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Abstract

From the statistical learning perspective, this paper shows a new direction for the use of growth 

mixture modeling (GMM), a method of identifying latent subpopulations that manifest 

heterogeneous outcome trajectories. In the proposed approach, we utilize the benefits of the 

conventional use of GMM for the purpose of generating potential candidate models based on 

empirical model fitting, which can be viewed as unsupervised learning. We then evaluate 

candidate GMM models on the basis of a direct measure of success; how well the trajectory types 

are predicted by clinically and demographically relevant baseline features, which can be viewed as 

supervised learning. We examine the proposed approach focusing on a particular utility of latent 

trajectory classes, as outcomes that can be used as valid prediction targets in clinical prognostic 

models. Our approach is illustrated using data from the Longitudinal Assessment of Manic 

Symptoms (LAMS) study.
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1 Introduction

The use of growth mixture modeling (GMM) [1–3] has been growing in various fields [4–

15] as a flexible way of identifying latent subpopulations that manifest heterogeneous 

outcome trajectories. The main interest in GMM has been meaningful interpretation of 

longitudinal heterogeneity in the target population. Naturally, recovering true models 

became a central issue as different versions of trajectory class solutions will lead to different 

interpretations and potentially different policy and clinical implications.

As in any exploratory modeling involving latent classes, identification of trajectory classes 

can be affected by various factors such as sample size, parametric assumptions, model 

specification, and presence or absence of auxiliary variables such as predictors, concurrent 

outcomes, and distal outcomes of the trajectory classes [16–22]. As we try to identify 

trajectory classes considering the aforementioned components, complexities and variations 

in model specifications quickly increase along with computational difficulties. In the field of 

machine learning, this type of modeling strategy is categorized as unsupervised learning, 

which is generally considered a challenging task given the lack of direct measures of success 

[23–24].

In contrast, identifying models that perform well in terms of targeted utilities is a relatively 

straightforward task. In the field of machine learning, this type of modeling strategy is 

categorized as supervised learning, where the candidate models are evaluated in terms of 

direct measures of success such as prediction or classification accuracy. Shifting our focus 

from recovery of true models to specific utilities opens up new possibilities in terms of how 

we evaluate GMM models and how the GMM results can be used in clinical research and 

practice. Whereas recovering true models and interpreting them is important in improving 

our understanding of the population heterogeneity, being able to accurately predict or 

classify individual level outcomes is important in improving the quality in personalized 

treatment and intervention. This may seem like a subtle difference, although it makes 

considerable differences in terms of how candidate models are evaluated and utilized. We 

intend to examine these new possibilities focusing on a specific utility of GMM as a way of 

producing valid prediction targets. In this context, identifying models that capture individual 

heterogeneity without overfitting is the goal of model selection, which is consistent with the 

goal of model selection in supervised learning.

Specifically, we utilize the benefits of the conventional use of GMM for the purpose of 

generating potential candidate models based on empirical model fitting, which can be 

viewed as unsupervised learning. We then propose to evaluate candidate GMM models on 

the basis of a direct measure of success; how well they are predicted by clinically and 

demographically relevant baseline features (antecedent validators), which can be viewed as 

supervised learning. Establishing the validity of prediction targets is a challenging, but 

critical process to ensure that they are worthy of predicting and clinically meaningful. 

Assessing the validity of latent trajectory classes based on their relationships with other 

variables is not new [19, 22]. Latent trajectory classes may have various roles, for example, 

as an outcome, as a predictor of future outcomes, or as a key component in complex 

theoretical models. Embedding these features in GMM may support the validity of the 
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trajectory class solutions and lead to fuller interpretation of longitudinal heterogeneity in the 

target population. However, the main interest still has been in interpretation and therefore 

little attention has been given to the possibility of utilizing these features to directly evaluate 

the performance of GMM solutions at the individual level.

2 Motivating Example: The LAMS Study

The LAMS study [6, 25, 26] was designed to investigate phenomenology, development of 

bipolar disorder and related conditions, and to establish predictors of functional outcomes in 

children with elevated manic symptoms. Children aged 6 to 12 years at screening and their 

parents were recruited from nine outpatient clinics associated with four university affiliated 

LAMS sites. A primary outcome in the LAMS study is symptoms of mania as measured by 

the Parent General Behavior Inventory 10-item Mania Form (PGBI-10M) [27]. Parents 

completed the PGBI-10M at five assessments during the two-year period (at baseline, 6, 12, 

18, and 24 months). Among 707 children enrolled in the study, we included 682 cases in our 

analyses, excluding ineligible cases and four cases with missing outcome information at all 

assessment points. Table 1 shows sample statistics of the PGBI-10M outcome and a small 

set of baseline variables used in our analyses.

