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Abstract

Customer slowdown describes the phenomenon that a customer’s service requirement
increases with experienced delay. In healthcare settings, there is substantial empirical
evidence for slowdown, particularly when a patient’s delay exceeds a certain threshold.
For such threshold slowdown situations, we design and analyze a many-server system that
leads to a two-dimensional Markov process. Analysis of this system leads to insights into
the potentially detrimental effects of slowdown, especially in heavy-traffic conditions. We
quantify the consequences of underprovisioning due to neglecting slowdown, demonstrate
the presence of a subtle bistable system behavior, and discuss in detail the snowball effect:
A delayed customer has an increased service requirement, causing longer delays for other
customers, who in turn due to slowdown might require longer service times.

1 Introduction

The phenomenon of customer slowdown describes the fact that a customer’s service requirement
increases with the customer’s experienced delay. While the operations management literature
is largely built on the assumption that service times are independent of delay, a growing number
of empirical studies, predominantly in healthcare settings, provide evidence for situations where
slowdown occurs. This empirical evidence calls for the development of stochastic models that
take into account slowdown, in order to not only assess its impact on the performance of service
operations, but also to gain understanding of the fundamental changes that slowdown brings
to system behavior.

A large body within the healthcare operations literature investigates the impact of workload
on service times of patients. A canonical example in this domain is the admission of patients
to the intensive care unit (ICU). There is substantial empirical evidence for slowdown in such
settings: delays in receiving appropriate care can result in adverse effects such as an increased
length of stay in the ICU [7, 8, 9, 22, 23, 24]. Since ICUs are typically heavily used and
subject to unforeseen circumstances, delays in admitting patients are the rule rather than
the exception, which makes the slowdown effect potentially threatening. A delayed patient
that requires a longer service time will increase the overall workload of the system, therefore
causing longer delays for other patients, who in turn due to slowdown might require longer
service. This triggers a snowball effect, with an impact that is hard to assess without having
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a detailed understanding of the global system behavior that takes into account the subtle
dependencies among customers due to slowdown. Particularly when a system like an ICU
is designed to operate under heavy-traffic conditions, the neglect of slowdown might lead to
underprovisioning and severe performance degradation.

Critical care systems such as an ICU are typically modeled as multi-server systems that
operate in heavy-traffic regimes [1, 15]. The patients are the customers, the beds are the servers,
and the performance analysis of the multi-server systems gives insight into the patient flow.
We shall consider a Markovian multi-server system with the additional feature of slowdown. A
detailed analysis of this system gives insight into the key features of slowdown, in particular
when compared against multi-server systems without slowdown.

1.1 A threshold slowdown system

Slowdown can be modeled as a non-increasing function µ(·) that describes the rate of service
as a function of the queue length seen upon arrival. That is, a customer meeting n customers
upon arrival will receive service with rate µ(n), regardless of arrivals and departures after the
customer has joined the system. Note that, since the number of customers seen on arrival can
be translated into an expected delay, the service rate can also be interpreted as a non-increasing
function of the expected delay. Assuming a service rate that is a function of the state of the
system, leads to a so-called state-dependent queueing system.

The majority of the empirical studies on slowdown has focused on a threshold slowdown:
if a patient’s delay surpasses a certain threshold, he will receive a longer service time and
otherwise he receives a service of regular length. In terms of the slowdown function, this means
that µ(n) = µH if n ≤ N and µ(n) = µL if n > N with µH > µL. Note that the expected delay
is translated to a number of customers n met on arrival and compared against the threshold
N . The definition of the threshold varies across different medical conditions and situations. In
[7] it is argued that a critically ill patient awaiting transfer from the emergency department to
the ICU is labeled as delayed if the patient has waited longer than 6 hours. Delayed patients
on average have an ICU length of stay that is 1 full day longer than the non-delayed average
length of stay. Similar conclusions are drawn in [23] for the same situation in different hospitals.
However, [23] uses a threshold of 8 hours. Both studies [7, 23] establish a strong correlation
between the delay a patient experiences in receiving an assigned bed and the ICU length of
stay. Depending on the medical condition, the delay threshold can be in the order of minutes,
such as for cardiac arrest patients [9], hours, as seen in [7, 23], or even days, such as the 2
day delay in receiving surgery [24]; or a 3 day threshold of delay for pneumonia patients [22].
An encompassing study is performed in [8], where it is empirically verified that the slowdown
effect is prevalent across multiple hospitals and patient conditions.

We shall adopt the model in [8], which is a multi-server model with a threshold service rate
function µ(·). Customers arrive according to a Poisson process with rate λ, have an exponential
service requirement, and are served by s servers. Due to the threshold, we then distinguish
between two types of customers: those who were taken into service immediately upon arrival
(non-delayed) and those who have experienced delay (delayed). We set the threshold to N = s
so that non-delayed customers are served with a high service rate µH and delayed customers
are served with a low service rate µL with µH > µL. Indeed, in that case, delays cause a longer
service time. Define the two-dimensional Markov process (X(t), Y (t)), with X(t) ∈ N0 the total
number of customers in the system at time t, and Y (t) ∈ {0, . . . , s} the number of non-delayed
customers in service at time t. Denote ρH = λ/(sµH) and ρL = λ/(sµL). The system is stable
when ρL < 1. When µH = µL the model reduces to the standard M/M/s system. The load of
the slowdown system is described by ρ = (1 − P(W > 0))ρH + P(W > 0)ρL, where W is the
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Figure 1: Transition rate diagram and state space of the threshold slowdown system.

stationary waiting time, so that P(W > 0) is the delay probability. Figure 1 displays the state
space and the transition rate diagram. In [8], approximations are derived for key performance
indicators that give insight into the slowdown effect. Based on parameter values calibrated
from real ICU dataflows, the approximations in [8] indicate that the slowdown effect can be
substantial, and should not be ignored in critical care systems that operate in heavy traffic.

