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Abstract

Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one 

observes the exposure with a probability that depends on the outcome. The well-known such 

design is the case-control design for binary response, the case-cohort design for the failure time 

data and the general ODS design for a continuous response. While substantial work has been done 

for the univariate response case, statistical inference and design for the ODS with multivariate 

cases remain under-developed. Motivated by the need in biological studies for taking the 

advantage of the available responses for subjects in a cluster, we propose a multivariate outcome 

dependent sampling (Multivariate-ODS) design that is based on a general selection of the 

continuous responses within a cluster. The proposed inference procedure for the Multivariate-ODS 
design is semiparametric where all the underlying distributions of covariates are modeled 

nonparametrically using the empirical likelihood methods. We show that the proposed estimator is 

consistent and developed the asymptotically normality properties. Simulation studies show that the 

proposed estimator is more efficient than the estimator obtained using only the simple-random-

sample portion of the Multivariate-ODS or the estimator from a simple random sample with the 

same sample size. The Multivariate-ODS design together with the proposed estimator provides an 

approach to further improve study efficiency for a given fixed study budget. We illustrate the 

proposed design and estimator with an analysis of association of PCB exposure to hearing loss in 

children born to the Collaborative Perinatal Study.
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1. Introduction

Epidemiological and other biomedical studies often rely on the observational study to 

investigate the relationships between a disease outcome and an exposure given other 

characteristics. Cohort and case-control studies are most commonly used designs. Large 

cohort study could be prohibitively expensive as observing exposures and response variables 

could take a long time and costly. Investigators often seek to increase the study power for a 

given budget by doing retrospective design, especially when the disease is rare. Case-control 

design is the most famous retrospective study design that increases the study power by 

allowing investigators to oversample the diseased subjects relative to those free of disease 

[1–7]. A similar idea of target sampling of the more informative subjects can also be found 

in the case-cohort design [8], the general outcome-dependent sampling (ODS) design for a 

continuous outcome [9–12]. Such type of the design, where the sample is dependent on the 

response, is also referred to as the choice-based sampling in econometrics. The key 

advantage of those ODS designs is that it allows the researchers to concentrate budgetary 

resources on observations with the greatest amount of information.

While substantial progress has been done in the univariate response variable case, there is 

little work for the multivariate response case, especially when the responses are continuous. 

In practice, multivariate data arise in many contexts, for example, in epidemiological cohort 

studies where the outcomes are recorded for members within the families, in the animal 

experiments in which treatments are applied to the samples of littermates, or in most clinical 

trials where the study subjects are experiencing multiple events. Among these studies, the 

correlation between the responses from the same cluster cannot be neglected. An increasing 

number of studies are indeed performed using the multivariate outcome-dependent sampling 

design (Multivariate-ODS), a further generalization of the biased sampling, which is built on 

the idea of the ODS design with an aggregate of the responses in the multivariate form and 

at the same time preserves the advantages of the ODS design. The usual statistical methods 

for analyzing the multivariate data collected from a Multivariate-ODS design is no longer 

appropriate. New statistical inference procedures need to be developed to take advantage of 

the Multivariate-ODS design.

Our research is motivated by the Collaborative Perinatal Project (CPP), a prospective cohort 

study to identify determinants of neurodevelopmental deficits in children [13–14]. 

Longnecker et al. [15] studied the association in humans between maternal third trimester 

serum polychlorinated biphenyls (PCBs) levels and audiometry results in offsprings at 

approximately 8 years old. The sample selected by the investigators was based on the 

following ODS scheme: an overall simple random sample (SRS) (about 1200 subjects) 

selected at random from the underlying population and an additional supplemental sample 

(about 200) from the children whose 8-year audiometric evaluation showed sensorineural 

hearing loss (SNHL). The SNHL was defined as a hearing threshold ≥ 13.3 dB based on the 

average of the measurements from the right and left ears at 1000, 2000, and 4000 Hz, in 

conjunction with no evidence of conductive hearing loss. It is desirable to model the 

children’s left and right ears’ hearing abilities in a multivariate framework in relation to 

