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Abstract

A common objective of biomedical cohort studies is assessing the effect of a time-varying 

treatment or exposure on a survival time. In the presence of time-varying confounders, marginal 

structural models fit using inverse probability weighting can be employed to obtain a consistent 

and asymptotically normal estimator of the causal effect of a time-varying treatment. This article 

considers estimation of parameters in the semiparametric marginal structural Cox model (MSCM) 

from a case-cohort study. Case-cohort sampling entails assembling covariate histories only for 

cases and a random subcohort, which can be cost effective, particularly in large cohort studies with 

low outcome rates. Following Cole et al. (2012), we consider estimating the causal hazard ratio 

from a MSCM by maximizing a weighted-pseudo-partial-likelihood. The estimator is shown to be 

consistent and asymptotically normal under certain regularity conditions. Finite sample 

performance of the proposed estimator is evaluated in a simulation study. In the corresponding 

supplementary document, computation of the estimator using standard survival analysis software 

is presented.
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1. Introduction

Biomedical cohort studies are often conducted with the goal of assessing the effect of a 

time-varying treatment (or exposure) on a survival time. In such studies there may exist 

time-dependent covariates which are simultaneously (i) confounders and (ii) affected by 

prior treatment. In the presence of time-varying confounders affected by prior treatment, 

standard methods such as Cox regression modeling with time-varying covariates do not in 
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general yield consistent estimators of the causal effect of treatment (Robins (1986, 1998); 

Robins and Rotnitzky (1992); Hernán, Brumback, and Robins (2001)). On the other hand, 

marginal structural models (MSM) fit using inverse probability weighting can be employed 

to obtain consistent estimators of the causal effect of a time-varying treatment on an 

outcome of interest, even if there are time-varying confounders affected by prior treatment 

(Robins (1999); Hernán, Brumback, and Robins (2001)).

Recently, Cole et al. (2012) considered fitting MSCMs via inverse probability weighting in 

the presence of case-cohort sampling. The case-cohort study design is a cost-efficient 

approach to estimate treatment effects in large cohorts with low event rates when treatment 

or covariate information is expensive. The design entails randomly selecting a subcohort 

from the entire cohort. Covariate information is then collected only from the random 

subcohort and from individuals that are observed to experience an event (i.e., cases), saving 

cost and effort relative to obtaining covariate information from the full cohort. In addition to 

being cost efficient, the case-cohort design enjoys other benefits. For instance, the subcohort 

can serve as a basis for real-time covariate monitoring during the course of the study. Also, 

because the subcohort is chosen randomly, survival times to different diseases can be 

analyzed using the same subcohort (Self and Prentice (1988)).

In the presence of case-cohort sampling, Cole et al. (2012) considered estimating the causal 

hazard ratio of a MSCM via inverse probability weighting. Simulation studies indicated that 

their estimator could perform well empirically, but no formal justification for their estimator 

has been developed to date. Following Cole et al. (2012), we consider estimating the causal 

hazard ratio of a MSCM via inverse probability weighting in case-cohort studies and 

establish consistency and asymptotic normality for the estimator that maximizes a weighted-

pseudopartial- likelihood (WPPL) under certain regularity conditions.

The approach utilized in this paper entails standard counting process and martingale theory. 

This formulation readily enables practical implementation of the methods using existing 

survival analysis software. Framing the problem using counting processes may also be 

helpful in future work, e.g., in fitting MSCMs to data from nested case-control studies or in 

the presence of competing risks. In the special situation that the subcohort is the full cohort, 

the proposed inverse probability weighted estimator is asymptotically equivalent to the 

estimator in Robins (1999). In this case our proof gives an alternative consistency and 

normality proof to the one in Robins (1999) that does not utilize the usual counting process 

framework. We also derive a new variance estimator that arises from the counting process 

formulation under both full and case-cohort settings. Empirical results presented here 

indicate that, in certain scenarios, the proposed variance estimator may be preferred to the 

so-called “robust” variance estimator (Lin and Ying (1993)) employed in Cole et al. (2012).