This two-dimensional Markov process can be used to investigate the impact of slowdown,
both qualitatively and quantitatively, in particular in comparison with the widely applied
M/M/s system (which neglects slowdown). While the focus in [8] lies on approximations for
small to moderate-sized systems (ICUs of 6 and 15 beds), we focus on exact and asymptotic
results, both for finite s and the regime s→∞ and ρ ↑ 1. With exact results we refer to deter-
mining the stationary distribution of the Markov process using a numerically stable algorithm.
This algorithm allows us to compute the exact two-dimensional stationary distribution for not
only small but also large systems. Asymptotic results give rise to accurate approximations for
the dimensioning of large systems in heavy traffic. Particularly, we are interested in the effect
of slowdown in the Quality-and-Efficiency driven (QED) regime [16]. As it turns out, the way
to establish non-degenerate limiting behavior for a multi-server system with slowdown in a
QED-type regime is by letting ρL approach 1, and µH approach µL as s → ∞. We find that
this scaling window is such that the probability of delay converges to a value that lies strictly
in the interval (0, 1), which is a manifestation of non-degenerate limiting behavior. As pointed
out in [8], deriving exact results becomes mathematically challenging because determining the
stationary distribution of the Markov process involves high-dimensional matrix inversion. To
relieve this computational burden of a large state space (particularly for large s), we exploit
the fact that the Markov process has a block diagonal structure in the inner states (states with
more than s customers in the system), which allows for an exact solution using matrix-analytic
techniques. This technique typically relies on iterative algorithms that solve a non-linear ma-
trix equation. For our model, we are able to find an exact solution for this matrix equation,
which then immediately renders the problem of computing the stationary probabilities of the
inner states computationally tractable, also for large s, see Section 4.1. What remains is the
computation of the stationary probabilities of the boundary states (states with s or less cus-
tomers in the system). We introduce a novel approach that computes the exact stationary
probabilities of the boundary states by exploiting the transition structure and by introducing
first-passage probabilities. A detailed description of this approach can be found in Section 4.2.
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1.2 On the relation with operator slowdown

Slowdown can refer to customer slowdown and operator slowdown. Customer slowdown refers
to an increase of a customer’s service requirement, caused by the delay experienced by that
customer. Operator slowdown refers to a service rate that decreases with the workload present
in the system. Operator slowdown usually occurs in large service systems, such as call centers,
due to fatigued operators [10]. However, it is also common in medical applications under high
workload, where care providers have to multitask and share (now crowded) central resources
such as computer terminals [3]. The key difference is that customer slowdown starts with an
individual delayed customer, and affects all customers behind this customer, while a decreased
service rate in operator slowdown affects all customers that are in service. Customer slowdown
therefore typically requires a more detailed state description, making it harder to analyze
than operator slowdown. In this paper we indeed focus on customer slowdown, but we make
comparisons with operator slowdown in several places.

Operator slowdown under Markovian assumptions leads to a one-dimensional Markov pro-
cess which is more tractable than our two-dimensional process and is amenable to fluid analysis.
In [10] an M/M/s-type model with operator slowdown is investigated. Additional properties
in [10] are customer abandonments and state-dependent service rates. We make a comparison
with [10] by extending our base model to also include customer abandonments in Section 2.2.
Both slowdown models exhibit a bistable behavior in which the models alternate between two
dominant regions. For the customer slowdown model, however, this behavior is more subtle
than for the operator slowdown model (see Section 2.2).

Both customer and operator slowdown fall into the broad category of queueing systems with
state-dependent service rates, like for instance an M/G/1 system with state-dependent service
rates [17]. In [4], the optimal admission policy is studied for an M/G/1 system with service
rates that increase with the workload below a certain threshold and decrease with the workload
above this threshold. State-dependent queueing systems also arise when arrival and/or service
rates are dynamically controlled to minimize average cost per time unit, see e.g. [2, 13, 28].
All these examples concern operator slowdown.

1.3 Structure of the paper

The paper is structured as follows. Based on a detailed analysis of the two-dimensional Markov
process in Figure 1, we identify three key features of threshold slowdown systems: severe
performance degradation due to the snowball effect; a subtle bistable system behavior; and the
existence of non-degenerate limiting behavior in a QED-type heavy-traffic regime. We discuss
these three features in Section 2. The first two features were identified by using the stationary
distribution of the two-dimensional Markov process. Section 3 introduces the model in greater
detail and Section 4 describes how we solve for its stationary distribution using matrix-analytic
methods and some properties of regenerative processes. The QED-type heavy-traffic regime is
outlined in Section 5. We conclude in Section 6 and present some supporting results in the
appendix.

2 Key features of threshold slowdown systems

Unless stated otherwise, we assume a stable system, i.e. ρL < 1.
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Figure 2: Sample path of the total number of customers in the system L(t) as a function of
time t, for s = 15, λ = s and loads ρH = 0.7 and ρL = 0.98.

2.1 Performance degradation due to the snowball effect

We first present a detailed description of the snowball effect caused by slowdown and then
assess the adverse effects for system performance.

For explanation purposes, we refer with busy periods and idle periods to the excursions
of the process X(·) above and at level s, and below level s, respectively. Hence, during busy
periods, newly arriving customers will experience delay and are thus subject to slowdown. The
snowball effect sets in each time a new busy period starts. An example sample path of idle and
busy periods is given in Figure 2, where we plot the total number of customers in the system
L(t) at time t. Compared with an M/M/s system without slowdown (with a high service rate
µH), the busy period in the time interval (9300, 10000) is relatively long, due to the slowdown of
delayed customers that reinforces, through other delayed customers, the persistence of the busy
period. Such busy periods are essentially equivalent to busy periods in an M/M/s system with
a low service rate µL. These excursions during which congestion levels are high occur relatively
frequently due to the snowball effect that triggers them, and this leads to severe performance
degradation, particularly in heavy traffic.

This performance degradation is visible in Figure 3, which displays for the same parameter
values as in Figure 2 the stationary distribution of the total number of customers in the
system L of the threshold slowdown system. This stationary distribution is calculated using the
numerical scheme that will be discussed in Section 4. We also plot the stationary distribution
of an M/M/s system with uniform service rate µH (the fast system) and with uniform service
rate µL (the slow system). We append the subscripts H, or L to random variables to indicate
that they belong to the M/M/s system with high service rate, or low service rate, respectively.
We see that the distribution of the slowdown system peaks around the same point as the fast
system, but that the tail behavior of the slowdown system is more comparable to the slow
system (which can be attributed to the snowball effect and long busy periods). Such a fat tail
obviously has severe consequences for performance, and in Figure 3 we see for instance that
the mean number of customers in the system increases considerably due to slowdown.

The neglect of slowdown might lead to underprovisioning. Table 1 provides an example
in which we search for the number of servers s that are required to achieve a certain delay
probability. Naturally, the threshold slowdown model requires equally many or more servers
as required by the fast system with uniform service rate µH. In particular, differences between
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Figure 3: Stationary distributions of the total number of customers in the system L for systems
with and without slowdown. Parameter values are s = 15, λ = s, ρH = 0.7 and ρL = 0.98. The
expected number of customers in the systems are E[LH] ≈ 10.8, E[LL] ≈ 59.4 and E[L] ≈ 34.5.