PCBs while simultaneously taking the nature of the underlying Multivariate-ODS design 

into account.
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In this article we consider statistical inferences on multivariate regression models under a 

Multivariate-ODS design. The innovation of this paper is that we proposed a Multivariate-
ODS design that is based on the aggregated responses in a cluster. Our proposed estimator 

enables the investigator to analyze the data done in a multivariate fashion while taking 

advantage of ODS design. On a theoretical front, the proposed estimator is robust as we 

leave the underlying distributions of covariates unspecified. We model nonparametrically 

using the empirical likelihood methods. The simulation results show that the proposed 

estimator with the multivariate outcome-dependent nature accounted for is more efficient 

and statistically powerful than alternative estimators. We also explore that the sampling 

strategies under the Multivariate-ODS framework can be used to design a cost-effective 

study.

The remainder of the paper is organized as follows. In Section 2, we present the notation and 

the data structure under the Multivariate-ODS design with multivariate continuous 

outcomes. We also present the semiparametric empirical likelihood approach and derive the 

asymptotic properties. In Section 3, we describe simulation studies and compare the small 

sample properties of our proposed estimator with other estimators. We apply the proposed 

method to analyze the data in Collaborative Perinatal Project study in Section 4. We give 

final remarks in Section 5.

2. The multivariate-ODS design and inference

2.1. The multivariate-ODS data structure and likelihood

Let Yij be the jth continuous outcome for the subject i, where i = 1,…, n and j = 1,…, p (p ≥ 

2), and Xi be a vector of covariates for the ith subject, which can include both discrete and 

continuous components. Let a = {aj, j = 1,…, p} and b = {bj, j = 1,…, p}, where aj and bj are 

known constants and satisfying {aj > bj, ∀j}, are the fixed cutpoints on the domain of Yj = 

{Yij, ∀i}. The data structure of the Multivariate-ODS design consists of three components: 

an overall simple random sample (SRS) of size n0 (≥ 0), a supplemental sample of size n1 (≥ 

0) conditional on {Yi1 > a1, Yi2 > a2,…, Yip > ap}, and another supplemental sample of size 

n2 conditional on {Yi1 < b1, Yi2 < b2,…, Yip < bp}:

i. SRS Component: {Yi, Xi}, i = 1, ⋯, n0;

ii. Supplemental Component 1: {Yi, Xi | {Yi1 > a1, Yi2 > a2,…, Yip > ap}}, i = 1,…, 

n1 and j = 1,…, p;

iii. Supplemental Component 2: {Yi, Xi | {Yi1 < b1, Yi2 < b2,…, Yip < bp}}, i = 1,…, 

n2 and j = 1,…, p;

the total sample size in the Multivariate-ODS is . Without loss of generality, we 

assume that p = 2, i.e., each individual has two responses, and the cutpoints are set to be a1, 

a2, b1 and b2.

Let f(Y |X; θ) be the conditional density function of Y given X, θ be a vector of the 

regression coefficients of interest, and gX(X) be the marginal density of X, which is 

independent of θ. Then the joint density of (Y, X) can be written as f(Y |X; θ)gX(X). The 
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corresponding unknown cumulative distribution function of X is denoted as GX(X). The joint 

likelihood function for the observed data obtained through the Multivariate-ODS design is

(1)

where the first bracket is the likelihood corresponding to the observations from the SRS 

portion of the Multivariate-ODS while the last two parts are contributions from the two 

supplemental samples. Using Bayes’ Law, we can further rewrite the likelihood function (1) 

as

(2)

where  and π1 = π1(θ, GX) = 

∫ P1(x; θ)gX(X)dX are the conditional and marginal probabilities that Y1 and Y2 satisfy 

{Y1 > a1, Y2 > a2};  and π2 = 

π2(θ, GX) = ∫ P2(x; θ)gX(X)dX are the conditional and marginal probabilities for {Y1 < 

b1, Y2 < b2}.

