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Abstract

Numerous factors including chemical, hormonal, spatial and physical cues determine stem cell 

fate. While the regulation of stem cell differentiation by soluble factors is well characterized, the 

role of mechanical force in the determination of lineage fate is just beginning to be understood. 

Investigation of the role of force on cell function has largely focused on “outside-in” signaling, 

initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell utilizes 

integral membrane proteins, such as those found in focal adhesion complexes to translate force 

into biochemical signals. Akin to these “outside-in” connections, the internal cytoskeleton is 

physically linked to the nucleus, via proteins that span the nuclear membrane. Although 

structurally and biochemically distinct, these two forms of mechanical coupling influence stem 

cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how 

mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of 

force on stem cell differentiation, with focus on the bio-chemical signals generated at the cell 

membrane and the nucleus and how those signals influence various diseases. While the interaction 

of stem cells with their physical environment and how they respond to force is complex, an 

understanding of the mechanical regulation of these cells is critical in the design of novel 

therapeutics to combat diseases associated with aging, cancer, and osteoporosis.
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Introduction

Biological systems are fine-tuned to sense, respond, and adapt to physical stimuli [1]. In the 

case of stem cells, the external physical environment guides stem cell fate decisions [2]. As 
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such, stem cells, as a prototype of multiple descendent lineages, possess mechanosensory 

machinery to translate mechanical signals into biochemical responses. Further, cells adapt 

and respond to physical forces by remodeling their internal physical structures to regulate 

interactions with the external physical environment. Application of mechanical force 

initiates signaling cascades at the plasma membrane leading to the generation and 

remodeling of filamentous actin stress fibers, which enhance the cell’s ability to perceive 

and transmit mechanical force intracellularly [3].

For bone marrow mesenchymal stem cells (MSCs), a more structured cytoskeleton leads to 

differentiation into lineages making up tissues with greater mechanical competence (i.e., 

bone, cartilage). It is important to note that MSCs form heterogeneous populations, 

distributed along a dynamic differentiation spectrum. While the question of whether the 

contribution of MSCs to different lineages stem from direct fate switching or a modular 

responsiveness of different sub-populations remains unresolved, it is reasonable to expect 

that up until some point the fate of MSC populations remain plastic, rendering them 

susceptible to incoming mechanical signals [4]. In this way, both “outside-in” and “inside-

out” force signaling determine MSC lineage fate. In the former, the stiffness of the substrate 

[5], or application of external mechanical force [6], induces intracellular effects. In inside-

out signaling, scaffolding of intracellular proteins reinforces integrin-based attachments [7].

At the interface between the basal substrate and adjacent cells, the plasma membrane utilizes 

specific structural proteins to transduce force into biochemical signals. These structural 

proteins gather together to form focal adhesions (FAs), which span the cell membrane and 

connect the extracellular matrix to the actin cytoskeleton. Focal adhesions also serve as hubs 

for signaling molecules to congregate, where the combination of force transmission and 

signal transduction result in further cytoskeletal remodeling [8]. Recent work also identifies 

the nucleus, and its membrane, as mechanosensory organelles, where anchoring to the 

cytoskeleton via the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex enables 

transmission of mechanical force between the nucleus, the cytoskeleton outward to the 

external microenvironment [9]. In this way, mechanical signals have the potential to further 

regulate connections between the nucleus and the cell cytoskeleton, generating another level 

whereby mechanical input can control cell behavior. Thus, while it has become accepted that 

genetic elements within the nucleus respond to mechanical challenges indirectly through 

their transduction into intermediary biochemical cascades [1], it has only recently been 

considered that applied forces might also directly alter chromosomal conformations, thus 

influencing the accessibility of genetic information for binding of transcriptional enhancers 

or repressors [10].

As mechanical signals are critical for directing cellular responses, dysfunction of the 

mechanosensory machinery can lead to disease. One such example at the level of nuclear 

force control is Hutchinson-Gilford progeria syndrome, which manifests symptoms of aging 

at a very early age. This condition arises due to due a mutation in Lamin A/C, a structural 

protein at the inner nuclear membrane [11]. Thus, unlike diseases of “accelerated aging” 

including Werner syndrome, which are caused by defective DNA repair, this “laminopathy” 

results from inadequate mechanical support and abnormal nuclear structure [12]. Thus, the 

structural relationship of Lamin A/C and other nuclear membrane scaffolding proteins, 
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represents an interesting target to combat the degenerative effects of conditions associated 

with disuse and aging, especially since the structural relationship of these nuclear membrane 

scaffolds affects the accessibility and action of transcriptional regulators.

