as measured by MSD and by the 

InterfaceAnalyzer application following docking were gathered. Those conformations that 

by eye appeared dissimilar to other conformations from the same iteration were chosen for 

the the next iteration’s NSR. Prior to the first iteration, rigid-body docking was performed 

on the 1L6X crystal structure so that the homodimer conformations that comprised the NSR 

would not be drastically lower in energy than the conformation used for the positive state. 

The lowest energy structure of 20 docking trajectories was then used in subsequent MSD 
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simulations; from the 1L6X crystal structure, this docked structure had a heavy-atom RMSD 

of 0.315Å over all four domains, and a backbone heavy-atom RMSD of 0.069Å over the 

CH3 interface residues.

UPLC

For each design, three plasmids (0.25 μg MetMab heavy chain + 0.25 μg Fc + 1.5 μg 

MetMab light chain) were transiently transfected into 2mL of HEK293F cells. Transfected 

cells were grown at 37 °C in a 5% CO2 incubator while shaking at 125 rpm for 5 days. 

Secreted protein was harvested by centrifugation at 2K rpm for 5 min and the supernatant 

recovered. Antibody was protein-G purified. Eluted samples were neutralized with 1M Tris 

pH9.0 (Sigma) and filtered with an Ultrafree-MC-GV centrifugal filter (Millipore). A 30 μL 

sample was added to Waters UPLC tube, from which 10 μL is injected into a Waters Acquity 

UPLC with a BEH200 SEC column, equilibrated in PBS and run at 0.3 mL/min. A dilution 

series of purified MetMab was also run as a standard. Peaks from the UPLC traces were 

deconvoluted and integrated using a custom set of Octave scripts. Molar percentages were 

computed by normalizing each species by its predicted extinction coefficient.

FRET

Chain A’s plasmid contained an Fc appended to EGFR; chain B’s plasmid contained an Fc 

appended to VEGFR1. For protein production, the two plasmids were transfected (1:1) into 

HEK293F cells using Freestyle transfection reagents (Life Technologies). Transfectants 

were grown and secreted protein harvested as described above. Supernatants were purified 

using 2 μm filters.

Europium(Eu)-labeled MF1 (anti-mVEGFR1 D3) or Eu-labeled Matuzumab FAb (anti-

hEGFR D3) were mixed with Cy5-labeled MF1 or Cy5-labeled Matuzumab Fab to 

determine heterodimer and homodimer ratios (Figure S2). 96-1/2 well microtiter plates 

(black from Costar) were incubated for approximately 30 minutes at room temperature. 

Fluorescence measurements were carried out on a Wallac Envision 2103 Multilabel Reader 

with a dual mirror (PerkinElmer Life Sciences) with the laser excitation of the Europium at 

wavelength at 340 nm and the emission filters Europium 615 and APC 665. Delay between 

excitation and emission was 20μs.

DSC

A- and B-chain mutations were incorporated into plasmids containing Fc and HA-tagged 

FCs. These plasmids were used to transfect cells as above, and secreted protein was 

harvested as above. Supernatants were passed through 2 μm filters for purification. 

Purification was performed using protein A chromatography (Lewis et al., 2014). DSC 

measurements were carried out as described previously (Clark et al., 2014) with the 

exception that the scan rate was 1.5 deg. C/min. All DSC thermograms were fit using 

analysis software provided by the manufacturer (GE Healthcare).

Crystallography

The designs’ A chains were cloned into a standard-length IgG1 Fc construct. Their B chains 

contained an N-terminal Histidine tag (8xHis) and the three Fc-III related mutations. 
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Plasmids harboring the chain A and chain B DNA sequences were transfected into cells, the 

cells grown, and protein harvested as above. Supernatants were passed through 2 μm filters. 

Purification was performed using a two-step Protein A/His-tag process.

The purified proteins were screened using vapor diffusion in 96-well format (Intelli-plates, 

Art Robins Instrument) using commercially available screens: PEGs, PEGs II, ComPAS, 

Classics, Classics II Suites (Qiagen). A Phoenix robot (Art Robins Instrument) performed 

the initial setup, combining 0.3 μL of protein with 0.3 μL of well solution. When necessary, 

crystal growth was optimized with additional screens based on the best conditions observed 

in the commercial screens. Optimization screens utilized streak seeding from the original 

crystals.