To make inferences about θ, several naive approaches can be used. First, one could simply 

use the SRS portion of the Multivariate-ODS and derive a maximum likelihood estimator for 

θ. However, this approach will not utilize the information from the supplemental sample. If 

GX(X) is parameterized to a parameter vector, say ξ, one could also maximize the resulting 

L(θ, ĜX) subject to (θ,ξ). However, misspecification of GX could lead to erroneous 

conclusions. A nonparametric modeling of GX is desirable in this case, though GX will be an 

infinite-dimensional nuisance parameter and will not be factored out of L(θ, GX). Thus, to 

incorporate all the available information in the Multivariate-ODS data without specifying 

GX, one needs a new method that will be tractable both theoretically and computationally. 

We next describe a semiparametric empirical likelihood estimator, where GX is left 

unspecified.
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2.2. A semiparametric likelihood approach for the multivariate-ODS

To outline our approach for estimating θ, we develop a profile likelihood function for θ by 

first maximizing L(θ, GX) with θ fixed and GX treated as a nonparametric maximum 

likelihood estimate (NPMLE) [16], which will become a function of θ and π. Then we can 

obtain θ̂ by maximizing the resulting profile log likelihood function over θ. The procedure is 

detailed in the following.

We first maximize L(θ, GX), with θ fixed, over all discrete distributions whose support 

includes the observed values by considering a discrete distribution function (i.e. a step 

function) which has all of its probability located at the observed data points [16]. Let pi = 

dGX(Xi) = gX(Xi), i = 1,…, n, be the probability mass for the ith covariate vector. We want to 

find values {p̂i}, which maximize the log likelihood function corresponding to (2)

(3)

under the following constraints:

(4)

The above conditions reflect the fact that GX is a discrete distribution function. For a fixed θ, 

there exists a unique maximum for {pi} in (3) subject to the constraints in (4) if 0’s are 

inside the convex hull of the points {P1(Xi; θ), ∀ i} and {P2(Xi; θ), ∀ i} [17]. We use the 

Lagrange multiplier argument to obtain p̂i through maximizing H,

(5)

where δ, λ1 and λ2 are the Lagrange multipliers corresponding to the normalized restriction 

on the {p̂i}. With θ fixed, taking the derivative of H with respect to pi, solving the score 

equation and applying the constraints in (4), we obtain δ̂ = n and

(6)

Substituting {p̂i} back into (3), we then have the resulting profile log likelihood function,
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(7)

where ϕT = (θT, π1, π2, λ1, λ2) represents a combined parameter vector; λ1, λ2, π1 and π2 

are treated as the parameters independent of θ. We refer ϕ̂, a maximizer for (7), as the 

semiparametric empirical maximum likelihood estimator (SEMLE). The Newton-Raphson 

iterative algorithm is used to solve the score equation from (7).

2.3. Asymptotic properties of the SEMLE

The main results for ϕ regarding the existence and consistency, asymptotic normality, and a 

consistent estimator for the asymptotic variance-covariance matrix are demonstrated as three 

theorems, respectively. Outlines of the proofs of the main results are provided in the 

Appendix 1.

We indicate ϕ0 as the true parameter vector of interest containing θ0,  and , 

where  and  are the true marginal probabilities that {Y1 > a1, Y2 > a2} and {Y1 < b1, Y2 

< b2}, respectively;  and  are the true Lagrange multipliers.

Theorem 1 (Consistency of the SEMLE)—With probability going to 1 as n → ∞, 

there exists a sequence {ϕ̂} of solutions to the score equations (7) such that , where 

ϕ0 is the true parameter vector of interest. If another sequence {ϕ̄} of solutions to the score 

equations exists such that , then ϕ̄ = ϕ̂ with probability going to 1 as n → ∞.