Whether there are heterogeneous trajectory types of manic symptoms is a primary question 

in the LAMS study [6]. As in most GMM applications, identifying true trajectory classes is 

expected to be challenging as it can be affected by various factors such as sample size, 

model specification, and auxiliary information. Further, various practical questions arise 

surrounding the manic symptom trajectory class membership, such as whether we can 

predict the trajectory type early on (e.g., using baseline characteristics), whether the 

trajectory type is associated with relevant concurrent outcomes (e.g., depression, bipolar 

diagnosis), and whether we can predict distal outcomes (e.g., future delinquent behaviors) 

using the PGBI-10M trajectory type. As we try to identify true trajectory classes and also 

answer these questions, complexities and variations in model specifications quickly increase 

along with computational difficulties.

Evaluating and utilizing numerous trajectory class solutions is a challenging issue when our 

goal is interpretation of the population heterogeneity. However, when the goal is simpler and 

specific, such as predicting or classifying individual outcomes, how we select and use GMM 

solutions also becomes a simpler problem. One of the key interests in LAMS is in 

establishing prognostic models that accurately predict the type of manic symptom course 

early on. Ultimately, these models are intended for the use in clinical practice to improve 

personalized treatment based on early prediction. Separating out a large proportion of 

children who would remain non-problematic is especially critical as it is the first step 

towards efficient clinical practice. If we can separate them out early on, clinicians will be 

able to treat individuals in the elevated risk trajectory classes with confidence, having ruled 

out those in the low risk trajectory class who may experience iatrogenic adverse effects from 

antimanic treatments. In this context, we can narrow the goal of GMM to formulating valid 

prediction targets with a specific contrast of trajectory classes (low risk vs. the rest). With 

this simple classification structure, validating the formulated prediction targets in terms of 

their relationship with relevant baseline, concurrent, or distal measures becomes a feasible 
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task. In particular, we will focus on assessing the quality of prediction by clinically and 

demographically relevant baseline characteristics (antecedent validators) given our interest 

in using trajectory types as outcomes.

3 Unsupervised Learning with GMM

Growth mixture modeling (GMM) is a flexible method of identifying latent subpopulations 

that manifest heterogeneous trajectory patterns [1–3]. For example, according to our 

previous investigation [6], qualitatively different patterns of manic symptom expression are 

apparent in LAMS over the two-year course of observation. In this situation, standard mixed 

effects modeling is unlikely to capture the longitudinal heterogeneity sufficiently well, 

necessitating consideration of multiple trajectory classes. GMM has been gaining popularity 

especially with accessible latent variable modeling software such as Mplus [28].

The resulting trajectory types from GMM may provide insights and useful summary 

information that cannot be directly obtained from observed data. Despite its potential 

utilities, GMM has been mostly used as an exploratory tool to generate theories, at least 

partly due to uncertainties surrounding model evaluation and selection. Identification of 

trajectory classes can be affected by various factors such as model specification and 

auxiliary information. As we explore various combinations of these components, we can 

easily end up with abundance of candidate models. With such variations and possible 

complexities, identifying and using latent classes is generally considered a challenging task. 

In machine learning, this type of exploratory modeling strategy is categorized as 

unsupervised learning given the lack of direct measures of success [23–24].

The same exploratory nature also makes GMM a convenient and effective tool that facilitates 

discovery of latent trajectory types. Using clinical thresholds would be a more conventional 

way of classification, although the strategy can be arbitrary and inefficient when classifying 

individuals based on repeated measures, in particular with substantial missing data. In 

LAMS, about half of the study sample have missing manic symptom data at one or more 

assessment points. GMM utilizes all available data and empirical model fitting, and 

therefore considerable gain in reliability and efficiency is expected. This is not a trivial 

advantage as it is directly related to better prediction quality. Statistically identified 

trajectory classes from GMM can readily serve as classification categories, which is another 

convenient feature we will utilize in formulating prediction targets.

Here we briefly describe the GMM procedures we used for the purpose of discovery of 

latent trajectory class solutions (unsupervised learning). To focus on illustrating the 

proposed approach using the LAMS data, we limited the range of possible models that will 

be validated in terms of the prediction quality (supervised learning). We used a simple 

quadratic growth specification with restricted variance/covariance structures. However, 

various alternative model specifications are possible, which will lead to a much wider array 

of GMM solutions. With our limited setting, we obtained 43 models that reached normal 

convergence using the LAMS data.
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3.1 GMM without Covariates

We first conducted GMM without adjusting for any baseline covariates. The outcome Y 
(PGBI-10M) for individual i (i = 1, 2, …, N) at time point t (t = 1, 2, …, T) conditioned on 

trajectory class Ci = j is expressed as

(3.1)

(3.2)

(3.3)

(3.4)

where there are J possible trajectory classes (j = 1, 2, …, J). In line with LAMS, a quadratic 

growth model was chosen to capture potentially nonlinear patterns across five assessments 

(baseline, 6, 12, 18, and 24 month). This model includes three mean growth parameters: the 

initial status (η1j), linear growth (η2j), and quadratic growth (η3j) for trajectory class j. The 

time score St reflects linear and  quadratic growth. The measurement errors εij = (εij1, ⋯, 

εijT) are assumed to be normally distributed with εij ~ MN(0, Σε), where the associated 

variances are allowed to vary over time. The random effects (ζ1ij, ζ2ij, ζ3ij) associated with 

growth parameters are also assumed to be normally distributed as MN(0, Σζ). To maintain 

identifiability in models with larger numbers of classes, we imposed restrictions that Σε is 

diagonal and that Σε and Σζ do not vary across trajectory classes. We used four variations of 

Σζ: models allowing for all three random effects, models allowing for random linear slope/

intercept (Var(ζ3i) = 0), models allowing for random intercept only (Var(ζ2i) = Var(ζ3i) = 0), 

and models with no random effects (Var(ζ1i) = Var(ζ2i) = Var(ζ3i) = 0).