The structure of the first asymmetrically crystallized heterodimer was solved by molecular 

replacement using the published homodimeric Fc complex with the Fc-III peptide (PDB ID 

1DN2) as a search model in PHASER (McCoy et al., 2007). The resulting solution with only 

one bound Fc-III peptide was refined using xtalview/xfit and the ccp4 family of programs 

(Winn et al., 2011). Subsequent structures utilized the most similar previously solved 

structure for molecular replacement and were similarly refined.

LCMS

To generate IgG BsAb protein, four plasmids, each containing either an HC or an LC from 

two separate MAbs, were transfected into cells, the cells grown, and the protein harvested as 

above. The cell culture supernatants were collected and passed through 0.2 μm filters. The 

supernatants were purified, prepared, and analyzed by high pressure liquid chromatography/

mass spectrometry (LCMS) as described previously (Lewis et al., 2014), except that the 

proteins were enzymatically deglycosylated after purification and neutralization to 

approximately pH 8.0 using 1 M Tris, pH 8.5–9.0. Proteins were deglycosylated by the 

addition of 1 μL N-Glycanase (Prozyme) for 3–14 hrs at 37 °C prior to being submitted for 

LCMS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Protein specificity design improves with the use of repertoires of negative states.

• This paper presents several novel CH3 heterodimers, resulting from multistate 

design.

• A novel xtal technique revealed the heterodimeric interfaces, otherwise 

unresolved.

• LCMS showed 2 CH3 interfaces both averaged 93% purity across 4 bispecific 

antibodies.
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Figure 1. Negative State Repertoires (NSRs)
A) The iterative design process begins by running the multistate design (MSD) sequence 

optimization executable, feeding in the wild type CH3 homodimer backbone from the 1L6X 

crystal structure (grey pentagon; each chain of the homodimer is represented by half a 

pentagon). At its completion, MSD outputs models of the AB heterodimer positive state 

(green pentagon), and the AA and BB homodimer negative states (red pentagons), threaded 

onto the backbone of the input structures that produce the lowest-energy. MSD, in trying to 

destabilize the homodimers, typically introduces collisions across their interfaces; however, 

these collisions often disappear if the interfaces are allowed to relax. Such false collisions 
dupe MSD into outputting sub-optimal sequences. Next, backbone optimization through 

rigid-body docking (RB dock) identifies nearby, low-energy conformations. If the 

homodimer-backbone conformations it finds (shifted red pentagons) show favorable binding 

energies, then these structures are added to a NSR for use in subsequent iterations. B) The 

seven CH3 conformations in the NSR of design 20.8, aligned on chain A (green). Alternate 

rigid-body orientations of chain B (cyan) show the conformational variability within the 

space of structures that gave favorable binding energies.
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Figure 2. CH3 Interface Designs
A) Cartoons of the residues at the CH3 interface. B) Design 7.8 and how its mutations 

destabilize the two homodimers (red dashes = collision; purple dashes = electrostatic 

repulsion). Design 7.4 differs from design 7.8 only in the absence of A_D399M. Design 7.7 

differs from design 7.8 only in having A_K409I instead of A_K409V. C) Design 11.2. 

Collisions between B_E357D and a_Y349 and between B_S364Q and a_K370 are predicted 

to destabilize the BB homodimer; the AA homodimer was not predicted to be destabilized.
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Figure 3. 1.9Å Crystal structure of design 7.8 (green=chain A & cyan=chain B) compared against 
the design model (gray)
PDB ID 5DJZ. Rosetta mispredicted the rotamer adopted by A_D399M, but even the crystal 

rotamer would be close enough to b_K409 to collide, either pushing it unfavorably towards 

a_K370, or pushing it away from aK370 but still disrupting the solvation shell surrounding 

b_K409. In any case, A_D399M consistently increased heterodimer purity when paired with 

other family 7 mutations. Rosetta correctly identified the rotamers for B_T366V and 

B_K409V, which both adopt the most commonly seen β-sheet rotamer. Surprisingly, the 

backbone for B_T366V moved away from the center of the interface by 0.5Å, enlarging the 

cavity left by A_Y407A, which is incompletely filled by B_K409V. The interface-residue 

heavy-atom RMSD between the two structures is 0.86 Å.
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Figure 4. Design Model vs 2.28Å Crystal Structure of Design 11.2
PDB ID 5DJ0. The crystal structure of design 11.2 (green: chain A; cyan: chain B) showed 

an unexpected rearrangement with the Cα-Cβ bond vector of A_K370Y changing by 7°. 