Theorem 2 (Asymptotic Normality of the SEMLE)—The SEMLE has the following 

asymptotic normal distribution: , with the asymptotic 

variance-covariance matrix

(8)

where  and , where l̃ is the limiting form of l.

Theorem 3 (A Consistent Estimator for the Asymptotic Variance-Covariance 
Matrix)—A consistent estimator for the variance-covariance matrix shown in Equation (8) 
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is Σ̂(ϕ̂) = Ĵ−1(ϕ̂)V̂(ϕ̂)Ĵ−1(ϕ̂), where  and 

.

3. Simulation studies

In this section, we evaluate the performance of the proposed estimator in the small sample 

settings. We compare our proposed estimator, θ̂P, to the following competitive estimators 

under each setting in our simulation study: (i) the maximum likelihood estimator from the 

SRS portion of the Multivariate-ODS data (θ̂R), (ii) the maximum likelihood estimator by 

maximizing the conditional likelihood, LGL1, based on the complete Multivariate-ODS data 

(θ̂C), and (iii) the maximum likelihood estimator obtained from a random sample of the 

same size as the Multivariate-ODS sample (θ̂S). Comparing θ̂P with θ̂R and θ̂C will give us 

an insight of the impact on ignoring the part of the information from the Multivariate-ODS 
sample. The comparison between θ̂P and θ̂S will demonstrate the efficiency gain of the 

Multivariate-ODS design over the simple random sample of the same size.

We consider the following bivariate normal model to generate the simulated data:

where μi1 = α1 + β1Xi1 and μi2 = α2 + β2Xi2; i.e., the conditional distributions of Yi1 given 

Xi1 and Yi2 given Xi2 are normally distributed with means α1 + β1Xi1 and α2 + β2Xi2, 

variances  and , respectively, and the correlation coefficient is ρ. Our goal is to estimate 

the parameter vector, θP = (α1, β1, α2, β2, σ1, σ2, ρ)T. We will investigate the behavior of β̂1 

and β2̂ under a variety of configurations of the parameter values. In particular, we choose α1 

= 0.5, α2 = −0.8,  and ρ = 0.5 and 0.85 with X1 = X2 ~ N (0, 1).

The study Multivariate-ODS sample sizes for investigation were n = 200 and n = 800. The 

Multivariate-ODS design consisted an overall SRS of size n0 supplemented with two 

additional samples of sizes n1 and n2 separately from individuals whose outcome values fall 

in the two tails of the outcome distributions. We also considered two settings of the 

cutpoints: (i) the upper tails of the 90th percentiles from the distributions of {Yi1, ∀i} and 

{Yi2, ∀i} and the lower tails of the 10th percentiles of the distributions, and (ii) the upper 

tails of the 70th percentiles and the lower tails of the 30th percentiles. The cutpoints chosen 

for each setting were fixed through all the simulation runs. For all simulation studies, we 

generated 1,000 simulated data sets, each with an underlying population of size N = 10, 000 

as a basis and then followed the Multivariate-ODS design to obtain n0, n1 and n2. The mean 

of the parameter estimates, the sample standard deviation (SSD) of the 1,000 estimates and 

the mean of the estimated standard errors (ESE) were computed for the proposed method 

and other competing methods, and the nominal 95% confidence intervals were calculated 

based on their asymptotic normal distributions.
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The simulation results were presented in Tables 1 and 2. Within each table, the sampling 

specifications and the covariate distribution were fixed. Table 1 provided the results for the 

sample size of n = 200 and the correlation coefficients of ρ= 0.5 and 0.85, and included the 

small sample properties of the proposed estimator θP̂ and the competing estimators from θ̂C, 

θ̂R and θ̂S. Table 2 presented the relative efficiencies (ratios of variances) to evaluate the 

amount of information gained by implementing the Multivariate-ODS design.

For ρ = 0.5 in Table 1, we observed that three methods yielded unbiased means of the 

estimates compared with the “true” parameter values for all four settings. The proposed 

estimator θ̂P is the most efficient one among all the estimators compared. For θ̂P, the means 

of the estimated standard errors (ESE) were close to the “true” simulated sample standard 

deviations (SSD), meaning that Σ̂(θ̂P) provided a very good estimate of the true variability. 