The probability of subject i belonging to a certain trajectory class j (πij = Pr(Ci = j)) is 

expressed in terms of a multinomial logit model,

(3.5)

for j = 1, 2, …, (J − 1), where logit(πij) = log(πij/πiJ).

3.2 GMM with Covariates

We also conducted GMM with baseline covariates as predictors of the trajectory class 

membership and as predictors of the growth parameters. The outcome Y (PGBI-10M) for 
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individual i (i = 1, 2, …, N) at time point t (t = 1, 2, …, T) conditioned on trajectory class j is 

now expressed as

(3.6)

(3.7)

(3.8)

(3.9)

where the relationship between the three growth factors and the vector of covariates X is 

captured by the vectors of regression coefficients λ1, λ2, and λ3. These regression 

coefficients, in principle, can vary across trajectory classes (j = 1, 2, …, J). We imposed the 

equality restrictions on these parameters to avoid serious convergence problems and to 

maintain identifiability in models with larger numbers of classes. However, in principle, one 

may choose to consider both sets of models with and without these restrictions.

The probability of subject i belonging to a certain trajectory class (πij = Pr(Ci = j)) depends 

on the influence of covariates, and this association can vary by trajectory class. The 

multinomial logit model of πij conditioned on covariates subsumed in vector Xi is described 

as

(3.10)

for j = 1, 2, …, (J − 1), where β1j is a vector of multinomial logit regression coefficients with 

dimension the same as the length of Xi. In the LAMS application, we used the same set of 

baseline covariates (age, sex, Medicaid and CDRS-R) as the predictors of the growth 

parameters and the trajectory class membership.

Based on the model specifications described above, we conducted a series of GMM with 

varying numbers of classes. We calculated maximum likelihood (ML) estimates using the 

expectation maximization (EM) algorithm [29–32] implemented in the Mplus program [28]. 

Within each type of Σζ restrictions, we increased the number of classes until the covariance 

matrices Σε and Σζ in any of the classes was not positive definite, any of the classes has less 

than ten individuals (using the most likely class membership), or the model could not be 
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identified. We used ample starting values to avoid potential convergence at local maxima 

(3000 for the initial and 300 for the final stage optimization in Mplus).

From (3.6)–(3.10), the log-likelihood for the observed data {Yi : i = 1, ⋯, N} is

(3.11)

where ηj = (η1j, η2j, η3j), λ = (λ1, λ2, λ3),  for i = 1, ⋯, N, and πij(β) = 

Pr(Ci = j|Xi, β01, β11, ⋯, β0J, β1J) denotes the likelihood that Yi arising from mixture 

component j given Xi.

The log-likelihood of the complete-data (Yi, Ci : i = 1 ⋯, N) can be written as

(3.12)

To maximize (3.11), the E step computes the expected values of the log-likelihood in (3.12) 

given observed data and the current parameter estimates (β*, η*, λ*, ). Latent 

trajectory class C is considered as missing data in this step. That is, the E step computes

(3.13)

where  is the posterior class probability of subject i belonging to 

class j conditioned on (Yi, Xi, β*, , λ*, ) calculated as

(3.14)

The M step computes the parameter estimates that maximize the quantity obtained from the 

E step. This procedure continues until it reaches the optimal status.

We monitored Bayesian information criteria (BIC; [33]) and conducted bootstrapped 

likelihood ratio test (BLRT; [34]). Using BIC or BLRT has been examined as a preferred 

method of model selection in GMM [21, 35]. Within each type of Σζ restrictions, best fitting 
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models were identified based on BIC and BLRT. In this study, we report BIC and BLRT 

results, although we do not use them for model evaluation and selection.

3.3 Formulating Practical Prediction Targets

In this paper, we focus on a specific utility of GMM as a way of constructing prediction 

targets based on empirical model fitting. Ultimately, these GMM-based prediction targets are 

intended for the use as reliable and valid outcomes in clinical prognostic models. Classifying 

patients is common in clinical practice and research, often implemented by applying fixed 

clinical thresholds. This is necessary and practical even when the outcome is dimensional as 

most treatment, prevention, and intervention decisions are made in a categorical manner 

(e.g., surgery or not, prescription or not). In this context, GMM has a great potential as a tool 

for patient classification. To improve the practicality of GMM-based classification, we 

propose to formulate prediction targets with a specific contrast of trajectory classes. This is 

an important consideration as building prognostic models with good predictive power and 

validating them is likely more challenging when aiming to classify patients into multiple 

categories. Further, using prediction targets with fewer categories makes the prognostic 

models easier to understand and use in clinical practice.