This is accompanied by a 0.1Å movement of its Cα, and together these motions swing the 

tyrosine’s terminal hydroxyl by 1.4Å from its predicted location; though it still adopted the 

predicted rotamer, the contact it formed with B_E357D was quite different. A_K370Y’s 

movement was accompanied by a comparatively large movement of the B-chain helix from 

residues 354 to 359, where the backbone atoms moved by about 0.5Å. This helix showed the 

greatest variability within our crystal structures. The motion of this helix allowed B_E357D 

to form an ideal hydrogen bond to A_K370Y where the donor hydrogen lies in the plane of 

the phenol ring and also in the sp2 plane of the carboxylate group, and furthermore the CG-

OD1 - - OH angle is 118°. The design model for 11.2 (gray) contained a hydrogen bond 

between this pair, but the geometry was significantly worse. The interface-residue, heavy-

atom RMSD between the two structures is 0.65 Å.
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Figure 5. Comparison of design 20.8.34’s crystal structure with WT
The crystal structure of design 20.8.34 (chain A: green, chain B: cyan) is aligned by its 

interface residues with the WT crystal structure 1L6X (grey). A) The mutations from 7.4−1 

and A_T366M. The rotamer adopted by A_T366M helps explain why Rosetta never 

predicted this mutation to improve 20.8: at −148°, its χ2 angle is 30° off from the nearest 

rotamer Rosetta would have sampled. This conformation appears to relieve the collision it 

would otherwise have had with B_L351. Additionally, the A_T366M’s Cα-Cβ bond vector 

swings by 4 degrees, and Cα shifts 0.2A, both motions separating the methionine’s sulfur 

from BL351. Rosetta did however suggest T366M in design 6.1, the crystal structure of 

which matched the design model closely (Figure S5). B) The mutations from 11.2 and 

B_E356G. The largest changes in this structure were seen in the small helix from 355 to 358 

on the B chain so B_E357D’s side chain ended up unresolved in the structure and seems to 

no longer contact A_K370Y. The interface-residue, heavy-atom RMSD between the two 

structures is Å.
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Figure 6. Comparison of our best designs against positive controls
The UPLC experiments in 1:1 and 4:1 A:B transfection ratios allowed observation of several 

species. The wild type (WT) sequence showed four prominent peaks corresponding, from 

left to right, to the AA homodimer, the AB heterodimer, and two BB homodimer peaks. 

Visible to the left of the AA homodimer peak in the 4:1 experiment is a trace amount of an 

AA “long dimer” (inset), a species formed by a head-to-tail arrangement brought about by a 

CH2/CH3 interface which we and others have observed in several crystal structures. This 

species would project its variable domains in opposite directions, decreasing its elution time. 

After extinction coefficient normalization, the WT experiments showed an average 

AA:AB:BB ratio of 1.2:2:0.6. The deviation from the theoretical 1:2:1 ratio is likely due to 

the full heavy chain (the A chain) expressing better than the Fc alone (the B chain). Designs 

20.8.34 and 20.8.37, though they improved upon 20.8, both showed accumulation of a left 

shoulder (pink) on the AB heterodimer elution peak. We were not able to isolate this species, 

but believe it to be related to the AB heterodimer. A similar shoulder is also observed in the 

4:1 assay of the DD-KK control. Curves: hexp – the experimentally observed absorption, 

sum – the sum of the fitted-curve heights, and individual peaks (earlier to later): AAl3 – 

AAl1 (the three AA longdimer peaks), AA, ABsh (the unidentified left shoulder on the AB 

peak), AB, A monomer, Aplz (proteolized A monomer), BB1 & BB2 (the two BB 

homodimer peaks), and B monomer.
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Figure 7. LCMS Traces for four BsAbs constructed using designs 20.8.34 and 7.8.60, compared 
against the WT CH3 sequence
All three sequences relied on our previously reported orthogonal Fab mutations (Lewis et al., 

2014). Design 20.8.34 yielded 90.3, 96.9, 89.0, and 95.8% of the correctly formed BsAb, 

whereas design 7.8.60 yielded 95.2, 98.1, 89.3, and 90.8% of the correctly formed BsAb 

(See Table S7).
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