In this manuscript we focus on the example of the influence of mechanical force on bone 

marrow mesenchymal stem cell differentiation, especially as it relates to the balance of bone 

and fat formation. Stem cells in other tissues, subject to unique mechanical environments, 

will have variations on this theme. The consequences of reduced mechanical loading on 

bone marrow MSC lineage allocation will be discussed, as will the role of various 

mechanosensory elements, with an emphasis on the contrasting role of force transduction at 

the plasma membrane with that at the nuclear envelope. Additionally, we will consider the 

role of mechanobiology in human disease and explore how disrupted mechanocoupling at 

differing subcellular locations can lead to pathology.

Cellular architecture influences MSC differentiation

Mesenchymal stem cells are abundantly found within the bone marrow and adipose depots 

and have the ability to develop into mesenchymal tissues including bone, cartilage, fat and 

muscle [13]. MSC lineage fate is strongly dependent upon the context of the physical 

environment, both topographical and mechanical qualities of the surrounding matrix, as well 

as the dynamic mechanical environment modulate the allocation of MSCs [1].

Cellular structure is largely determined by its cytoskeleton, which is a dynamic structure 

primarily composed of three types of proteins: microfilaments (actin), microtubules 

(tubulin), and intermediate filaments [14]. While actin fibers and microtubules are made up 

of one type of monomer (actin and tubulin respectively), intermediate filaments have a wide 

variety of different monomers that form the larger filamentous structures. Hundreds of other 

proteins associate with the cytoskeleton including crosslinkers, molecular motors, and 

signaling effectors. Cytoskeletal fibers, especially actin filaments, are acutely sensitive to 

both chemical and physical modulation. For instance application of mechanical force 

enables globular actin monomers (G-actin) to aggregate and form structured filamentous 

fibers (F-actin). Formation of actin fibers, from monomers, is controlled in large part by Rho 

GTPases including RhoA, where exchange of GTP induces activation of RhoA, leading to 

actin stress fiber polymerization [15]. Thus, the structure of the cytoskeleton is extremely 

dynamic, enabling modification of cellular shape, intracellular signaling events, and thus 

cellular behavior and phenotype.

Mechanically, cell structure undergoes a continual balance of inner and outer forces which 

allow cellular components to experience both compression and tension, a process summed in 

the concept of tensegrity [16]. The tensegrity structure acts as a global sensory mechanism 

for mechanical cues, allowing for rapid structural responses to static and dynamic 

mechanical loads [17]. Such structural responses are mediated through the actin 

cytoskeleton, where focal adhesion (FA) connections facilitate the tensegrity balance, 

connecting the inner cytoskeleton with the matrix outside the cell.

Early studies showed that increased matrix stiffness enhanced the size of FA sites in 

fibroblasts, while softer substrates resulted in smaller, more mobile FAs [18]. As FAs are the 
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physical “bridge” between the actin cytoskeleton and the extracellular matrix (Fig. 1), these 

studies highlight the ability of the matrix to signal internally, resulting in adaptation to the 

mechanical forces. Additional work using MSCs demonstrated that confining cell adhesion 

by plating cells on predetermined fibronectin substrate islands was able to control 

subsequent cell shape and the level of actomyosin contractility by regulating RhoA/ROCK 

signaling [19]. MSCs forced to attach on smaller fibronectin islands assumed a rounder 

shape, consistent with decreased cell stiffness, and showed increased adipogenic 

differentiation. In contrast, attachment to larger island areas resulted in greater cell 

spreading, increased RhoA/ROCK activity, and favored osteogenic lineage. Similarly, matrix 

elasticity regulates the internal cell tension and differentiation of MSCs. Soft substrates 

(0.1–10kPa) induce neuronal and adipogenic differentiation [20, 21], while substrates with 

stiffness comparable to muscle tissue (~10–17kPa) supports allocation to myocytes [22]. 

Even stiffer substrates (>25kPa), akin to hard bone surfaces, promote osteogenic 

differentiation [23]. These studies highlight the influence of RhoA/ROCK pathway on 

cellular architecture, confirming that cellular tension generated by an enhanced cytoskeleton 

informs MSC lineage fate.