µH µL λ P(W > 0) s∗H s∗ P(W > 0) s∗H s∗

1 0.9 10 0.1 16 16 0.5 12 13
12 18 18 14 15
15 22 22 18 19
20 27 28 23 24

1 0.7 10 0.1 16 17 0.5 12 15
12 18 19 14 18
15 22 23 18 22
20 27 30 23 29

Table 1: Minimal number of servers s∗H (fast system) and s∗ (threshold slowdown system)
required to achieve a certain P(W > 0).

the required number of servers in the fast model and the threshold slowdown model seem to
increase with the delay probability, with the ratio µH/µL and with the arrival rate λ.

Another indicator for substantial slowdown effect is the difference ρ − ρH, as we will show
in the next subsection. This difference is the increase in load caused by the slowdown effect
with respect to the load of the fast system.

2.2 A subtle bistable behavior

The threshold slowdown system behaves as the fast system below the threshold, and as the
slow system above the threshold. However, for many relevant parameter settings, neither the
fast nor the slow system provides a good approximation for the slowdown system. The reason
is that the slowdown system in fact is a rather intricate mixture of both system as will be
explained in this subsection.

We start by examining the two-dimensional stationary distribution, which typically consists
of two dominant regions: region 1 with only non-delayed customers and no customers waiting,
and region 2 with delayed (slowdown) customers in service only and many waiting customers.
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s 2s 3s

s

(b) ρH = 0.95, ρ− ρH = 0.027 and P(W > 0) = 0.90.

Figure 4: For parameter settings that are mild or extreme the slowdown system resembles
either the fast or the slow system. The horizontal axis plots the total number of customers in
the system and the vertical axis indicates the number of non-delayed customers in service. The
contour plot shows where the probability mass is located (darker colour means more mass).
Parameter values are s = 15 and ρL = 0.98.

Region 1 thus complies with the fast system and region 2 with the slow system. An important
parameter that determines whether region 1 or region 2 is dominant is ρH. A low to moderate
ρH makes region 1 dominant, which suggests using the fast system as a proxy. A high load ρH

makes region 2 more important, and in fact, when ρH approach 1, the slow system will be a
good approximation. See the two examples in Figure 4. Notice here that for a system with a
high delay probability, i.e. Figure 4(b), the increase in load ρ− ρH due to the slowdown effect
is small, since both loads ρH and ρL are large and comparable. In contrast, the increase in load
in Figure 4(a) is much larger.

Arguably the most natural scenario, when ρH is high but not extremely high, say ρH ∈
(0.7, 0.9), gives a less clean picture. Then the slowdown system is a mixture of the fast and
slow systems, under the right condition that ρL is decisively larger than ρH. A good example
is ρH = 0.8 and ρL = 0.98, as can be seen in Figure 5(b). By increasing the load ρL busy
periods become longer, causing the shift in probability mass towards region 2 and increasing
the severity of the slowdown effect in terms of ρ− ρH as is witnessed in Figures 5(a)-(b).

Our slowdown system thus has a subtle bistable behavior, which rises to the surface when
both ρH and ρL − ρH are substantial but not extreme. A more extreme bistability effect would
occur when ρL could become larger than 1. We therefore next discuss two extensions of our
model that allow for ρL ≥ 1:

(i) A threshold slowdown system with a finite waiting room;

(ii) A threshold slowdown system with customer abandonments.

System (i) can have at most N customers in the system and is therefore inherently stable.
When ρL ≥ 1 and ρH is sufficiently small the system will alternate between periods during which
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Figure 5: Two dominant regions in the stationary distribution become visible when the load
of the delayed customers ρL increases. Parameter values are s = 15 and ρH = 0.8.

the process settles in the high-occupancy states around N , and periods in low-occupancy states
below s. This gives rise to bistable behavior, and for some parameter ranges even leads to a
bimodal distribution as seen in Figure 6(a). This bimodality can be explained by the fact that
for ρL ≥ 1, the process has two clear points of attraction: the state N and the state ρHs where
the rate of arriving and departing customers is equal. Note that our original slowdown system
has only one point of attraction, because ρH < ρL < 1.

System (ii) assumes that waiting customers abandon the system after an exponential time
with mean 1/δ. Because the total abandonment rate scales linearly with the number of waiting
customers, also this system is inherently stable. For ρL ≥ 1 it has two points of attraction: one
below s, and one above s precisely where the total rate of arriving customers equals the rate
of departing (abandoning and served) customers. For ρL ≥ 1 this process alternates between
the two points of attraction as is shown in Figure 6(b). This system is closely related to the
operator slowdown system with abandoning customers considered in [10]. In [10], the bistability
effect was also observed, where the two points of attraction were identified explicitly. Explicitly
characterizing the two points of attraction in the customer slowdown model is more difficult
due to the two-dimensional nature of the system.

2.3 Scaling limits

So far we increase either the number of servers or the arrival rate. We continue by examining
a scaling of both parameters at the same time. It is well known in the literature that for
G/M/s queues, one should scale the arrival rate or the number of servers such that the load
ρ(s) ∼ 1−β/√s as s→∞ to achieve QED performance [16]. In terms of our model parameters,
the scaling is then as follows:

λ(s) = sµL(1− β/√s), (2.1)
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N = 93 and ρH = 0.8.
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(b) Allowing customers to abandon the queue
with rate δ. Here, s = 36, ρH = 0.7 and ρL =
1.2.

Figure 6: Two extensions of the multi-server system with slowdown that exhibit, for a narrow
range of parameter values, a bistability effect that is visible in the bimodal marginal distribution
of the total number of customers in the system.

with constant β > 0 and s > β2 to guarantee a positive arrival rate λ(s). By applying (2.1)
to our multi-server system with slowdown one finds that we establish so-called Quality-Driven
(QD) performance. QD performance refers to a very high quality of service, e.g. the probability
of delay goes to 0 and many servers are idle. This might be undesirable in view of unnecessary
operational costs (overdimensioning). The reason for QD performance is that since µH > µL

we have ρH < 1 in the limit for s → ∞. This ensures that the system stabilizes around a
state with relatively low occupancy and with only non-delayed customers in service and no
customers waiting in the system. To obtain QED system behavior we set the high service rate
according to

µ
(s)
H = µL(1 + γ/

√
s), (2.2)

with constant γ > 0. Note that now µ
(s)
H /µL → 1 for s → ∞ and thus ρ

(s)
H also goes to 1. We

refer to the combination of (2.1) and (2.2) as a QED-type regime. The reason for this choice
of scaling becomes clear when we examine the load of the slowdown system with s servers

ρ(s) =
(

1− β√
s

)1 + P(W (s) > 0) γ√
s

1 + γ√
s

, (2.3)

which shows that ρ(s) ↑ 1 as s→∞. Compared to the standard scaling of the load in G/M/s
queues, the load in the customer slowdown model approaches 1 slower as it is multiplied by
the second term in (2.3). Figure 7 depicts the probability of delay as a function of s, which
indeed shows that the probability of delay converges to a value in (0, 1).