In LAMS, separating out low risk children is of great clinical importance. We visually 

inspected all candidate GMM models to examine if this clinical intention can be aligned 

with the results of empirical clustering. All GMM models, with and without covariates, 

consistently exhibited trajectory classes that start with the PGBI-10M score of around 12 or 

lower and then gradually decrease. From the clinical perspective, these classes are clearly 

the least problematic. This interpretation is also supported by a previously suggested clinical 

threshold that sets PGBI-10M ≥ 12 as elevated in manic symptoms [25–27]. One way to 

categorize trajectory classes would be to use a fixed threshold (e.g., PGBI-10M < 12), which 

will provide validation results more in line with those from the conventional method of using 

observed measures. In this study, we instead categorize only the bottom class with the lowest 

mean trajectory as low risk. This approach allows the level of PGBI-10M to vary across 

different GMM models, and therefore will inform us how the prediction quality varies 

depending on how conservatively individuals are classified as low risk. Identifying the 

bottom trajectory class was straightforward in the LAMS example as all GMM models had a 

trajectory class that has the lowest estimated mean PGBI-10M across all five assessments. In 

different applications, different rules may need to be formulated depending on the clinical 

purpose of classification.

Let us designate the Jth class as the lowest risk trajectory class in each GMM model with J 
classes. From (3.14), the posterior probability of belonging to the low risk class (class J) for 

person i is p̂iJ, which denotes piJ evaluated at the maximum likelihood estimates of model 

parameters (β, η, λ, Σζ, Σε). The posterior probability of belonging to the elevated risk 

category is simply calculated as .

Then, in each GMM model, we can define the risk status of individual i as
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(3.15)

It is a common practice to ignore uncertainties when classifying individuals based on 

observed measures. Similarly, when using GMM, we can classify individuals into the most 

likely category based on their posterior class probabilities as is done in (3.15). Another way 

of utilizing posterior class probabilities is to create multiple versions of Li via multiple 

independent pseudoclass draws [37–38], which makes it possible to reflect uncertainties in 

classification. That is, in each GMM model, using the posterior class probability of 

belonging to the low risk trajectory class (p̂iJ), the risk status of individual i in the rth 

pseudoclass draw is defined as

(3.16)

where u(r) denotes the realization of drawing a random sample from a uniform (0, 1) 

distribution for r = 1, 2, 3, …, R, and R is the total number of psudoclass draws. We used 20 

draws in the LAMS application, resulting in 20 versions of Li for person i based on each 

GMM model. For each GMM model, the quality of each version of the prediction target 

(i.e., ) is assessed, and the overall quality of the prediction is obtained by 

averaging the results across multiple versions of pseudoclass draws.

4 Supervised Learning for Validation

The validity of GMM-based prediction targets is supported by the use of empirically derived 

trajectory classes and clinical insights. However, this initial validation process, embedded in 

formulation of prediction targets, may not necessarily narrow the range of prediction targets. 

Additional validation efforts will further support the validity of formulated prediction targets 

and help narrow our choice. One popular way of model selection in GMM is to assess the 

model fit, which significantly reduces the number of candidate models. For example, 11 

models are selected by BIC and/or BLRT in the LAMS application. However, it is unclear 

whether this approach is ideal when we intend to use trajectory classes as outcomes to be 

predicted at the individual level. Further, the formulated prediction targets (e.g., 2 types in 

LAMS: low and elevated risk trajectory types) are not necessarily the same as the GMM-

generated trajectory classes (e.g., 6 classes). In this study, instead of screening GMM models 

based on fit measures, we directly evaluate formulated prediction targets in the prediction 

framework focusing on prediction by relevant baseline measures. A wide array of GMM-

based prediction targets can be evaluated in terms of prediction accuracy, which is in line 

with how models are evaluated and selected in supervised learning problems. What is unique 

about our approach is that the goal is to select prediction targets, not to select predictors.
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4.1 Prediction by Antecedent Validators

As a way of validating prediction targets with the emphasis in clinical relevance, we will 

evaluate their relationship with other relevant measures. In particular, given the intended 

purpose of trajectory types as outcomes, we will focus on assessing the quality of prediction 

by relevant baseline variables. The idea is that a good prediction target should be well 

predicted by demographically and clinically relevant baseline characteristics, known as 

antecedent validators.

In line with LAMS, we will focus on a simple binary target (low vs. elevated risk) defined in 

(3.15). With this simplified classification structure, a prediction model with a binary 

outcome Li can be expressed as

(4.1)

where πLiPr(Li = 1|Wi) denotes the probability of subject i belonging to the low risk type 

varying as a function of a vector of baseline covariates Wi. The relationship between the risk 

status L and covariates is captured by a vector of logit coefficients γ1. The baseline 

covariates included here are basic demographic characteristics (sex, age, health insurance as 

proxy for family SES, smoking status) and clinically relevant measures (depression 

measured by CDRS-R, bipolar diagnosis, baseline PGBI-10M). In our LAMS application, 

the covariates included in GMM (Xi) and the covariates used in the validation process (Wi) 

overlap, but are not identical. The baseline bipolar diagnosis, which is considered the most 

clinically relevant antecedent validator, was not used in formation of trajectory classes using 

GMM, but used in the validation step. We consistently used this fixed set of covariates as 

predictors during the validation process.