How might cellular architecture regulate lineage decisions? We are now learning that 

changes in cytoskeletal architecture not only modulate the physical qualities of the cell but 

also direct the reconfiguration of the mechanosensory signaling mechanisms within the cells. 

Yorkie-homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with 

PDZ-binding motif) are examples of transcription factors that regulate MSC proliferation 

and differentiation [24] in response to mechanical cues [25]. Impaired YAP/TAZ activity 

was found when MSCs grown on softer matrices and following disruption of the actin 

cytoskeleton, by blocking RhoA activity [25]. These data indicate that MSC fate selection 

towards osteogenic or adipogenic lineages is modulated by YAP/TAZ, whose activity is 

modulated by both the mechanical properties of the extracellular matrix and the stiffness of 

the internal actin cytoskeleton. Furthermore, knock down of YAP/TAZ resulted in loss of 

mechanical regulation of MSC differentiation, where depletion of YAP/TAZ not only 

inhibited osteoblastic differentiation but also promoted adipogenesis [26]. Similarly, adding 

adipogenic differentiation media down regulated RhoA/ROCK activity, leading to an 

increased monomeric G-actin to polymerized filamentous-actin (F-actin) ratio. This relative 

increase in monomeric actin is presumably the result of depolymerization of F-actin, which 

indirectly results in export of the transcriptional coactivator MKL1 (megakaryoblastic 

leukemia 1, MAL) from the nuclear compartment [27]. Furthermore, the increase in 

cytoplasmic G-actin traps MKL1 outside the nucleus, releasing peroxisome proliferator-

activated receptor gamma (PPARγ) repression, with consequent stimulation of adipogenic 

pathways. Actin dynamics also regulate the activity of the Serum Response Factor (SRF), 

allowing this molecule to shuttle into the nucleus [28] where it interacts with MKL1, whose 

function is specifically dependent on intranuclear actin polymerization [29]. While F-actin 

assembly within the nucleus controls MKL1 function, the responses of F-actin structures to 

chemical (i.e., serum) and physical (i.e., integrin engagement) stimuli remain poorly 

understood [30].

To further highlight the importance of actin dynamics to MSC fate, Sen and colleagues 

recently used cytochalasin D, a mycotoxin that depolymerizes filamentous actin struts (F-
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actin) into globular-actin (G-actin) monomers. Reducing actin fibers to their monomeric 

components resulted in mass import of actin into the nucleus, and once inside the nucleus, 

actin monomers facilitated export of YAP, which normally suppresses Runt-related 

transcription factor 2 (Runx2) activity. The release of Runx2 repression contributes to 

accelerated osteogenesis [31]. These data suggest that the idea that F-actin depolymerization 

leads to adipogenesis, a dog-matic view in the field of MSC biology, should be amended. 

While formation of F-actin stress fibers pushes MSCs towards the osteogenic lineage by 

increasing the internal physical tension, full depolymerization of actin polymers leads to 

translocation of actin monomers into the nucleus. Localization of G-actin in the nucleus 

promotes osteogenic gene transcription, perhaps representing a secondary level of actin 

structural control within the nucleus itself. Importantly, injection of cytochalasin D into the 

tibial marrow space of live mice results in abundant bone formation [31]. Thus, both the 

structural filamentous actin fibers and the monomeric G-actin components have critical roles 

in regulating MSC lineage allocation, and their location in the cytoplasm or within the 

nucleus might provide differential control of transcriptional processes.

Mechanical force transmission at the plasma membrane

There are a variety of different mechanosensory structures capable of conveying mechanical 

information across the cell membrane including changes in lipid microdomains [32], G-

protein coupled receptors [33], mechanosensitive ion channels [34, 35], and focal adhesion-

based integrin attachments [36]. Integrins are perhaps the most widely recognized 

membrane-associated mechanosensory molecules. These heterodimeric molecules span the 

plasma membrane and use linker proteins, including talin [37] and vinculin [38], to attach to 

the internal actin cytoskeleton. Externally, connection of the actin stress fibers to the 

extracellular matrix (ECM) enables a functional attachment through which force can be 

distributed across the cell membrane to the matrix substrate (Fig. 1).