Using stochastic coupling techniques, we related the two-dimensional process to two one-
dimensional processes that serve as a stochastic lower and upper bound (at the process level
in terms of stochastic domination). These two related processes are the fast and the slow
system introduced earlier. The bounding processes provide sharp approximations for the two-
dimensional process. For both bounding processes, we show that in the QED-type regime, the
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Figure 7: Probability to wait for the fast, slow, and customer slowdown system. For all three
systems, the scaling (2.1) and (2.2) is used with (β, γ) = (0.5, 0.5).

probability of delay converges to a value strictly in between 0 and 1, and this then also holds
for the two-dimensional process. Hence, this provides strong evidence for the existence of a
non-trivial stochastic-process limit. Formally establishing the existence and characterizing this
stochastic-process limit is a challenging open problem, because the limiting process is likely to
be two-dimensional as well, and classical techniques to prove stochastic-process limits [29] do
not seem to carry over easily.

2.4 Insights

Here we summarize the insights obtained in this section.
Customer slowdown of the threshold type leads to severe performance degradation, particu-

larly in heavy traffic. Compared to a system without slowdown, the busy periods are relatively
long due to the slowdown of delayed customers that reinforces the persistence of the busy pe-
riod. We refer to this effect as the snowball effect, which describes the correlated service times
when customers are delayed. Further, for a relatively high load ρH, we find that the threshold
slowdown system is a mixture of the fast and slow systems. This mixture effect is visible in
the two-dimensional stationary distribution, where it manifests itself as two dominant regions
in terms of probability mass – a subtle bistable effect. Finally, by using a QED-type scaling
for the arrival rate and the fast service rate µH, we have shown that a non-degenerate limit
behavior occurs as the number of servers increases.

3 Model description

Recall that X(t) ∈ N0 is the total number of customers in the system at time t and Y (t) ∈
{0, 1, . . . , s} is the number of non-delayed customers in the system at time t. Note that X(t) ≥
Y (t). Then, {(X(t), Y (t)), t ≥ 0} is an irreducible continuous-time Markov chain with discrete
state space V ∪W , given by

V = {(i, j) | 0 ≤ i < s, 0 ≤ j ≤ i}, W = {(i, j) | i ≥ s, 0 ≤ j ≤ s}. (3.1)

10



Recall that we refer to the states with s or less customers in the system, as the boundary states.
With inner states we refer to the states with more than s customers in the system. For an
inner state (i, j) with i > s, we have the following transition rates:

• From (i, j) to (i+ 1, j) with rate λ, 0 ≤ j ≤ s;

• From (i, j) to (i− 1, j) with rate (s− j)µL, 0 ≤ j ≤ s;

• From (i, j) to (i− 1, j − 1) with rate jµH, 1 ≤ j ≤ s.

The transition rate diagram of the continuous-time Markov chain is shown in Figure 1.
Define level i as the set of all states with a total of i customers in the system. Now we

have the following alternative description of the transition rates. The matrices Λk contain the
transition rates from level i to level i+ k with i > s. Let I be the identity matrix of size s+ 1.
Then the matrices Λk are given by Λ1 = λI,

Λ0 = −


λ+ sµL

λ+ (s− 1)µL + µH

. . .

λ+ sµH

 , (3.2)

and

Λ−1 =


sµL

µH (s− 1)µL

2µH

. . .

. . . µL

sµH 0

 . (3.3)

By assumption ρH < ρL, and we have the following condition for ergodicity of the Markov
process.

Lemma 3.1. The Markov process is ergodic if and only if

ρL < 1. (3.4)

Proof. We require that the mean drift in the negative direction is larger than the mean drift
in the positive direction; see Neuts’ mean drift condition [21, Theorem 1.7.1]. This gives

πΛ11 < πΛ−11, (3.5)

where 1 is a column vector of ones of size s + 1, π is the solution of π
∑1

k=−1 Λk = 0 with
π1 = 1. We clearly have π = (1, 0, . . . , 0) and thus the result follows.

4 Obtaining the stationary distribution

Assume that (3.4) holds and define the stationary probabilities

p(i, j) := lim
t→∞

P(X(t) = i, Y (t) = j), (i, j) ∈ V ∪W. (4.1)

11



The balance equations for the inner states are obtained by equating the rate out of and into
an inner state (i, j), yielding, for i > s, 0 ≤ j ≤ s,

(λ+ jµH + (s− j)µL)p(i, j) = λp(i− 1, j) + (s− j)µLp(i+ 1, j)

+ (j + 1)µHp(i+ 1, j + 1), (4.2)

where by convention p(i, s + 1) = 0. Equations (4.2) are referred to as the inner equations.
The balance equations for states with i ≤ s are called the boundary equations.

The stationary probabilities of the inner states are determined using matrix-analytic meth-
ods that search for the solution to a non-linear matrix equation. Exploiting structural proper-
ties of the Markov process, we derive explicit solutions for these matrices. For similar explicit
results using the matrix-analytic methods, see [25, 26, 27]. Next, we solve the boundary equa-
tions. Since we want to be able to solve the stationary distribution also for large s, solving the
(s+1)(s+2)/2 boundary equations using Gaussian elimination might become computationally
cumbersome. We therefore present a more sophisticated algorithm that exploits the structure
of the state space and the explicit matrix solution.

4.1 Inner equations

Let pi = (p(i, 0), p(i, 1), . . . , p(i, s)), and rewrite the inner balance equations as

pi−1Λ1 + piΛ0 + pi+1Λ−1 = 0, i > s. (4.3)

The rate matrix R is defined as the minimal non-negative solution of the non-linear matrix
equation [21, Theorem 3.1.1]

Λ1 +RΛ0 +R2Λ−1 = 0. (4.4)

It can be shown that the stationary probabilities satisfy

pi = psR
i−s, i ≥ s. (4.5)

Since the transition matrices are all lower triangular, so is the rate matrix R. Denote

R =


R0,0

R1,0 R1,1
...

. . .

Rs,0 · · · Rs,s

 (4.6)

and note that R2 is again a lower triangular matrix with elements (R2)i,j =
∑i

k=j Ri,kRk,j for
i ≥ j.