The confidence intervals based on the proposed estimator provided good coverage close to 

the nominal 95% level. The same findings were also observed for θ̂R and θ̂C. Within the 

same sampling design, the standard errors of θ̂P decreased as the percentiles of the cutpoints 

increased. For example, the SSD was dropped from 0.066 when U = 70% and L = 30% for 

n1 = n2 = 20% to 0.062 when U = 90% and L = 10%, indicating that our proposed method 

was even more efficient and favored when the supplemental samples included more extreme 

observations. With the cutpoints fixed, the SSD for θ̂P decreased as the proportion of the 

supplemental samples increased. These observations were true for both β1̂ and β̂2.

In Table 1, we also presented the results for a higher correlation coefficient (the case of ρ = 

0.85). First, the observations seen for ρ = 0.5 above held for ρ = 0.85. Secondly, when 

comparing the results for θ̂P across ρ = 0.5 to 0.85, we observed that the SSDs for θ̂P were 

smaller for ρ = 0.85 than those for ρ = 0.5 in all cases considered. For example, the SSD for 

β̂2 when U = 70%, L = 30%, and n1 = n2 = 5% was 0.71 for ρ = 0.5 whereas the 

corresponding SSD for ρ = 0.85 was 0.68. This suggested that the proposed estimator be 

more efficient with high-correlated outcomes.

Table 2 presented the results from a relative efficiency study by comparing the Multivariate-
ODS design with the SRS portion only and the design of a simple random sample with the 

same sample size, under the same settings studied in Table 1 with various sampling fractions 

for n = 200 and n = 800. We calculated the asymptotic relative efficiencies (ARE) of θ̂P to 

θ̂S and θ̂P to θ̂R,  and , respectively. We 

observed that most of the AREs were greater than 1, suggesting that θ̂P was more efficient 

than θ̂R and θ̂S under all the circumstances. It is clear that θ̂P led to more efficiency gains 

over θ̂S as the proportion of the supplemental data in the Multivariate-ODS increased with 

the cutpoints held the same. We also observed more efficiency gains when the two outcomes 

were more correlated. Combining these two observations, we can see that the greatest 

efficiency gain in Table 2 was when ρ = 0.85, U = 90%, L = 10%, and n1 = n2 = 25%.

To investigate the effect of changing the supplemental sampling fractions on the 

improvement of the Multivariate-ODS design over the simple-random-sample design as the 

CPP study employed, we conducted several simulation experiments using the same 

simulation model in Tables 1 with n = 200, U = 90%, and L = 10%. Figure 1 illustrated the 
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standard errors (dotted line) of θ̂P for β̂1 with ρ = 0.5 and the relative efficiencies (solid line) 

of the Multivariate-ODS design to a simple-random-sample design across various 

supplemental sampling fractions (the number on the horizontal axis represents (n1 + n2)/n). 

It is clear that θ̂P was more efficient than θ̂S as all the AREs were greater than 1. 

Furthermore, the most AREs gain was around the proportions of the supplemental samples 

were between 0.3 ad 0.6.

4. Analysis of the Collaborative Perinatal Project data set

We applied the proposed method to analyze the Collaborative Perinatal Project (CPP) data to 

study the effect of the third trimester maternal pregnancy serum level of polychlorinated 

biphenyls (PCBs) on hearing loss children. Nearly 56,000 pregnant women were recruited 

into the CPP study from 1959 through 1966 through 12 study centers across the United 

States. Women were enrolled, usually at their first prenatal visit; it resulted in 55,908 

pregnancies (9,161 women contributed multiple pregnancies to the study). Data were 

collected on the mothers at each prenatal visit and at delivery and when the children were 24 

hours, 4 and 8 months, and 1, 3, 4, 7, and 8 years. Among all the measures, we were 

interested in audiometric evaluation, which was done when the children were approximately 