The physical attributes (i.e., stiffness, topography, etc.) of the ECM and the type of 

mechanical signals incurred (i.e., strain, fluid shear stress, etc.) influence integrin-mediated 

force transmission. A stiffer substrate induces osteogenic differentiation; whereas, a less stiff 

substrate leads to adipogenic lineage fate [5]. Similar changes in MSC differentiation can be 

achieved by applying dynamic mechanical loads. Externally applied substrate strain leads to 

an increase in FA formation and maturity of bone marrow MSCs [3]. The increase in matrix 

attachment contact points is correlated with increased actin stress fiber formation, but also 

influences intracellular signaling. Interestingly, MSCs exposed to a twenty-minute bout of 

mechanical strain (200 cycles at 2% deformation) resulted in a greater reduction of 

adipogenic commitment than 3,400 continuous strain cycles under the same deformation 

parameters [6]. Furthermore, providing a second bout of strain, following a 3-hour rest 

period, induced greater activation of anti-adipogenic signals, suggesting that the initial 

application of force induces a priming effect, whereby intracellular signals are then 

positioned to react to the subsequent mechanical challenge.

The ability of mechanical signaling pathways to be amplified, depending on the timing of 

the mechanical regimen, demonstrates that FAs serve as signaling platforms. As such, 

applied forces induce recruitment of signaling effectors to FAs, where they are positioned to 
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acutely respond to the next loading event (Fig. 2). It has been well recognized that FAs serve 

as signaling hubs in many cell types, with molecules such as the Src family tyrosine kinases, 

extracellular signal-regulated-kinase (ERK), and focal adhesion kinase (FAK) functioning in 

association with FAs [39]. Following application of mechanical force, FAK is one of the first 

signals to arrive at the maturing FA, which is soon followed by Src. These kinases then 

induce activation of downstream signals including the growth-factor-receptor-bound protein 

2 (GRB2) adaptor protein, Ras, and ERK [40].

In bone marrow MSCs, integrin-initiated signals are the genesis of a cascade that restricts 

adipogenic line-age fate in response to mechanical force. While some of the molecular 

mechanisms are conserved in the multiple cell types, MSCs appear to utilize several unique 

signaling mechanisms to respond to mechanical challenges. For example, mechanical 

activation of Src and FAK occur readily in fibroblasts [39]; however, in place of Src, MSCs 

recruit the Src-family member Fyn to FAs. Once located in the FA complex, Src and FAK 

cooperate to induce Akt phosphorylation at serine 473 (S473) via mammalian target of 

rapamycin 2 (mTORC2)[41]. ERK1/2 activation is another mechanically activated pathway 

in fibroblasts [39]. Some studies suggest that ERK signaling is important for mechanical 

control of MSC differentiation, by activating the osteogenic transcription factor Runx2 [42], 

while others indicate that ERK1/2 signaling is not involved in force-induced MSC lineage 

fate decisions that prevent adipogenesis [41]. These contrasting results may be due to 

different types of force applied to the cells, or simply convey the idea that there are multiple 

signaling pathways emanating from the FA complexes that are arbitrarily measured in 

response to time or input.

Mechanical activation of mTORC2, by Fyn and FAK, results in adipogenic repression of 

MSCs by acting through two distinct, but complementary pathways, one altering 

transcriptional regulation of adipogenic genes, while the other enhances cytoskeletal 

structure resulting in a more rigid cell. In both cases, recruitment of Fyn and FAK to focal 

adhesions results in activation of mTORC2, which in turn phosphorylates Akt at S473 [41, 

43]. To regulate gene expression, Akt phosphorylates GSK3β at serine-9, resulting in 

GSK3β inactivation thus preventing proteasomal degradation of βcatenin (Fig. 1). Nuclear 

translocation of βcatenin then presumably enables transcriptional modification of LEF and 

TCF targeted transcription factors, or by directly repressing PPARγ activity, resulting in 

down regulation of adipogenic genes [44].