Equation (4.4) consists of (s+ 1)2 separate equations. For the diagonal elements we have

λ− (λ+ (s− j)µL + jµH)Rj,j + (s− j)µLR
2
j,j = 0, 0 ≤ j < s, (4.7)

λ− (λ+ sµH)Rs,s = 0, j = s, (4.8)

where Rj,j in (4.7) is obtained as the minimal non-negative solution. The minimal non-negative
solution of (4.7) is contained in the interval (0, 1), because for Rj,j = 0 the left-hand side of
(4.7) is positive, for Rj,j = 1 the left-hand side of (4.7) is negative, and we are dealing with
a continuous function. Interestingly, R0,0 = ρL and Rj,j is monotonically decreasing in j. For
each element on the subdiagonals we have a linear equation with solution

Ri,j =

∑i−1
k=j+1Ri,kRk,j(s− j)µL +

∑i
k=j+1Ri,kRk,j+1(j + 1)µH

λ+ (s− j)µL + jµH −
(
Ri,i +Rj,j

)
(s− j)µL

, (4.9)
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for j = i− h, h ≤ i ≤ s and h = 1, 2, . . . , s. In (4.9) we use the convention that
∑i1

i=i0
f(i) = 0

if i1 < i0. Equations (4.7)-(4.9) fully describe the rate matrix R.
Recall that a lower triangular matrix is non-singular if it has all non-zero elements on the

diagonal. Thus, the matrix R is non-singular and also I − R is non-singular. The inverse of
I−R is required to compute the stationary probabilities, as the normalization of the stationary
distribution partially follows from ps(I +R+R2 + · · · )1 = ps(I −R)−11. The elements of the
inverse are given by

((I −R)−1)j,j =
1

(I −R)j,j
, 0 ≤ j ≤ s, (4.10)

((I −R)−1)i,j =
−∑i−1

k=j(I −R)i,k((I −R)−1)k,j

(I −R)i,i
, 0 ≤ j < i ≤ s. (4.11)

Instead of searching for R, one can also search for the matrix G, defined as the minimal
non-negative solution of the non-linear matrix equation

Λ−1 + Λ0G+ Λ1G
2 = 0. (4.12)

The matrices R and G are related as Λ1G = RΛ−1 and thus G = Λ−1
1 RΛ−1, which exists since

Λ1 is a diagonal matrix.

4.2 Boundary equations

The boundary equations can be represented as a set of (s+ 1)(s+ 2)/2 linear equations, which
can be solved using Gaussian elimination with an arithmetic complexity of O(s6) [12, Chap-
ter 10]. By exploiting the structure of the boundary equations one can reduce the arithmetic
complexity to O(s4). In short, we wish to embed the Markov process on level s for which we
need the return probabilities when jumping to a higher level (the matrix G), combined with
the return probabilities when jumping to a level below (yet to be determined). This allows
us to compute the non-normalized stationary probabilities of the states in level s. Then, we
recursively compute the remaining boundary probabilities starting from level s−1, working our
way down to level 0, leading to a non-normalized stationary distribution. Finally, the normal-
ized stationary distribution follows by summing over all states and dividing the non-normalized
version of the stationary distribution by the resulting sum.

To this end we introduce two first passage probabilities. To aid the derivation of these
probabilities we introduce subsets of V , indexed by a state (k, l) ∈ V . We identify the triangular
set of states T(k,l) to the South-West of the state (k, l), specifically, T(k,l) := {(i, j) | k− l ≤ i ≤
k − 1, 0 ≤ j ≤ i− (k − l)}, see Figure 8.

Let θk(i, j) be the first passage probability to phase j + 1 in state (i+ 1− k, j + 1), where
the Markov process starts in state (i, j) ∈ T(s,s−k). Note that by phase j we refer to the set of
states with Y (t) = j. By one-step analysis we obtain

θ0(i, j) =
λ · 1 + (i− j)µL · 0 + jµHθ0(i− 1, j − 1)θ0(i, j)

λ+ (i− j)µL + jµH

, (i, j) ∈ T(s,s), (4.13)

θk(i, j) =
λ · 0 + (i− j)µLθk−1(i− 1, j) + jµH

∑k
l=0 θl(i− 1, j − 1)θk−l(i− l, j)

λ+ (i− j)µL + jµH

,

(i, j) ∈ T(s,s−k), k > 0, (4.14)
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X(t)

Y (t)

T(k,l)

(k, l)

Figure 8: A visual clarification of the triangular set of states T(k,l).

from which the following expressions can be readily derived,

θ0(i, j) =
λ

λ+ (i− j)µL + jµH(1− θ0(i− 1, j − 1))
, (i, j) ∈ T(s,s), (4.15)

θk(i, j) =
(i− j)µLθk−1(i− 1, j) + jµH

∑k
l=1 θl(i− 1, j − 1)θk−l(i− l, j)

λ+ (i− j)µL + jµH(1− θ0(i− 1, j − 1))
,

(i, j) ∈ T(s,s−k), k > 0. (4.16)

Note that θ0(i, i) = 1, which means that if the Markov process reaches a state on the main
diagonal, it eventually always reaches state (s, s).

Let ψ(k,l)(i, j) be the first passage probability to level k in state (k, l), where the Markov
process starts from state (i, j) ∈ T(k,l). We express these first passage probabilities in terms of
θk(i, j) as follows

ψ(k,l)(i, j) =
i+1∑

m=j+1

θi+1−m(i, j)ψ(k,l)(m, j + 1), (i, j) ∈ T(k,l). (4.17)

The computation of the first passage probabilities ψ is the most time consuming step in the
derivation of the boundary probabilities. Equation (4.17) is evaluated for a total of s(s+1)(s+
2)(s+ 3)/24 combinations of (i, j) and (k, l), leading to an arithmetic complexity of O(s4).

Let Ψ be the matrix of elements ψ(s,k)(s−1, j) where j is the row number and k the column
number. The balance equations of the Markov process embedded at level s are

ps
(
Λ−1Ψ + Λ0 + Λ1G

)
= 0. (4.18)

One solves this homogeneous set of equations using the numerically stable Grassmann version
of the Gaussian elimination algorithm [14] to obtain the stationary probabilities at level s. This
solution is not normalized.