The outline of the remainder of this paper is as follows. In Section 2, estimators of the 

hazard ratio of a MSCM in the presence of case-cohort sampling are introduced, including 

the estimator proposed by Cole et al. (2012). Consistency and asymptotic normality results 

are presented in Section 3 and a simulation study is in Section 4. Some additional 

considerations are in Section 5. Regularity conditions and discussion of the conditions are 

deferred to the Appendix. The supplementary document accompanying this paper includes 
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detailed proofs for Theorems 3.1 – 3.6, a description of how a MCSM can easily be fit via 

inverse probability weighting for either the full cohort or case-cohort setting using standard 

survival analysis software, such as R or SAS, additional simulation study results including 

performance of the baseline cumulative hazard estimator, and a summary of notation.

2. Marginal Structural Cox Model Estimators

2.1. Notation, Assumptions, and Model

Consider an observational cohort study where the outcome of interest is a survival time T, 

based on the time from study entry until some particular outcome occurs. We assume T is 

continuous so that there are no tied failure times. During the study, individuals may dropout 

or discontinue participation so that T is right censored. Individuals may or may not elect to 

receive treatment at various points of time during the study; let Ai(t) indicate whether 

subject i is on treatment at time t. If more than one treatment is available, Ai(t) is a vector of 

treatment indicator variables corresponding to the treatment levels. We assume Ai(t) is a p×1 

vector and treatment variation is irrelevant (VanderWeele (2009)): for fixed values of Ai(t), 
additional variation in the treatment (e.g., dose, timing) does not affect the potential 

outcome. The subscript i is often suppressed when there is no ambiguity, as we assume 

random vectors are drawn independently from a distribution common to all subjects. Let L(t) 
denote a vector of covariates at time t and L(0) represent baseline covariates. Overbars are 

used to represent history up to and including time t, with Ā(t) = {A(u) : 0 ≤ u ≤ t} and L̄(t) 
defined analogously. Assume decisions related to treatment at t are made after obtaining the 

covariate information at t, so L(t) is temporally prior to A(t). For a case-cohort study, the 

time varying covariates L(t) and treatment A(t) are by design observed only for the cases and 

individuals in the random subcohort (while under study); L(t) and A(t) are missing for all 

other individuals. Corresponding to the subcohort, let 𝒞̃ denote the set of indices of size ñ ≤ 

n that are randomly selected without replacement from the set {1, …, n} corresponding to 

the entire cohort.

Let ā denote a possible (static) treatment plan, ā= {a(t) : 0 ≤ t ≤ τ}, where τ is the study 

duration. Assume τ = 1 without loss of generality. Each possible value of ā can be 

interpreted as a prespecified treatment plan. Given a single treatment, examples of ā are 

never treat (a(t) = 0 for all t ∈ [0, 1]), treat starting at a prespecified time t1 < 1 (a(t) = I{t ≥ 

t1} where I{·} is the usual indicator function), treat from baseline (a(t) = 1 for all t ∈ [0, 1]). 

Let Tā be a subject’s potential failure time had (possibly contrary to what was observed in 

the actual study) the subject been treated according to ā. Let ⫫ denote statistical 

independence. Assume

(2.1)

(2.2)

(2.3)
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These are referred to as the causal consistency, conditional exchangeability, and positivity 
assumptions, respectively. Assumption (2.1) states that, in the absence of censoring, the 

observed failure time T equals the potential failure time Tā for all treatment plans ā 
compatible with the observed treatment up to time T. Assumption (2.2) ensures no 

unmeasured confounding. Assumption (2.3) states that the conditional probability of 

receiving any particular treatment is greater than zero. Of the three, only (2.3) can be tested 

empirically. Sensitivity analysis may be useful in assessing the robustness of inference 

drawn to violations of (2.2) (Robins, Rotnitzky, and Scharfstein (1999)).

Consider the MSCM

where λTā (t) is the hazard of failure at time t if all individuals in the population had 

followed treatment plan ā through time t, λ0(t) is an unspecified baseline hazard function 

corresponding to the hazard if all individuals had been untreated through time t, f(ā(t)) is a 

specified function of treatment history up to time t, and β0 is an unknown parameter vector. 

Hereafter, we consider the MSCM

(2.4)

where, for notational convenience, we let r{·} = exp{·}. For example, if we are interested in 

the causal effect of current AZT treatment on mortality of HIV-positive homosexual men, 

then r(β0) is the ratio of the hazard of death at time t had all subjects in the population alive 

at time t been exposed to AZT compared to being unexposed at time t. Here (2.4) focuses on 

the effect of current treatment status only; however, the results presented below are valid for 

any specified f(ā(t)).