While control of βcatenin activity directly regulates adipogenic gene expression, mechanical 

activation of mTORC2 also impacts MSC lineage by enhancing formation of actin stress 

fibers. Similar to the way that a stiff substrate drives MSCs towards osteogenesis, by altering 

the physical environment of the cell, mechanical strain generates enhanced internal tension 

by formation of a filamentous actin network. Assembly of these actin fibers requires activity 

of RhoA, a GTPase that is acutely responsive to mechanical force. In MSCs, RhoA 

activation occurs after less than 100 cycles of 2% membrane deformation, followed by stress 

fiber assembly [3]. Applied substrate force is sensed at focal adhesion interfaces, where Fyn 

and FAK are recruited to the existing FA complex. Similar to the pathway resulting in 

preservation of βcatenin, Fyn activates mTORC2, resulting in Akt phosphorylation [41]. 

Recent work has shown that RhoA requires mechanically activated Akt to induce 
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cytoskeletal remodeling and restrict entry of MSCs into the adipogenic lineage [41]. Thus, 

mechanical force leads to anti-adipogenic pathways that begin at the FA and diverge to 

regulate both nuclear βcatenin localization and formation of actin stress fibers, through 

RhoA (Fig. 1).

While integrin-mediated attachments at focal adhesions are a primary site of signal initiation 

to direct mechanical control of MSC fate, primary cilia provide another unique 

mechanosensory apparatus capable of influencing MSC differentiation. Each cell contains 

only one cilium, a non-motile microtubule-based organelle emerging from the distal 

centriole of the centrosome of many mammalian cells [45]. In contrast to the numerous and 

continually remodeling FAs needed to convey mechanical force to the cell, only a single 

hair-like cilia structure is required to induce biological responses. A compelling body of 

literature has shown that these structures mediate critical mechanosensory effects in various 

types of bone cells [46], including mesenchymal bone progenitors [47]. Knockdown of 

proteins that form the primary cilium in human MSCs results in repression of both Runx2 

and PPARγ expression, suggesting that primary cilia also regulate osteogenic and 

adipogenic differentiation [48]. Additional work has recently shown that MSCs lacking 

primary cilia are deficient in several mechanosensory responses [49].

Nucleus as a force-responsive organelle

The nucleus is poised to recognize physical signals from the environment as it is 

mechanically integrated into the cell structure through proteins that span the nuclear 

envelope enabling connections between intranuclear structures and the intracellular 

cytoskeleton. These nuclear to cytoplasmic connections not only provide spatial and 

structural integrity, but also serve to transfer mechanical force across the nuclear envelope 

[50]. It is likely that the nucleoskeleton, and tension associated externally and internally, 

alter the structure of chromatin interfaces with the inner nuclear envelope and influence gene 

expression.

Lamin A/C scaffolding proteins inside the nuclear envelope are mechanically coupled to the 

cytoplasmic cytoskeletal elements via LINC complex proteins. A key LINC protein group 

providing actin connectivity are the actin-binding giant Nesprin isoforms of the spectrin 

repeat protein that spans the nuclear envelope. By utilizing N and C terminal domains 

located at opposite ends of the protein, Nesprin attaches to actin fibers located in the 

cytoplasm via the calponin homology (CH) domain at the N-termini [51, 52] while the 

Klarsicht, ANC-1, Syne Homology (KASH) domain at the C-termini binds to SUN proteins 

on the inner nuclear leaf-let [53]. As such, Nesprin is part of a structural scaffold that 

connects the nucleus to the actin cytoskeleton providing a continuous connection that 

perceives and adapts to mechanical challenges [54, 55]. The ability of force to be transferred 

between actin fibers and the nucleus is evidenced by the development of organized 

structures, called transmembrane actin-associated nuclear (TAN) lines [56] (also called the 

“actin cap”), which develop when cytoskeletal stress is increased [57]. Such nucleo-

cytoskeletal connectivity not only provides a framework by which the nucleus is attached to 

the cytoskeleton, but the connectivity can itself adapt. As such, forces applied to the nucleus 

via the cytoskeleton will recruit LINC complex proteins and Lamin A/C to specific locales 
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under stress fibers that press on the nuclear envelope [58]. The local accumulation of LINC 

proteins in response to local forces along the nuclear membrane is analogous to the dynamic 

maturation and proliferation of FAs on the plasma membrane in response to mechanical 

input at substrate attachment sites. Interestingly, the nuclear envelope, and by extension 

LINC complexes at the nuclear envelope, have been implicated as nucleation points for actin 

polymerization at the cytoplasmic side of the nucleus [59]. This suggests that, just like focal 

adhesions, initiation of actin polymerization at the nuclear envelope can attract other 

scaffolding proteins such as α-actinin [60] and zyxin [61]. This leads us to propose that 