8 years old. In our selection of the subjects, we follow the selection criteria and the sampling 

scheme used in Longnecker et al. [15]. There were 44,075 eligible children who met the 

following criteria: (1) live born singleton, and (2) a 3-ml third trimester maternal serum 

specimen was available. The audiometric evaluations showed sensorineural hearing loss 

(SNHL) was defined by a hearing threshold ≥ 13.3 dB according to the average across both 

ears at 1000, 2000, and 4000 Hz, without any evidence of conductive hearing loss. Evidence 

of conductive hearing loss exists when the air-bone difference in hearing threshold is ≥ 10 

dB again based on the average across both ears.

We considered the subjects who did not have missing observations for the variables selected 

into the model fitting and we assumed that missing data were missing completely at random. 

Of the 44,075 eligible children, 1,200 subjects were selected at random, of which 729 had 

complete data for the variables mentioned above and will then represent the study population 

in our data analysis. In order to adjust for our selection criterion described in the previous 

section, we considered the first and third quartiles of the distributions of hearing levels for 

each ear as the cutpoints. Hence, 100 out of 729 subjects were those whose hearing level 

measurements were both above the third quartiles, and 122 children had hearing 

measurements both below the first quartiles. To illustrate our proposed method with the 

application of real data, we considered the following design with the total sample size n = 

200 under the Multivariate-ODS design: an overall simple random sample of size n0 = 100 

from 729 supplemented with additional samples of n1 = 50 and n2 = 50 separately drawn 

from the remaining subjects in each group. The exposure variable of interest was PCB 

measured in μg/L. Additional factors considered potentially confounding included, for the 

mother, age (AGE), the socioeconomic index score (SEI) and the highest education level 

attained when giving birth (EDUC), and the race (RACE) and the gender (SEX) for children. 

After examining the distributions of the hearing levels across three frequencies for each ear, 

we transformed the outcome variables on the natural log scale in order to exploit the normal 

properties. We therefore fitted the following linear model to the CPP Multivariate-ODS data,
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(9)

where , i = 1,…, 200 and j = 1 representing the hearing level across three 

frequencies from the left ear and j = 2 from the right ear; ρ = Corr(ε1, ε2). We assumed that f 

(Y |X; θ) is bivariate normal, where  and βj = (β0j,…, β6j) and j = 1, 2. 

We estimated the parameters using the methods considered in the simulation studies: the 

proposed estimator θP and the competing estimators, θR and θS.

Table 3 presented the results of the parameter estimates, the estimated standard errors and 

the 95% confidence intervals calculated based on the asymptotic normal distributions for the 

proposed method θ̂P and the competing methods θ̂R and θS. Three methods all showed that 

the corresponding 95% confidence intervals for the PCB effect included 0. Thus, we 

concluded that in utero PCB exposure did not have a significant effect on hearing levels for 

both ears. Observing the confidence intervals for other confounding parameters for the left 

ear, the covariate RACE showed a significant effect at the nominal level of 0.05, agreed by 

the three methods; however, for the right ear, the significance was detected only in θS and 

θP. The results suggested that white children had negative impact on hearing loss; in other 

words, white children were more likely to have better hearing ability than black and other 

children. Observing the confidence intervals for other covariates, AGE showed a 

significance on the borderline for the right ear with θ̂R.

Although PCB was not significant, we could still see some efficiency gains from the results; 

the observed 95% confidence intervals for PCB provided by the proposed estimator θ̂P were 

narrower for both ears, compared with the CIs obtained by θ̂R; for example, for the left ear 

in Table 3, the CI was (−0.037, 0.067) for θ̂P versus (−0.063, 0.084) for θ̂R and (−0.058, 

0.073) for θ̂S. It indicated that the proposed estimator provides more precise estimates. 

Moreover, θ̂P obtained relatively smaller standard error estimates for all the variables in the 

model for both ears than those from θ̂R. Hence, there were observable benefits of using the 

proposed method and taking the advantage of the Multivariate-ODS design.