We employ the counting process framework to study the large sample behavior of estimators 

of β0. All processes discussed hereafter refer to observed processes. Let (Ω, ℱ, ℘) be a 

complete probability space and let {ℱt : t ∈ [0, 1]} be an increasing right-continuous family 

of sub σ-algebras of ℱ consisting of failure times, covariates, and treatment histories up to 

time t, and censoring histories up to time t+ for all subjects in a cohort of size n. Thus the 

filtration with respect to the probability space is the same as usual, except that treatment 

histories are now listed separately from covariate histories. Let Ni(·) be a counting process 

adapted to ℱt representing the number of failures of subject i by time t so that dNi(t) 
indicates the number of events of subject i that occurred in [t, t + dt) for sufficiently small dt. 
Because failures are assumed to occur in continuous time, we only allow jumps of size 1 and 

no simultaneous jumps can occur in [t, t+dt). Let Ci(t) = 0 indicate that subject i remained 

uncensored prior to time t and Ci(t) = 1 otherwise. The treatment process Ai(·) and the 

censoring process Ci(·) are assumed to be piece-wise constant point processes with cadlag 

(right-continuous with left-hand limits) step-function sample paths. The processes A(·) and 

C(·) are assumed to have jumps that can occur at no more than a finite number of time 

points. Informally, all participants follow (approximately) the same visit schedule. This 
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assumption should be reasonable in studies with regularly scheduled follow-up visits (e.g., 

every six months) and good study compliance. We refer to censoring as ignorable (or 

noninformative) if the cause-specific hazard of being censored at t among subjects alive and 

uncensored does not depend on the failure times Tā given prior treatment/covariate history 

Ā(t−) and L̄(t−) (Hernán, Brumback, and Robins (2001)). Let Yi(t) = I{Ni(t) = Ci(t) = 0} 

denote whether an individual is at-risk of being observed to fail at time t, having left-

continuous sample paths, and assume pr[Y (1) > 0] > 0.

2.2 Inverse Probability Weights

If we can correctly model the probability of receiving treatment at time t given the past 

treatment history and covariate history, then we can consistently estimate the weights

(2.5)

These are referred to as stabilized inverse-probability-of-treatment-weights (IPTWs). If the 

numerator probabilities in (2.5) were replaced with 1, then the weights are referred to as 

unstabilized IPTWs. We can consistently estimate the numerator probabilities in (2.5) based 

on sample proportions because A(·) is assumed to have at most a finite number of jumps 

over the study period. Under (2.2) to (2.3), in the absence of censoring, Robins (1999) 

showed that a consistent estimator of the unknown parameter β0 in (2.4) can be obtained by 

fitting an ordinary time-dependent Cox model with the contribution of subject i to the risk 

set at time t weighted by estimates of (2.5). Informally we can think of the analysis via 

IPTWs as reweighting the observed data set such that it has the same properties as a random 

sample, with respect to the measured confounders L, from a population where L̄(t) ⫫ A(t)|
Ā(t−) holds at time t. The weighted study population is sometimes called a pseudo-
population.

Dropout may introduce selection bias if it is associated with exposure and the outcome. In 

the presence of such censoring, we can still obtain a consistent estimator of β0 by fitting the 

ordinary Cox model, but weighting a subject alive and uncensored at time t by estimates of 

WT(t) × WC(t), where

(2.6)

This is under the assumption of no unmeasured confounders for censoring, an analogous 

assumption to (2.3) for censoring, and assuming that we can correctly model the 

denominator probabilities in (2.6) (Robins (1999)). Here the weighted study population can 

be thought of as a pseudo-population in which there is no confounding due to measured 

covariates or selection bias due to censoring. In Section 2.3, we make use of the stabilized 

weights defined by W(t) ≡ WT (t) × WC(t) after modifying (2.5) by adding C(k) = 0 to the 

conditioning events in both the numerator and the denominator (Hernán et al. (2000)). 

Hereafter W(t) is referred to as inverse-probability-weights (IPWs). Here (2.5) and (2.6) are 
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finite products and (2.3) ensures non-zero probabilities in their denominators; hence the 

IPWs are bounded at all t. Our results are not limited to a specific form of the weights W(t). 
The proposed methods are applicable to different inverse probability weighting analysis 

provided that the IPWs (or IPTWs in the absence of censoring) are bounded, such as when 

truncated (Cole and Hernán (2008)) and normalized (Xiao, Abrahamowicz, and Moodie 

(2010)) weights are employed. Under the assumption of finite support of the treatment and 

censoring processes, unstabilized weights (where the numerators probabilities of both (2.5) 

and (2.6) are replaced with 1) are also bounded, but are highly variable and monotone 

increasing functions of t. Other weights such as stabilized, truncated, and normalized 

weights are generally recommended in practice as they lead to more efficient estimators of 

the causal treatment effect.