LINC complexes are the nuclear equivalent of focal adhesions. While force induces 

recruitment of proteins including talin, paxillin, and vinculin to form focal adhesions at the 

plasma membrane, mechanical force similarly recruits Nesprin, SUN, and lamin proteins to 

create focal contacts at the nuclear membrane. As such, focal attachments, associated with 

the nuclear envelope play a direct mechanosensory role by enabling the transmission of 

externally or internally generated mechanical signals between nucleus and the actin 

cytoskeleton [54, 62, 63]. At this juncture, LINC complexes are being recognized for their 

contribution to the mechanosensory function of cells [64, 65] – including the sensation of 

sound [66] and mechanical vibrations [63]–but the mechanisms by which they regulate 

lineage allocation of MSCs remains unclear.

How might the changes in nuclear structure and connectivity modulate MSC 

mechanoresponses and differentiation? Recent evidence suggests that, similar to 

extracellular matrix stiffness, application of substrate strain increases the nuclear 

translocation of YAP [67]. This response is dependent on the level of cytoskeletal pre-stress 

and nuclear deformation, but critically requires the structural connection between Nesprin-1 

and actin; depletion of Nesprin results in greatly diminished nuclear YAP translocation [68]. 

These data suggest that nuclear transport of YAP requires Nesprin-mediated connections to 

the cytoskeleton, and this response is dependent on mechanical force. Other nuclear 

transport processes have been linked to Nesprin including that of βcatenin [69].

Another way in which mechanical force might regulate MSC fate via nuclear envelope 

connections is through LINC attachment to the inner nuclear Lamin A/C network. Lamin 

A/C binds to SUN proteins forming a scaffold on the inner leaflet of the nucleus [70]. In 

support of the role of LINC/nucleoskeleton control, adipogenic differentiation is associated 

with a decrease in Lamin A/C expression [71], and both partial or complete deletion of 

Lamin A/C accelerates adipogenic differentiation in MSCs [72–74]. In contrast, osteogenic 

differentiation leads to increased Lamin A/C expression [75], a change consistent with the 

increased cellular stiffness of osteoblasts [76, 77]. Additionally, overexpression of Lamin 

A/C promotes osteogenic differentiation [78]. These observations support the idea that 

Lamin A/C is associated with MSC lineage decisions, but it remains unclear whether the 

changes in Lamin A/C are the cause or effect of differentiation. As cells deficient in Lamin 

A/C and LINC complex proteins are more susceptible to mechanical damage [23, 79], it is 

intriguing to postulate that MSCs require full function of these structural proteins to properly 

respond to physiological forces and adapt to a changing mechanical microenvironment.

Direct evidence for LINC-mediated force transmission and regulation of nuclear stiffness 

has been demonstrated recently by Guilluy and colleagues [80], where Nesprin-bound bead 
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motion by magnetic force caused stiffening of an isolated nucleus through phosphorylation 

of the LINC binding partner Emerin in a Src and Lamin A/C-dependent manner. This 

suggests that mechanical signals directly modulate the nucleoskeletal structure and in turn 

might influence MSC lineage fate. Recent work completed using multiple cell lines, 

demonstrated that Lamin A/C polarization within the nucleus is controlled by cytoskeletal 

force, and depletion of cytoskeletal tension disrupted this Lamin A/C polarization [81]. 

Conversely, deletion or mutation of Lamin A/C alters mechanical actin dynamics and 

interferes with MKL1-mediated serum response factor (SRF) activity [82]. Interestingly, 

MKL1 nuclear localization in Lamin A/C deficient cells was primarily dependent on the 

localization of Emerin at the nuclear envelope rather than on LINC-mediated nucleo-

cytoskeletal connectivity [82]. This suggests that Emerin might also affect intranuclear actin 

dynamics to regulate MKL1 localization and functionality [83].