Based on (4.1), the predicted risk status of individual i is defined as

(4.2)

4.2 Evaluation of Prediction Quality

Using the prediction model in (4.1), we evaluate the quality of prediction on the basis of 

common measures of classification performance. They are sensitivity (S), specificity (P) and 

accuracy (A) defined as

(4.3)
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(4.4)

(4.5)

where true positives (TP) are individuals who belongs to the low risk group (Li = 1) and 

correctly classified as low risk by the prediction model (L̂i(Wi) = 1), true negatives (TN) are 

those who are not in the low risk group (Li = 0) and correctly predicted as not belonging to 

the low risk group (L̂i(Wi) = 0), false positives (FP) are those who are not in the low risk 

group (Li = 0) and incorrectly predicted as low risk (L̂i(Wi) = 1), and false negatives (FN) 

are individuals who belongs to the low risk group (Li = 1) and incorrectly classified as not 

belonging to the low risk group by the prediction model (L̂i(Wi) = 0).

In our validation framework using antecedent validators, evaluating the prediction 

performance itself is already a process of internal validation. This process can be enhanced 

by taking into account variability in prediction quality across different samples. Paying 

much attention to the prediction capability of learning methods on new data is a signature 

feature of supervised learning. However, comparable independent data sets are often rare as 

is the case in LAMS. Given that, internally examining the prediction performance across 

different portions of the data at hand has been an important component in supervised 

learning. For this purpose, a simple, but effective, validation technique known as K-fold 

cross-validation is widely used [23, 24, 39, 40].

4.2.1 K-Fold Cross-Validation—In this method, we randomly divide the total sample 

into K equal size subsamples (k = 1, 2, …, K). Of the K subsamples, we set aside one 

subsample (kth fold) to be used as a validation sample. With the rest of the subsamples 

(training data), we build a prediction model. The validation sample (kth fold) is then used to 

estimate the expected prediction quality when the model is applied to a data set that is not 

used to formulate the prediction model. This process is repeated K times and then the results 

are averaged over K results. Specifically, the three measures of prediction performance, 

sensitivity, specificity and accuracy will be calculated K times and then averaged over K 
subsamples. That is,

(4.6)

(4.7)
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(4.8)

where Sk, Pk and Ak are sensitivity, specificity and accuracy in the kth fold.

We will also use another popular way of model selection based on the one-standard-error 

rule, where we select the most parsimonious model with CV values that are within one 

standard error range of those of the best performing model [23–24]. The standard errors of 

CVS, CVP and CVA are calculated as

(4.9)

(4.10)

(4.11)

The calculation of CVS, CVP and CVA and their associated standard errors are 

straightforward when the class membership has one version as in (3.15). Alternatively, to 

capture the uncertainty in classification, one could also derive CVS, CVP and CVA based on 

multiple independent pseudoclass draws as in (3.16). That is, for each iteration of 

pseudoclass draw (say the rth iteration), we first obtain  by drawing a random sample 

from the binomial distribution with probability equal to the posterior probability piJ of 

belonging to the low risk class. Then, based on the prediction model in (4.1), 

and  are calculated from each rth pseudoclass draw. Based on the pseudoclass theory, 

CVS, CVP and CVA can be estimated by averaging the estimate of each model validation 

index over multiple independent pseudoclass draws. That is,

(4.12)

(4.13)
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(4.14)

where r = 1, 2, …, R, and the associated standard error is estimated by the squared root of 

the variances averaged across pseudoclass draws as shown below:

(4.15)

(4.16)

(4.17)

where , and  correspond to the calculation of (4.9)–(4.11) for the rth 

pseudoclass draw.

5 Application to LAMS

In the proposed GMM approach, prediction targets are first generated by categorizing 

individuals based on their posterior class probabilities estimated in each GMM model as 

described in (3.15) and (3.16). In the completely separate next step, we validate formulated 

prediction targets in the prediction framework in (4.1). We included basic demographic 

characteristics (sex, age, smoking status, health insurance as proxy for family SES) and 

clinically relevant measures (bipolar diagnosis, depression measured by CDRS-R, baseline 

PGBI-10M) as antecedent validators. Based on these predictors, the quality of prediction 

was assessed in terms of sensitivity and specificity. In this validation step, we used 10-fold 

cross-validation as another enhancement of internal validation, taking into account potential 

variation in prediction quality across different samples.