We now briefly describe estimation of the random weights W(t), denoted by Ŵ(t). One can 

specify a pooled logistic model (treating each person-visit as an observation) to estimate the 

probability in the denominators of (2.5) and (2.6) at each time (for example, at each visit), 

then plug in the estimated probabilities (Hernán et al. (2000, 2001)). In the presence of case-

cohort sampling, the same model can be used to obtain Ŵ(t) after weighting subcohort 

controls by the inverse probability of subcohort selection. Example SAS code to obtain Ŵ(t) 
using case-cohort data is provided in Section 2 of the supplement. We assume throughout 

that the models to estimate denominator probabilities in the IPWs are correctly specified. In 

practice, investigators may wish to explore the sensitivity of treatment effect estimates to 

different model specifications for estimating the weights.

2.3 Weighted-Pseudo-Partial-Likelihood

We consider two weighted-pseudo-partial-likelihoods (WPPL) that form the basis for 

obtaining consistent estimators of β0 in the presence of case-cohort sampling. They are 

formed by weighting individual contributions to the usual partial likelihoods by Wi(t) 
assuming that Wi(t) is known.

The log-WPPL created by individual-time-specific weights at time t under the full cohort 

setting is given by

(2.7)

it is motivated by the weighted estimating equations proposed by Robins (1993). The log-

WPPL in the case-cohort setting is

(2.8)

This is slightly different from the log-WPPL proposed by Cole et al. (2012),
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(2.9)

Here (2.8) and (2.9) differ only in whether a case outside the subcohort 𝒞̃ contributes to the 

risk set. If Wi(u) = 1 for all i and u, (2.8) reduces to the log-likelihood considered by Self 

and Prentice (1988) and (2.9) reduces to the log-likelihood considered by Prentice (1986).

Let β̂, β̃, and β* be solutions to ∂l(β, 1; Ŵ)/∂β= 0, ∂l̃(β, 1; Ŵ)/∂β = 0, and ∂l*(β, 1; Ŵ)/∂β = 0, 

respectively. Based on arguments as in Andersen and Gill (1982), in Theorems 3.1 - 3.2 we 

show β̂ and β̃ are consistent estimators of β0. That β*↦p β0 can be shown analogously. 

Asymptotic normality of β̂ and β̃ will be shown via asymptotic normality of score statistics 

corresponding to (2.7) and (2.8).

To make use of counting process and martingale theory, under (2.1) each (observed) 

counting process Ni(·)(i = 1, …, n) can be uniquely decomposed into the sum of its intensity 

process λi and a local square integrable martingale Mi,

(2.10)

where the intensity process is given by

(2.11)

which embodies the same parameters as in (2.4).

3. Asymptotic Properties

In this section, we present the main results: consistency and asymptotic normality of the 

estimators β̂, β̃, and β*. Sufficient conditions for these results are stated in the Appendix, 

followed by discussion of the conditions. Proofs of the theorems are given in S1 of the 

supplementary document.

Theorem 3.1—(Consistency of β̂ under full cohort) Under conditions A–F, β̂ ↦p β0.

Theorem 3.2—(Consistency of β̃ under the case-cohort) Under conditions A–G, β ̃↦p β0.

It is straightforward to show that the estimator based on (2.9) converges in probability to the 

same limit as β̃. An individual case’s contribution to C̃ at its failure time (which is weighted 

by its IPWs) is asymptotically negligible in the sense that IPWs are bounded at all times and 

weighted subcohort averages are asymptotically stable (see conditions B and G-3 in the 

Appendix).