Consistent with the hypothesis that force can rear-range nucleoskeletal structure to modulate 

MSC fate, our lab and others, have shown that repeated application of mechanical input, 

such as substrate strain or high frequency vibration, sensitizes the cell to subsequent 

mechanical stimuli [84, 85]. As discussed above, this increased sensitivity to very low 

intensity mechanical signals is in part due to augmentation of focal adhesions and RhoA 

signaling [3, 41]. Furthermore, increased RhoA activity has been correlated to enhanced 

force transfer into the nucleus [86]. Additional evidence demonstrates that the physical 

connections between the nucleus and cytoskeleton are capable of altering the structure and 

position of nuclear proteins. Recent findings show that the dynamic force application upon 

integrins, via substrate strain, directly controls the displacements of coilin and SMN proteins 

in Cajal bodies within the nucleus. Displacement of these proteins within the Cajal body 

nuclear sub-organelles was directly proportional to the magnitude of the strain and was 

dependent on both cytoskeletal stress and the presence of Lamin A/C [87]. These findings 

support the idea that the nucleus participates directly in sensing forces from outside the cell. 

Thus it is likely that LINC-mediated mechanical coupling, between the nucleus and the 

cytoskeleton, impacts nuclear structure and function. In fact, we have shown that the LINC 

complex acts as a primary mechanosensory element that senses and initiates signaling in 

response to low intensity vibration, while substrate strain can initiate signaling 

independently of LINC connectivity [88]. As such, both low and high intensity mechanical 

forces, through the tensegrity continuum, are eventually transferred throughout the cell. With 

this in mind, it will be important to consider that alterations in nuclear-cytoskeletal 

connections may contribute to the decreased perception of mechanical input associated with 

aging, microgravity, or other musculoskeletal conditions. As such, a loss in LINC complex-

dependent mechanosensitivity might even contribute to reported failure of musculoskeletal 

tissues by limiting the accessible spectrum of mechanical information.

Dysfunctional mechanobiology

The nuclear envelope has been termed “the most important border in the eukaryotic cell” 

[75]. Mutations involving Lamin A/C, LINC complex proteins, and their binding partners 

are associated with a variety of musculoskeletal conditions, including Hutchinson-Gilford 

progeria [89], Emery-Dreifuss muscular dystrophy [90], and dilated cardiomyopathy [91]. 

Nuclear envelopathies in humans and mice are characterized by failure of 
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mechanoresponsive tissues, including bone, skeletal muscle, and heart; all tissues of 

mesenchymal origin. Transgenic mice with alterations in Lamin A have progeria with 

cardiomyopathy and sarcopenia, exhibit low bone mass, and have increased bone marrow 

adiposity [74]. Our group previously established that mechanical activation of βcatenin 

preserves MSC multipotentiality [92] and daily mechanical input effectively counteracts 

adipogenic stimuli, disrupting adipogenesis of MSCs [93, 94]. MSC lineage allocation, as 

noted above, is strongly influenced by nucleoskeletal structure and LINC function. The 

contribution of LINC complexes may be in regulating βcatenin compartmentalization, as 

nuclear translocation of βcatenin first requires binding to Nesprin on the outer nuclear 

membrane [69]. Indeed, limiting LINC function leads to accelerated MSC adipogenesis 

[88], a phenotype suggested in lamin A-deficient mice, which have musculoskeletal defects, 

fatty infiltration in the bone marrow, along with decreased βcatenin signaling [90]. In 

contrast, Emerin, another binding partner of the LINC complex [95], controls nuclear export 

of βcatenin; depletion of Emerin preserves nuclear βcatenin, thus limiting MSC 

adipogenesis [96]. Although the exact mechanisms through which LINC complexes control 

intracellular βcatenin compartmentalization remain poorly understood, it is known that 

βcatenin requires direct contact with the nuclear pore complex (NPC) for entry into the 

nucleus [97]. Furthermore, disruption of the nuclear pore protein, Nucleoporin 358 

(Nup358), results in suppression of rapid nuclear βcatenin import [98]. As Nesprin forms a 

tight association with βcatenin [69], it is interesting to speculate that Nesprin, or other LINC 

proteins, interact with the NPC to regulate βcatenin availability and therein, MSC fate 

decisions (Fig. 3).

Dysregulation of Lamin A/C and the LINC complex each play an important role in aging. 