Before examining the prediction quality using GMM-based prediction targets, we examined 

the prediction quality when prediction targets are generated using observed PGBI-10M at 

each assessment with a fixed clinical threshold, which is a more conventional method of 

classification. We classified individuals as low and elevated risk using the threshold of 12, 

which has been proposed in previous studies [25–27]. The resulting four prediction targets 

(low vs. elevated risk at 6, 12, 18, and 24 month) were evaluated in the same method used to 
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evaluate GMM-based prediction targets. Table 2 shows the prediction quality when 

prediction targets are formulated using this conventional method. The level of sensitivity is 

high for all four targets, although the level of specificity is very low especially when 

predicting targets farther away from the baseline.

In the proposed approach, we first conduct GMM to extract heterogeneous trajectory classes. 

Based on model specifications in (3.1) to (3.10), 36 GMM models with two or more classes 

reached normal convergence (20 without, 16 with covariates), which are summarized in 

Table 3. Based on the simple binary classification structure described in (3.15), 36 binary 

prediction targets were generated based on 36 GMM models. In this study, we monitored 

BIC and BLRT as a way of assessing the model fit. However, instead of screening GMM 

models based on the model fit, we directly evaluate formulated prediction targets in the 

prediction framework.

We focused on a simple classification setting, where separating out a considerable 

proportion of children who would maintain non-problematic levels of manic symptoms is of 

great clinical importance. All candidate GMM models consistently exhibited a trajectory 

class that starts with the estimated PGBI-10M of around 12 or lower and then gradually 

decreases. From the clinical perspective, this bottom trajectory class is clearly the least 

problematic. This interpretation is also supported by a previously suggested clinical 

threshold that sets PGBI-10M ≥ 12 as elevated in manic symptoms [25–27]. However, in 

models with no random effects with seven or more classes, the low risk trajectory split into 

smaller subclasses, resulting in 2–3 classes that could be potentially categorized as low risk. 

In these models, we categorized only the class with the lowest mean trajectory as low risk. 

In comparison to other models, these models will inform us how the prediction quality varies 

depending on how conservatively individuals are classified as low risk. Some examples of 

GMM results are shown in Figure 1, where the solid line at the bottom in each model is the 

trajectory class we categorize as low risk. The rest of the classes are combined and 

categorized as elevated risk.

Once we designate a low risk trajectory class, prediction targets can be generated by 

classifying each individual based on his or her posterior class probability of belonging to 

that low risk trajectory class, as described in (3.15) and (3.16). As this classification happens 

under each GMM model, some individuals, in particular those in the grey zone, may be 

classified as low risk under one model, but not under another model. Examining differences 

in classification for these cases may lead to better understanding of which prediction target 

is more aligned with our clinical intention, and therefore lead to a better informed choice.

Table 4 shows an example of potential disagreement in classification across different GMM 

models. In this example, 5- and 6-class random intercept models with covariates (XC6i and 

XC5i) are compared. In terms of their posterior probabilities of belonging to the low risk 

class (p̂iJ), the two models are highly correlated (r = 0.997). Based on the classification in 

(3.15), 15 individuals (2.2%) out of 682 were classified differently between the two models. 

We examined the observed data of these 15 cases based on 1) whether PGBI-10M ≥ 12 at 

any point and 2) whether the baseline CDRS-R (mean=34.73, SD=10.73) is above the mean. 

Cases 1 to 11 are more likely to be categorized as elevated risk based on XC6i and as low 
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risk based on XC5i. Cases 1–3 have PGBI-10M ≥ 12 only once and the deviation is not 

serious. However, their baseline depression level is considerably higher than average. Cases 

4–8 have PGBI-10M ≥ 12 only once, although the deviation is quite large. Given this 

observation, a safe choice would be to classify these cases (1–8) as elevated risk. Cases 9–11 

are more questionable, especially with missing data, which is reflected in the estimated class 

probabilities close to 0.5 in both models. Cases 12 to 15 are more likely to be categorized as 

low risk based on XC6i, which seems reasonable, although 13 and 15 are somewhat 

questionable given moderately high PGBI-10M scores and missing assessments. Overall, 

XC6i tends to classify uncertain cases as elevated risk, whereas XC5i as low risk. At the 

same time, the agreement between the two models is very high, assuring the possibility of 

stable classification.

In the proposed approach, prediction targets are generated by categorizing patients based on 

their estimated posterior class probabilities. In the completely separate next step, we validate 

formulated prediction targets in the prediction framework as described in (4.1). We first 

evaluated GMM-based prediction targets without taking into account uncertainties in 

classification as defined in (3.15). Figure 2 shows the assessed prediction quality based on 

this approach. As sensitivity and specificity are equally important in the LAMS context, we 

intend to select GMM-based prediction targets that not only lead to the highest overall 

accuracy, but also the highest sensitivity and specificity. We also intend to improve 

prediction accuracy by using GMM-based prediction targets instead of using observed 

measures (see Table 2). Given these considerations, we used 0.7 as the lower limit for the 

sensitivity and specificity estimates of the GMM-based prediction targets. We screened all 

candidate targets based on the rule that CVS −SES ≥ 0.7 and that CVP − SEP ≥ 0.7, 

considering possible variations in prediction quality. Among 36 GMM models considered, 

15 models that satisfied this rule are shown in Figure 2. The best sensitivity was achieved 

using the prediction target based on XC5i (CVS = 0.83), and the best specificity based on 

XC6i (CVP = 0.90). The next best prediction targets are based on random intercept models 

without covariates with 5–7 classes. The quality of prediction based on these models is close 

to that based on XC6i and XC5i.