In order to obtain the remaining boundary probabilities, one embeds the Markov process
on the levels i, i+ 1, . . . , s, . . . with i < s, for which we derive the following balance equations:

p(i, j)
(
λ+ (i− j)µL + jµH(1− θ0(i− 1, j − 1))

)
= p(i+ 1, j)(i+ 1− j)µL + p(i+ 1, j + 1)(j + 1)µH

+

j−1∑
k=0

p(i, k)(i− k)µLψ(i,j)(i− 1, k) +

j−1∑
k=1

p(i, k)kµHψ(i,j)(i− 1, k − 1), j ≤ i. (4.19)
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One recursively solves (4.19) by first computing p(i, 0), followed by p(i, 1), et cetera, until
p(i, i) is computed. Then, the remaining boundary probabilities follow by solving (4.19) for
i = s−1, s−2, . . . , 1. Finally, the probability of having an empty system is found by examining
the balance equation in state (0, 0), so that

p(0, 0) = (p(1, 0)µL + p(1, 1)µH)/λ. (4.20)

Recall that the stationary probabilities of level s are not normalized. Thus, the obtained
stationary distribution of the boundary and inner states (obtained through (4.5)) are yet to be
normalized. The normalized stationary distribution follows by dividing each non-normalized
stationary probability by the sum over all states

∑
(i,j)∈V p(i, j) + ps(I −R)−11.

Using the stationary distribution, one can now obtain performance measures such as the
delay probability

P(W > 0) =

∞∑
i=0

ps+i1 = ps(I −R)−11, (4.21)

or the mean queue length

E[Q] =
∞∑
i=0

ips+i1 = psR(I −R)−21. (4.22)

4.3 Extensions

We next describe how to obtain the stationary distribution of the slowdown model with (i) a
finite buffer; or (ii) customer abandonments.

4.3.1 Finite buffer

The transition rate diagram of the slowdown system with a finite buffer is identical to the one
shown in Figure 1 but truncated at level N . Recall that we defined the matrices Λk to contain
the transition rates from level i to level i + k; since we now introduced the finite buffer, we
restrict i as s < i ≤ N . At level N , the matrix containing the transitions rates to level N − 1
remains unchanged and is still Λ−1. The only difference is that there are no jumps in the
positive direction and thus Λ1 does not exist and therefore the matrix Λ0 changes at level N ,
now indexed by an additional subscript N and given by Λ0,N = Λ0 + Λ1.

The equilibrium equations in vector-matrix form are given by

pi−1Λ1 + piΛ0 + pi+1Λ−1 = 0, s < i < N, (4.23)

pN−1Λ1 + pNΛ0,N = 0. (4.24)

We now have the following relation, see [11, Section 2.2],

pi = pi−1Ri, s < i ≤ N, (4.25)

where Ri is a level-dependent rate matrix with identical interpretation as the standard rate
matrix of the matrix-geometric approach. One can now solve for the rate matrix RN by
manipulating (4.24) as follows

pN = −pN−1Λ1

(
Λ0,N

)−1
= pN−1RN . (4.26)
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Note that Λ0,N is a diagonal matrix with negative elements and is therefore indeed non-singular.
The remaining rate matrices are found from (4.23) as

pi = −pi−1Λ1

(
Λ0 +Ri+1Λ−1

)−1
= pi−1Ri, s < i < N. (4.27)

The matrix Λ0 + Ri+1Λ−1 is lower triangular with negative elements on the diagonal and is
therefore non-singular; for the proof of this statement, see [5, p. 519].

This leaves us to compute ps and the equilibrium probabilities of the boundary states. We
do so with the approach we have derived earlier for the slowdown system with an infinite buffer.
The missing ingredients are the first passage probabilities from level s+ 1 to level s, which are
found through the relation

Gi = Λ−1
1 RiΛ−1, i > s. (4.28)

Note that the auxiliary matrices Gi are level-dependent and have the same interpretation
as the standard auxiliary matrix in the matrix-analytic approach. Thus, we substitute the
level-dependent matrix Gs+1 for G in (4.18) and are able to compute the complete stationary
distribution.

4.3.2 Customer abandonments

The base model is appended by adding transitions with rate lδ from state (s + l, j) to state
(s+ l− 1, j) for l > 0. These transitions model a waiting customer abandoning the queue. By
appending the base model with these transitions a level-dependent QBD (LDQBD) process is
created. We use solution techniques for LDQBD processes as presented in [5, 20] to compute
the stationary distribution of the semi-infinite strip of states and once again use the earlier
derived technique to compute the equilibrium distribution of the boundary states. We briefly
sketch the solution approach here.

The aggregated abandonment rate depends on the number of customers waiting in the
queue. This leads to level-dependent transition rate matrices which we label with an additional
subscript l, such that Λk,l describes the transition rates from level s+ l to level s+ l − k with
l > 0. The transition rate matrices are given by Λ1,l = Λ1, Λ0,l = Λ0−lδI and Λ−1,l = Λ−1+lδI.

The solution approach is based on the same premise as for the finite QBD process case,
namely

pi = pi−1Ri, i > s, (4.29)

where Ri is a level-dependent rate matrix with identical interpretation as the standard rate
matrix of the matrix-geometric approach.

The following is explained in greater detail in [5]. Since generally only numerical solutions
can be found for the Ri matrices of LDQBD processes, one resorts to computing the sequence
{Ri}s<i≤N∗ , where N∗ is chosen “large enough”. By [5, Lemma 1] we have the explicit expres-
sion

Ri =

∞∑
j=0

U ji

j−1∏
k=0

Dj−1−k
i+2j−k , i > s, (4.30)

where U ji and Dj
i are matrices defined recursively and are a function of the level-dependent

transition matrices. Truncating the infinite sum in (4.30), one computes RN∗ . The remaining
rate matrices then follow from the standard relation

Ri = −Λ1,i−s−1

(
Λ0,i−s +Ri+1Λ−1,i−s+1

)−1
, i > s. (4.31)

Note that the inverse exists.
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As in the finite buffer case, this leaves us to compute ps and the equilibrium probabilities
of the boundary states. Once again, the first passage probabilities Gs+1 are needed and follow
from (4.28). Then, we substitute the level-dependent matrix Gs+1 for G in (4.18) and are able
to compute the complete stationary distribution.

5 A QED-type regime

We next analyze the behavior of the multi-server queueing system incorporating slowdown for
large s and ρL → 1 by considering a sequence of queues, indexed by s. We write (X(t), Y (t))) =

(X(s)(t), Y (s)(t)), λ = λ(s), µH = µ
(s)
H , and ρL = ρ

(s)
L . Without loss of generality we keep µL

constant and assume throughout that µ
(s)
H > µL.