Theorem 3.3—Under conditions A–G, β̃ − β* ↦p 0.
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We need some additional notation. Let c⊗0 = 1, c⊗1 = c, c⊗2 = cc′, and ci denote the i-th 

element of c for a p × 1 column vector c. Let r(j){β′A(t)} = A(t)⊗jr{β′A(t)}, j = 0, 1, 2. Full 

cohort averages are defined by  for j = 0, 1, 2, as 

given in Andersen and Gill (1982) with covariates Zi(t) being replaced by the treatment 

process Ai(t). Similarly, subcohort averages are defined by S̃(j)(β,t) = n−1Σi∈𝒞̃Yi(t)r(j){β

′Ai(t)}. Limits of S(j)(β, t) and S̃(j)(β, t) are given by s(j)(β, t), formally defined in the 

Appendix. Analogously, let weighted full cohort averages be 

 and weighted subcohort averages be 

 for j = 0, 1, 2 and k = 1, 2, with limits 

. Let E = S(1)/S(0) and Ẽ = S̃(1)/S̃(0) with limit e = s(1)/s(0), and let 

 and  with limits eW((k)). Lastly, let v = s(2)/s(0) − e⊗2 

and , and let  and 

.

Theorem 3.4—(Asymptotic normality of the full cohort MSCM score statistic)

Let U(β0, t) = ∂l(β, t)/∂β|β=β0 be the full cohort MSCM score process at time t. Under 
conditions A–F,

where ΣU = ΣW(2) + ΔW(1),W(2) and

Theorem 3.4 can be used to show asymptotic normality of the MSCM case-cohort score 

statistic:

Theorem 3.5—(Asymptotic normality of the case-cohort MSCM score statistic)

Let Ũ(β0, t) = ∂l̃(β, t)/∂β|β=β0 be the case-cohort MSCM Score process at time t. Under 
conditions A–G,

where ΣŨ = ΣU + Δα,
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with q(j)(β, ·, ·) defined in condition G-2 in the Appendix.

Theorem 3.6—(Asymptotic normality of β̃) Under conditions A-G,

where ΣŨ is given in Theorem 3.5.

Based on Theorem 3.6, we propose a new variance estimator

(3.1)

where

(3.2)

(3.3)

(3.4)

(3.5)

Here Ẽ{W(2)=Ŵ2} and Ẽ{W(1)=Ŵ} denote that the IPWs in ẼW(2) and ẼW(1) are replaced by 

Ŵ2 or Ŵ, N̄Ŵ(t) is defined by Σi Ŵi(t)Ni(t), and Ĝ(·, ·, ·) is G(·, ·, ·) in Theorem 3.5 with 

q(j)(β0, ·, ·) and  in h(j)(β0, ·, ·) replaced by Q̃(j)(β̃, ·, ·) (defined in condition G-2 in 

the Appendix) and  along with eW(1) (β0, ·) replaced by ẼW(1) (β
̃, ·). Estimators 

(3.2), (3.3), and (3.4) are consistent estimators of ΣW(1), ΣW(2), and ΔW(1),W(2) in view of 
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condition A and the fact that supβ,t |n−1{ℐ(β, t) − ℐ̃(β, t)}| →p 0 where ℐ(β, t) = −∂2l(β, t)/∂β2 

(see S1–2 of the supplementary document). Estimator (3.5) is a consistent estimator of Δα in 

view of conditions A, G-1(ii), that n−1N̄Ŵ(t) uniformly converges to , 

and that n−1N̄Ŵ (1) is bounded in probability.

The proposed variance estimator (3.1) is different from the robust estimator proposed by Lin 

and Ying (LY, Lin and Ying (1993)) that is used in most MSM analyses. Both (3.1) and the 

LY estimator are sandwich-type estimators where the “bread” of sandwich ( ) is the 

same. However, the “meat” is different. In particular, the “meat” of the LY estimator is based 

on (weighted) score residuals whereas the “meat” of (3.1) is given by an estimator of ΣŨ + 

Δα. Simulation results reported in §4 (and S2-2 in the supplement document) indicate that 

(3.1) can be more accurate when the size of subcohort is small.

4. Simulation

A simulation study was conducted to examine the finite sample bias of β̃ and β*, and the 

performance of the proposed variance estimator (3.1) as well as the LY variance estimator. 

Simulations were conducted as in Cole et al. (2012). Briey, potential survival times were 

generated according to the MSCM given in (2.4), and observed survival times were 

generated by stochastically generating time varying exposures and confounders for cohorts 

of size n = 1, 000 (see Cole et al. (2012) for details). While they considered only one 

scenario in which 25% of individuals were cases and a 20% subcohort fraction, ñn−1 × 100 = 

20, we considered 36 scenarios by varying both the subcohort fraction and the event rate 

from 5 to 30%. Censoring times were generated from uniform distributions with support 

chosen to achieve the desired event rate. We did not incorporate (2.6) when calculating IPWs 

because the censoring times were generated independently of the exposure and potential 

survival times. Following Cole et al. (2012), stabilized weights were used to calculate IPWs. 