5. Discussion

Much research has been discussed for multivariate continuous data, of which is a common 

and important form; nevertheless, the methods accounting for the Multivariate-ODS design 

are lacking. Throughout previous sections, we have demonstrated the need for developing 

the statistical inferences on the Multivariate-ODS and proposed a semiparametric empirical 

likelihood method for multivariate continuous outcomes. The proposed estimator is 

semiparametric in nature that the underlying distributions of the covariates are modeled 

nonparametrically using the empirical likelihood methods. We have shown that the proposed 

estimator is consistent and asymptotically normally distributed and a consistent estimator for 

the asymptotic variance-covariance exists, by incorporating additional information into such 
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Multivariate-ODS design process. We used simulated data generated from a standard linear 

regression model with Normal errors to examine the performance and the small-sample 

properties of our proposed estimator. Our limited simulation results indicated that the 

proposed estimator, θP, holds well for all the properties and is more efficient than θR, which 

only takes the simple random sample into consideration, and θC, the conditional estimator, 

using the complete Multivariate-ODS data but ignoring additional information in the 

supplemental sample. For the relative efficiency studies, we observed that θP exhibits more 

efficiency gains than θS, using a simple random sample of the same size as the Multivariate-
ODS from the underlying population, in terms of different correlation coefficients between 

the outcomes, the allocations of the cutpoints and the the supplemental fractions. The 

proposed method under unequal variances resulted in consistent performance with what we 

obtained from the equal-variance case (Table 4, Appendix 2). We conclude that the 

Multivariate-ODS design, combined with an appropriate analysis, can provide a cost-

effective approach to further improve study efficiency, for a given sample size. Finally, we 

applied the proposed method to the Collaborative Perinatal Project data, where the 

researchers are interested in studying the association between a child’s hearing loss and in 
utero exposure to PCBs as well as other covariates of interest. Our results showed that the 

estimator obtained using the proposed method produced substantially smaller standard errors 

for both ears than those from the competing methods; moreover, the estimator obtained by 

θP clearly gained more efficiency and was more precise than the other competing estimators, 

θR and θS, although PCBs could not be concluded as a significant effect.

Our simulated studies also suggest that the higher proportion of the sample sizes of the 

supplemental samples over the Multivariate-ODS sample, the greater the gains of efficiency 

are, which was similar to the guidance suggested by Zhou et al. [9] in using the ODS design 

concerning these issues under one continuous outcome variable. Further investigation for the 

sample size determination, the optimal sample allocations, the optimal correlation 

coefficient between the outcomes and power analyses aimed at multivariate outcomes under 

the Multivariate-ODS is required. We considered two-dimensional multivariate data in this 

paper; the future work may include the flexibility of incorporating the covariance structures 

for higher-dimensional data. Our proposed method can also be applied to the quantitative 

genetics studies, in which the quantitative trait is modeled as a continuous variable; in fact, 

more and more studies in order to limit the expenses on the DNA analysis are actually 

adopting the form of the ODS design. We believe that the proposed methods can be a useful 

tool toward such studies.
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A. Appendix 1: Proofs of Theorems

For any function h(Y, X), let E1 [h(Y, X)] and E2[h(Y, X)] denote expectations conditional on 

{Y1 > a1, Y2 > a2} and {Y1 < b1, Y2 < b2}, respectively, that

and
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We assume the following regularity conditions:

A1
As n → ∞,  and , where γ1 is the 

sampling fraction of the supplemental sample drawn conditional on {Y1 > a1, Y2 

> a2} and γ2 represents the allocation of the supplemental sample conditional on 

{Y1 < b1, Y2 < b2} to the Multivariate-ODS sample.

A2 The parameter space, Θ, is a compact subset of ℝp; θ0 lies in the interior of Θ; 

the covariate space, , is a compact subset of ℝq, for some q ≥ 1.