Let P(W (s) > 0) denote the probability that a customer has to wait in a slowdown system
with s servers. We will identify a regime in which P(W (s) > 0) → P(W > 0) ∈ (0, 1) so that
the limiting system displays non-degenerate behavior, as in the classical QED regime. In order

to do so, we introduce a random variable X
(s)
H (t) that represents the total number of customers

at time t in an M/M/s queue where all customers are served with the high service rate µ
(s)
H .

As we have done before, we refer to this queueing system as the fast system. Let the random

variable X
(s)
L (t) represent the total number of customers at time t in an M/M/s queue where

all customers are served with the low service rate µL. We refer to this queueing system as the
slow system.

For two real-valued random variables A and B, we say that A stochastically dominates B
if

P(A ≤ x) ≤ P(B ≤ x), (5.1)

and we denote this as A � B. The following result is proved in Appendix A.

Lemma 5.1. X
(s)
L (t) � X(s)(t) � X(s)

H (t).

We next introduce the scaling

λ(s) = sµL − βµL

√
s, (5.2)

µ
(s)
H = µL(1 + γ/

√
s), (5.3)

with constants µL, β, γ > 0 and s ≥ β2. Note that µ
(s)
H /µL → 1 for s → ∞. We refer to

the scaling (5.2) and (5.3) as a QED-type scaling regime. We introduce the scaled random
variables

D(s)(t) :=
X(s)(t)− s√

s
, D

(s)
H (t) :=

X
(s)
H (t)− s√

s
, D

(s)
L (t) :=

X
(s)
L (t)− s√

s
. (5.4)

Note that Lemma 5.1 also holds for these scaled random variables, i.e. D
(s)
L (t) � D(s)(t) �

D
(s)
H (t). The following lemma is proved in Appendix B.

Lemma 5.2. If D
(s)
H (0) = d

(s)
H and DH(0) = dH a.s. with d

(s)
H → dH, and D

(s)
L (0) = d

(s)
L and

DL(0) = dL a.s. with d
(s)
L → dL, then for s → ∞, and for every t ≥ 0, the scaled random

variables D
(s)
H (t)

d→ DH(t) and D
(s)
L (t)

d→ DL(t), where the infinitesimal means of the diffusion
processes are given by

mH(x) =

{
µL(−β − γ − x), x ≤ 0,

µL(−β − γ), x > 0,
mL(x) =

{
µL(−β − x), x ≤ 0,

−βµL, x > 0,
(5.5)

and constant infinitesimal variances σ2
H(x) = σ2

L(x) = 2µL.
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Remark 5.3. Both processes DH(·) and DL(·) behave as an Ornstein-Uhlenbeck process below
level zero and a reflected Brownian motion above level zero.

Corollary 5.4. The probability density functions of DH(∞) and DL(∞) are given by

fDH
(x) =

{
CH

φ(x+β+γ)
Φ(β+γ) , x ≤ 0,

(1− CH)(β + γ)e−(β+γ)x, x > 0,
, fDL

(x) =

{
CL

φ(x+β)
Φ(β) , x ≤ 0,

(1− CL)βe−βx, x > 0,
(5.6)

with

CH =
β + γ

β + γ + φ(β+γ)
Φ(β+γ)

, CL =
β

β + φ(β)
Φ(β)

, (5.7)

and φ(x) and Φ(x) the probability density function and cumulative density function of the
standard normal distribution.

Proof. Since we are dealing with piecewise-linear diffusion processes, one computes the proba-
bility density functions using [6, Sections 1 and 4].

Remark 5.5. The stationary distribution of the diffusion process related to the fast system

is equal to the distribution of the limiting random variable of the sequence (X
(s)
H (∞)− s)/√s

as shown in [16, Corollary 2], which establishes that an interchange of limits is allowed. Thus,

one can use X
(s)
H (∞) ≈ s+DH(∞)

√
s. The same applies for the slow system.

Corollary 5.6. The limiting probability of delay in the slowdown system P(W (s) > 0) →
P(W > 0) ∈ (0, 1) for s→∞ and can be bounded as follows(

1 + β
Φ(β)

φ(β)

)−1
= P(WH > 0) ≥ P(W > 0) ≥ P(WL > 0) =

(
1 + (β + γ)

Φ(β + γ)

φ(β + γ)

)−1
. (5.8)

Proof. The limiting probability of delay in the fast system is computed from the distribution
of DH(∞) as

P(WH > 0) =

∫ ∞
0

fDH
(x) dx = 1− CH ∈ (0, 1) (5.9)

and identically for the slow system to get P(WL > 0) = 1 − CL ∈ (0, 1). Using Lemma 5.1
we find that these are lower and upper bounds on the limiting probability to wait P(W > 0),
respectively.

6 Conclusion

We have studied a threshold slowdown system in a Markovian setting. The threshold slowdown
system incorporates a slowdown effect in which customers that are delayed require a longer
service time. A delayed customer requiring a longer service time will increase the overall
workload in the system, therefore causing longer delays for other customers, who in turn due to
slowdown also require a longer service time. We refer to this phenomenon as the snowball effect.
The snowball effect has been shown to be the leading cause of a severe performance degradation
and the neglect of slowdown might lead to underprovisioning. A subtle bistable behavior is
witnessed for slowdown systems with relevant parameter settings: the slowdown system either
has only non-delayed customers and no customers waiting, or only delayed customers with
many customers waiting, switching between configurations over time. We have introduced a
QED-type regime for the slowdown system with many-servers and established non-degenerate
limiting behavior. The snowball effect has been shown to persist in this QED-type regime.
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A Proof of Lemma 5.1

The proof is based on a coupling argument and follows the same reasoning as [8, Appendix B].

We distinguish between two cases: (i) X
(s)
L (t) � X(s)(t); and (ii) X(s)(t) � X

(s)
H (t). Recall

that for two real-valued random variables A and B, we say that A first-order stochastically
dominates B if

P(A ≤ x) ≤ P(B ≤ x). (A.1)

(i) Assume that both queues see a common arrival process. Let the service time for the i-th
arriving customer in the slow system be BL(i); the corresponding service time in the slowdown

model is then either B(i) = BL(i) or B(i) = µL/µ
(s)
H BL(i) depending on whether the slowdown

model has high (s or more customers in the system) or low congestion (less than s customers
in the system) upon arrival of the i-th customer. Finally, we assume that both systems start
empty. Let W (i) and WL(i) denote the waiting time of the i-th arriving customer before
beginning service in the slowdown and slow system, respectively. We have the following result.

Lemma A.1. WL(i) ≥W (i) a.s. for all i. Moreover, X
(s)
L (t) ≥ X(s)(t) a.s. for all t.