We repeated our cross-validation taking into account uncertainties in classification. We used 

pseudoclass draws based on the posterior class probability of belonging to the low risk 

trajectory class (p̂iJ), as defined in (3.16), which basically creates multiple versions of 

prediction target based on each GMM model. Using each version of the target (i.e., each 

pseudoclass draw), the quality of prediction can be assessed, and then the results are 

averaged across multiple versions. We used 20 pseudoclass draws. We again screened all 

candidate targets based on the rule that CVS − SES ≥ 0.7 and that CVP − SEP ≥ 0.7. Figure 3 

shows the quality of prediction when uncertainties in classification is taken into account. 

Among 36 GMM models considered, 10 models satisfied the rule this time. Overall, the CV 

results show somewhat lower sensitivity and specificity compared to when uncertainties are 

not taken into account (Figure 2). However, the main story remains the same. The best 

sensitivity was achieved using the prediction target based on XC5i (CVS = 0.77), and the 

best specificity based on XC6i (CVP = 0.87). The next best prediction targets are based on 

random intercept models without covariates with 5–7 classes. The quality of prediction 

based on these models is again quite close to that based on XC6i and XC5i.
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Table 5 provides some details of the results shown in Figure 3 that take into account 

uncertainties in classification. The two best performing prediction targets based on XC6i and 

XC5i are basically tied in terms of prediction quality, although XC6i is a better choice if we 

prefer classifying individuals somewhat more conservatively. As discussed with Table 4, a 

more informed choice can be made by carefully examining individuals who are differently 

classified by different GMM models. If selecting a more parsimonious model is of interest, 

we can also apply the one-standard-error rule, where we pick the most parsimonious model 

with CV values that are within one standard error range of those of the best performing 

model. For sensitivity, the minimum in the model XC5i is 0.737, and therefore most models 

with fewer parameters in Table 4 are comparable to XC5i. For specificity, the minimum in 

XC6i is 0.855, and therefore four simpler models (XC5i, C6i, C7i, C5i) are comparable to 

XC6i. Together, five best performing models are comparable in terms of prediction quality, 

and C5i would be the most parsimonious choice with only 25 parameters. The five best 

performing models consistently categorized 39–40% of individuals as low risk. Using 

information on model fit will considerably narrow the selection, although it may 

prematurely exclude potentially useful models. Among the five best performing models, 

XC6i and C7i were selected by BLRT, C6i was selected by BIC, but XC5i and C5i were not 

selected either by BLRT or by BIC.

6 Conclusions

GMM has been increasingly used in various research fields for the purpose of meaningful 

interpretation of longitudinal heterogeneity in the target population and inference about how 

these trajectory classes are related to other variables. Expanding such common use of GMM, 

this study showed that GMM can also serve as a useful tool in the context of individual level 

prediction. In particular, we focused on a specific utility of GMM as a way of constructing 

reliable and valid prediction targets. In the proposed GMM approach, prediction targets are 

first generated by categorizing individuals based on their posterior class probabilities 

estimated in each GMM model. In the completely separate next step, formulated prediction 

targets are validated in terms of how well they are predicted by relevant baseline covariates 

(antecendent validators). In this approach, a large array of prediction targets generated by 

GMM (unsupervised learning) are validated in the prediction framework (supervised 

learning).

A small fixed set of antecedent validators was used in the proposed approach to swiftly 

validate GMM-based prediction targets and to narrow the choice among them. In our LAMS 

application, it turned out that the level of prediction accuracy based on this limited selection 

of variables is quite high (both sensitivity and specificity over 0.75) even after taking into 

account uncertainties in classification. We find the results quite promising as our validation 

process can be considered a precursor to developing prognostic models fully considering all 

possible baseline predictors. For this next step of developing prognostic models, a large 

number of baseline covariates, including the ones we used as antecedent validators, can be 

considered as potential predictors. The LAMS study indeed collected rich data in multiple 

domains, providing a valuable opportunity to develop prognostic models with a practical 

level of accuracy. We leave this next step, which naturally involves feature selection, as a 

topic for future investigation.
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Whether covariates should be included in extracting trajectory classes is a debatable issue as 

it may help better classify individuals, but may also lead to misspecified models. Further, it 

is not clear whether we should use covariates redundantly, both as predictors in GMM and as 

predictors in the validation step. Neither seemed to be an issue in our LAMS application, 

where prediction targets formulated based on both GMM with and without covariates (XC6i, 

XC5i, C6i, C7i, C5i) performed comparably well in the validation process. These GMM 

models are also highly correlated (r > 0.98) in terms of the posterior class probability of 

belonging to the low risk trajectory class (p̂iJ), which leaves little room for possible impacts 

of model misspecification involving covariates. In fact, both the GMM and the validation 

process can utilize various types of auxiliary information, not only from the baseline, but 

also from concurrent and distal measures. Further investigation, both theoretical and 

empirical, seems necessary as there is little research in this regard in the context of 

individual level prediction.