During the aging process, the Lamin A/C network is diminished [75] and mutated forms of 

Lamin A/C arise more frequently [99]. Mutations in Lamin A/C are detrimental to the 

formation and maintenance of LINC/nucleoskeleton connections [100], and may contribute 

to age-related cell senescence [101]. In mice, aging not only results in decreased Lamin A/C 

expression [102] but partial knock-down of lamin A/C (Lmna+/−) is associated with 

increased fat infiltration as well as impaired bone and muscle function [73]. Importantly, 

Lamin A/C mutant mice do not form bone in response to exercise, but instead lose bone, 

resulting in fractures [103].This suggests that physical connections between the cell 

cytoskeleton and the nucleus are important in MSC differentiation and are critical for 

mechanical competence of the cell. As such, one might propose that failure of 

musculoskeletal tissues during aging reflects an insufficient MSC response to the 

experienced mechanical environment; i.e., an inability of MSCs to repair and reorganize 

those tissues subject to mechanical stress.

Outlook & Conclusions

In the last decade considerable progress has been made in identifying the mechanisms by 

which cells sense and respond to both static and dynamic mechanical cues by initiating 

signaling events, and remodeling cellular architecture. Mechanically induced structural 

changes modulate transmission of force within cells. Moreover, sensation of the mechanical 

qualities of the environment is critical in directing cellular function and, in the case of 

MSCs, regulating lineage selection. In this way, cells maintain a continuous flow of 
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information - both mechanical and biochemical - between the nucleus, the cytoskeleton, and 

the outside environment. The importance of the physical connections between the nucleus 

and the cellular cytoskeleton have become increasingly apparent in recent years, especially 

in light of the propensity for disease accompanying the loss of structures such as Nesprin or 

the Lamin A/C network. As stem cells rely on mechanical cues from the environment to 

reorganize their structure and associated signaling mechanisms, it would be logical to expect 

the nucleus, as an adaptive and dynamic organelle, to participate in similar events including 

βcatenin, YAP and MKL1-SRF signaling. To this end, future studies should consider the 

nuclear envelope and LINC complexes as an integral part of the cellular mechanosensory 

mechanisms that regulate biochemical and physical coupling of the cell to its physical 

environment.

As both tissues, and the cells that comprise them, adapt to mechanical challenges, the type 

of mechanical input will dictate the adaptive cytoskeletal architecture and associated 

signaling responses. While there remain numerous challenges within the field, such as 

under-standing the intricate manner in which mechanical signals interact with hormones or 

pharmacological interventions, mechanical input has the potential to regulate cell and tissue 

functions in both healthy and diseased states. As such, these and future studies will provide 

insight into how mechanical force guides growth and repair of skeletal tissues. Many 

questions remain including why aged cells may be resistant to physical signals, how force 

can be integrated into tissue engineering applications, and which exercise regimens are 

provide optimal responses for specific disease states. In sum, it is critical that both scientists 

and clinicians understand the potential of mechanical forces to alter cellular and tissue 

response, with the ultimate goal of harnessing these signals for the repair and regeneration of 

injured or diseased tissues.
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Significance Statement

This concise review details the ability of stem cells to regulate their lineage allocation 

based on mechanical forces exerted upon them. The mechanical qualities of both the 

external environment (the extracellular matrix) and the internal cytoskeleton of stem cells 

alter how they respond. Additionally, forces are translated into biochemical signals using 

different molecular machinery at the plasma membrane and nuclear membrane. These 

distinctions have been outlined in this paper and the consequent diseases have been 

described
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Fig. 1. 
Force transmission across the plasma membrane employs membrane-spanning integrins, 

which connect to the actin cytoskeleton via talin and paxillin linker molecules. These focal 

adhesion sites also serve as signaling hubs for mechanosensitive kinases such as Fyn and 

FAK, which restrict MSC adipogenesis by activating Akt which both enhances β-catenin 

availability and increases RhoA-mediated cytoskeletal assembly.
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Fig. 2. 
Substrate strain (2%, 100 cycles) induces cytoskeletal reorganization with a 5-fold increase 

in focal adhesions (vinculin, red) and F-actin (green). Scale bars = 25 mm.
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Fig. 3. 
Model of LINC-mediated βcatenin availability in the vicinity of Nuclear Pore Complex 

(NPC). F-actin cytoskeleton associates with the calponin domain of Nesprin, which connects 

to Sun proteins through the KASH domain. Sun 1 and 2 link to the inner nuclear LaminA/C 

cytoskeleton. Known association between Nesprin and βcatenin may increase access of 

βCatenin to Nucleoporin Nup358, which facilitates nuclear import of βCatenin.
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