Proof. Let us prove the first statement using induction and fix an arbitrary event in the sample
space ω ∈ Ω leading to a sample path of the process. We append the argument ω to the
variables to indicate that we are studying a fixed sample path. Since we start with an empty
system, observe that for the first customer we have WL(1, ω) = W (1, ω) = 0. Assume that the
statement is true for the j-th arriving customer and consider the (j + 1)-th arriving customer.
For the sake of contradiction assume WL(j + 1, ω) < W (j + 1, ω). When customer j + 1 starts
service in the slow system:

• There are at most s − 1 customers among the first j arriving customers present in the
slow system.

• At least s customers from among the first j arriving customers are still present in the
slowdown system since customer j+1 has not yet started service in the slowdown system.

From these two observations we conclude that there is a customer among the first j arriving
customers that finished service strictly earlier in the slow system than in the slowdown system.
However, due to the coupling we have B(i, ω) ≤ BL(i, ω), i = 1, . . . , j and thus we have a
contradiction. We have consequently established that WL(i, ω) ≥ W (i, ω) for all i. Recall
that we fixed an arbitrary event and thus it holds for all ω ∈ Ω. The latter statement of the
proposition follows immediately.

Lemma A.1 indeed shows that X
(s)
L (t) � X(s)(t).

(ii) This case follows using the exact same reasoning as for case (i) and we thus omit the
proof.

B Proof of Lemma 5.2

The following proof is based on the proof in [19, Proposition 3.2]. We first describe convergence
in distribution for a general sequence of birth–death processes and apply these results to our
processes of interest.

Define A(s)(·) as a continuous-time birth–death process with state space E(s) = {a(s)(i) |
0 ≤ i <∞}, where a(s)(i) is increasing in i and limi→∞ a(s)(i) = a(s)(∞). Then let

e(s)(x) = arg sup
i∈N0

{a(s)(i) : a(s)(i) ≤ x}, x ∈ [a(s)(0), a(s)(∞)). (B.1)

19



Denote by λ(s)(a(s)(i)) and µ(s)(a(s)(i)) the birth–death parameters associated with state
a(s)(i). The infinitesimal mean and variance of the process A(s)(·) are given by

m(s)(x) = λ(s)(e(s)(x))
(
a(s)(e(s)(x) + 1)− a(s)(e(s)(x))

)
− µ(s)(e(s)(x))

(
a(s)(e(s)(x))− a(s)(e(s)(x)− 1)

)
, (B.2)(

σ2
)(s)

(x) = λ(s)(e(s)(x))
(
a(s)(e(s)(x) + 1)− a(s)(e(s)(x))

)2

+ µ(s)(e(s)(x))
(
a(s)(e(s)(x))− a(s)(e(s)(x)− 1)

)2
, (B.3)

whenever x ∈ [a(s)(0), a(s)(∞)).
Stone’s theorem [18, Theorem 5.1] then establishes convergence in distribution of the se-

quence of Markov processes to a limiting diffusion process.

Theorem B.1. (Stone) Let A(s)(0) = a(s) and A(0) = a a.s., with a(s) → a. Then the following

two conditions are sufficient for A(s) d→ A as elements of D[0,∞):

(i) E(s) becomes dense in R as s→∞;

(ii) For every compact subinterval U of R

lim
s→∞

m(s)(x) = m(x), lim
s→∞

(
σ2
)(s)

(x) = σ2(x), (B.4)

uniformly for x ∈ U .

We first focus on the fast system with scaled process D
(s)
H (·) and state space E

(s)
H = {(i −

s)/
√
s | i ∈ N0}. Naturally, lims→∞E

(s)
H is dense in R, by which we mean that ∀x ∈ R,∀ε >

0, ∃s > 0 such that inf
y∈E(s)

H

|x − y| < ε, thus satisfying condition (i) of Theorem B.1. Note

that for this state space e(s)(x) = bs+ x
√
sc, x ∈ [−√s,∞).

Now, use that for the fast (and slow) system the expression a(s)(e(s)(x) + 1)− a(s)(e(s)(x))
in (B.2) and (B.3) is equal to 1/

√
s to obtain the infinitesimal mean and variance of the process

D
(s)
H (·) as

m
(s)
H (x) =

{
1√
s

(
λ(s) − bs+ x

√
scµ(s)

H

)
, x ≤ 0,

1√
s

(
λ(s) − sµ(s)

H

)
, x > 0,

(B.5)

(
σ2

H

)(s)
(x) =

{
1
s

(
λ(s) + bs+ x

√
scµ(s)

H

)
, x ≤ 0,

1
s

(
λ(s) + sµ

(s)
H

)
, x > 0.

(B.6)

We use the scaling (5.2) and (5.3) to obtain

m
(s)
H (x) =

{
µL

(
−β − bs+x

√
sc

s γ + s−bs+x√sc√
s

)
, x ≤ 0,

µL

(
−β − γ

)
, x > 0,

(B.7)

(
σ2

H

)(s)
(x) =

{
µL

(
1 + bs+x√sc

s − β√
s

+ bs+x√sc
s

γ√
s

)
, x ≤ 0,

µL

(
2− β−γ√

s

)
, x > 0.

(B.8)

By requiring that lims→∞m
(s)
H (x) and lims→∞

(
σ2

H

)(s)
(x) are finite, we indeed find that β and γ

can be any value larger than 0. For every compact subinterval U of R, lims→∞m
(s)
H (x) = mH(x)
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and lims→∞
(
σ2

H

)(s)
(x) = σ2

H(x) uniformly for x ∈ U . Thus, condition (ii) of Theorem B.1 is

satisfied and D
(s)
H (t)

d→ DH(t).

Next we turn to the slow system with the associated scaled process D
(s)
L (·). Its state space

is equal to E
(s)
H and thus in the limit for s→∞ also dense in R. Using the scaling as proposed

in (5.2) and (5.3), the infinitesimal mean and variance of the process D
(s)
L (·) are

m
(s)
L (x) =

{
µL

(
−β + s−bs+x√sc√

s

)
, x ≤ 0,

−βµL, x > 0,
(B.9)

(
σ2

L

)(s)
(x) =

{
µL

(
1 + bs+x√sc

s − β√
s

)
, x ≤ 0,

µL

(
2− β√

s

)
, x > 0.

(B.10)

For every compact subinterval U of R, lims→∞m
(s)
L (x) = mL(x) and lims→∞

(
σ2

L

)(s)
(x) = σ2

L(x)

uniformly for x ∈ U . Again, conditions (i) and (ii) of Theorem B.1 are satisfied and D
(s)
L (t)

d→
DL(t).
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