A3 f(y|x; θ) is continuous in both y and θ and is strictly positive for all y ∈ , x ∈ 
, and θ ∈ Θ. Furthermore, the partial derivatives, ∂f(y|x; θ)/∂θi and ∂2f(y|x; θ)/

∂θi∂θj, for i, j = 1,…, p, exist and are continuous for all y ∈ , x ∈ , and θ ∈ 
Θ.

A4 Interchanges of differentiation and integration of f(y|x; θ) are valid for the first 

and second partial derivatives with respect to θ.

A5

The expected value matrix, , is finite and positive 

definite at θ0.

A6 There exists a δ > 0 such that for the set A = {θ ∈ Θ : |θ − θ0| ≤ δ},

for i, j = 1, …, p.

A7

The derivatives,  and , j = 1,…, p, are linearly independent. 

That is, suppose t and s are any (p × 1) vectors such that

and

for almost all x ∈  if t = 0 and s = 0.
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Sketch Proof of Theorem 1 (Consistency)

Using Assumption A1 and the Law of Large Numbers, we have

where

Since it is straightforward to see that

at the true parameter values, we know that the profile log-likelihood function converges in 

probability to a continuous, vector-valued function and a root of the likelihood equations 

exists; i.e.,

Again using the Law of Large Numbers, we can demonstrate that the convergence in 

probability of

is uniform for ϕ in an open neighborhood for ϕ0, and at the true parameter values,

which can be shown to be invertible. Finally, by applying Theorem 2 in Foutz’ [18] which 

showed the existence of a consistent solution to the likelihood equations and its uniqueness 

by using the Inverse Function Theorem, and weakening the requirement of the matrix of 
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second derivatives of the log likelihood function to be negative definite, the result in 

Theorem follows.

Sketch Proof of Theorem 2 (Asymptotic Normality)

We first start from a Taylor series expansion of the estimated score function around the true 

parameter ϕ0 evaluated at ϕ̂,

where ϕ̃ = κϕ0 + (1 − κ)ϕ̂ for some κ ∈ [0, 1], as in Cosslett [19]. The left-hand side of the 

above equation is equal to zero since our estimator ϕ̂ has been shown to be a consistent 

solution to ∂l(ϕ)/∂ϕ = 0; after rearranging,

To prove the asymptotic normality of , it is sufficient to show that −(1/n)∂2l(ϕ̃)/

∂ϕ∂ϕT converges to an invertible matrix in probability and  has an 

asymptotic normal distribution.

From Theorem 1, we have known that , which implies that . And we also 

have shown that

uniformly for ϕ ∈ U. According to Lemma 4 in Amemiya [20], we can see that

Since J is shown to be positive definite, it follows that its inverse exists. By the Central 

Limit Theorem, we have
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where

Finally, we can apply Slutsky’s Theorem to conclude that , 

where Σ = J−1V J, the asymptotic covariance matrix of ϕ̂.

Sketch Proof of Theorem 3 (A Consistent Estimator for the Asymptotic 

Variance-Covariance Matrix)

It is noted that the observations from our Multivariate-ODS design are identically-

independently-distributed; thus, the sample covariance matrix over the observed values is 

consistent for Σ(ϕ). Then, it is straightforward to see that

By Assumption 3, the components of V (ϕ) are continuous in ϕ. We can then use the triangle 

inequality to obtain that

as n goes to ∞. Furthermore, in the proof of Theorem 2, we have shown that

It then follows that Σ̂(ϕ̂) is a consistent estimator of the asymptotic covariance matrix.

B. Appendix 2: Simulation results for unequal variances
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Figure 1. 
Relative efficiency of θ̂P to θ̂S for β̂1 across the sampling fraction of the supplemental 

samples (n1/n + n2/n), under the bivariate model with n = 200 (Multivariate-ODS), α1 = 0.5, 

β1 = −0.5, α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.5, and X1 = X2 ~ N(0, 1); U = 90% and 

L = 10%.
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