To focus on demonstrating our new approach of using GMM, we limited the range of 

models to be examined. We used a simple quadratic growth specification with restricted 

variance structures, although various alternative model specifications are possible. For 

example, our investigation did not include models with higher order polynomial growth 

specifications or class-varying variances. Considering various model specifications will lead 

to a much wider pool of GMM models. According to our investigation with the LAMS data, 

once prediction targets are formulated based on GMM, it seems feasible to process a large 

number of them in the validation process. However, having numerous candidate models can 

still overwhelm the model fitting process, which calls for some guiding principles. Future 

research is warranted to examine the benefits and limitations of different GMM model 

specifications under various application settings.

The proposed method of utilizing and evaluating GMM solutions may take several different 

directions for further development and refinement. In the LAMS application, we constructed 

prediction targets with the purpose of separating out children who would remain non-

problematic over the two-year course. However, prediction targets can be formulated in 

many different ways depending on the specific purpose of classification. For example, our 

next interest is in identifying children who would develop the most problematic trajectory 

type. The best GMM models in the current application may or may not turn out to be the 

best with this shifted target. Another issue that deserves further attention is how to best 

utilize model-based classification and fixed thresholds. In this study, we used model-based 

classification, where we categorize the class with the lowest mean trajectory as low risk and 

the rest as elevated risk. This approach allows the level of outcome in the low risk category 

to vary across different GMM models, allowing us to observe how the prediction quality 

varies depending on how conservatively individuals are classified as low risk. An alternative 

way would be to use fixed thresholds (e.g., estimated PGBI-10M < 12 in LAMS), relying 

less on classification provided by GMM. In this method, the external thresholds can be 

directly applied to estimated individual trajectories, and therefore prediction targets can be 

formulated not only using multi-class, but also using single-class trajectory solutions. 

Further research is needed to examine similarities and differences between these alternative 

methods in various situations.
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Figure 1. 
Examples of candidate GMM solutions
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Figure 2. 
Quality of prediction when uncertainties in classification are not taken into account.
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Figure 3. 
Quality of prediction when uncertainties in classification are taken into account using 

pseudoclass draws.
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Table 2

Average sensitivity (CVS) and specificity (CVP) from 10-fold cross-validation in prediction of low risk status 

defined based on a single observed outcome and a fixed threshold (Listwise deletion has been applied. CVS ± 

SES and CVP ± SEP are shown in parentheses).

Observed Outcome %Low Risk Sensitivity Specificity

PGBI-10M 6m < 12 58.2 0.791 (0.764, 0.818) 0.602 (0.571, 0.633)

PGBI-10M 12m < 12 68.3 0.894 (0.879, 0.908) 0.401 (0.341, 0.461)

PGBI-10M 18m < 12 71.0 0.882 (0.860, 0.905) 0.360 (0.324, 0.395)

PGBI-10M 24m < 12 73.9 0.914 (0.895, 0.933) 0.213 (0.173, 0.252)
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Table 3

GMM Models Used for Classification Based on Longitudinal PGBI-10M

Label Model Description # Par

C2is 2-class, random intercept & slope 15

C3is 3-class, random intercept & slope 19

C4is† 4-class, random intercept & slope 23

C5is* 5-class, random intercept & slope 27

C2i 2-class, random intercept 13

C3i 3-class, random intercept 17

C4i 4-class, random intercept 21

C5i 5-class, random intercept 25

C6i† 6-class, random intercept 29

C7i* 7-class, random intercept 33

C2 2-class, no random effect 12

C3 3-class, no random effect 16

C4 4-class, no random effect 20

C5 5-class, no random effect 24

C6† 6-class, no random effect 28

C7 7-class, no random effect 32

C8 8-class, no random effect 36

C9* 9-class, no random effect 40

C10 10-class, no random effect 44

C11 11-class, no random effect 48

XC2is†* 2-class with covariates, random int & slope 31

XC3is 3-class with covariates, random int & slope 39

XC4is 4-class with covariates, random int & slope 47

XC5is 5-class with covariates, random int & slope 55

XC2i 2-class with covariates, random intercept 29

XC3i† 3-class with covariates, random intercept 37

XC4i 4-class with covariates, random intercept 45

XC5i 5-class with covariates, random intercept 53

XC6i* 6-class with covariates, random intercept 61

XC2 2-class with covariates, no random effect 28

XC3 3-class with covariates, no random effect 36

XC4† 4-class with covariates, no random effect 44

XC5* 5-class with covariates, no random effect 52

XC6 6-class with covariates, no random effect 60

XC7 7-class with covariates, no random effect 68

XC8 8-class with covariates, no random effect 76

#
Par is the number of parameters;
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†
indicates a model selected by BIC and

*
by BLRT within each type of random effect structure Σζ with and without covariates
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