For each scenario 5,000 data sets were generated under the null β0 = 0 and the alternative β0 

= log(1/2).

Results from the simulation study are summarized in Table 4.1. Only results obtained from 

six scenarios under the null are presented; results from other scenarios and under the 

alternative were similar (see S2 of the supplementary document for results under the 

alternative). For all scenarios, under both the null and alternative, β̃ and β* were nearly 

unbiased; that the two estimators performed similarly is not surprising in light of Theorem 

3.3. Under the null, the proposed variance estimator was always less biased than the LY 

variance estimator when the subcohort fraction was only 5%, regardless of the event rate. 

Similarly, (3.1) was less biased regardless of the subcohort fraction when the event rate was 

5%. Both the proposed and the LY variance estimators were approximately unbiased when 

the subcohort fraction and event rate were both at least 20%. Wald confidence intervals (CIs) 

using the LY variance estimator tended to undercover when the subcohort fraction was 5%, 

whereas Wald CIs using (3.1) exhibited coverage close to the nominal level for all scenarios 

considered. In summary, both β̃ and β*, along with the proposed variance estimator and CIs, 
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exhibited good finite sample properties for the scenarios considered, while performance of 

the LY variance estimator depended on subcohort size and event rate.

5. Additional Considerations

5.1. Baseline Cumulative Hazard Estimation

In addition to the treatment effect β, it may be of interest to estimate the cumulative baseline 

hazard function. Similar to the cumulative baseline hazard estimator proposed in Self and 

Prentice (1988), a consistent estimator of  with case-cohort sampling is

(5.1)

This estimator is equivalent to Self and Prentice’s estimator when Ŵi(t) = 1 for all i and t. A 

consistent estimator of the cumulative baseline hazard can also obtained by using β* instead 

of β̃ in (5.1). In the supplement (5.1) is shown to be consistent under conditions A–G and its 

performance is examined in a simulation study; see S1 and S2 of the supplement.

5.2. Limitations and Future Directions

While Cole et al. (2012) extensively discussed limitations of the MSCM with case-cohort 

sampling, we reiterate some of the issues that are important from a theoretical point of view. 

First, the asymptotic results presented here correct model specification for both the treatment 

assignment model (2.5) and the censoring model (2.6). If (2.2) holds, flexible parametric 

regression models fit adjusting for all measured confounders and their histories should 

provide a good approximation to denominator probabilities in (2.5) and (2.6). However, (2.2) 

is an untestable assumption and thus in practice analysts may want to explore sensitivity of 

treatment effect estimates to departures from this assumption.

Second, the proposed MSCM estimators for the case-cohort study, which are based on 

Prentice (1986) and Self and Prentice (1988) type estimators, are not expected to be fully 

efficient. After Prentice (1986) and Self and Prentice (1988), various methods have been 

proposed as means of improving the efficiency of the hazard ratio estimator in the standard 

case-cohort Cox regression analysis. Those methods seek to improve efficiency mostly by 

using weighted partial-likelihood estimation. For example, Barlow (1994), Barlow et al. 

(1999), Kong, Cai, and Sen (2006), and Kong and Cai (2009) utilize fixed and time-varying 

inverse-probability-sampling weights to account for subcohort sampling to improve 

efficiency. Borgan et al. (2000), Kulich and Lin (2004), and Breslow et al. (2009a, b) 

consider leveraging phase 1 covariates (available from the entire cohort) to improve 

efficiency. These methods could potentially be extended to develop more efficient MSCM 

estimators in the presence of case-cohort sampling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Regularity conditions

In what follows, norms are defined by ||c⊗2|| = supi,j |cicj|, ||c|| = supi |ci|, and 

.

A (Uniform consistency of estimated weights)

B (Stability of weights) Individual time-specific weights Wi(t) and the 

corresponding estimators Ŵi(t) are strictly positive and bounded, with positive 

real numbers M1 and M2 such that

C (Finite interval) .

D (Asymptotic stability)

i. There exists a neighborhood ℬ0 of β0 and functions s(0), s(1), and s(2) 

defined on ℬ0 × [0, 1] such that
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ii.
There exists a neighborhood ℬ of β0, ℬ ⊆ ℬ0, and functions 

defined on ℬ × [0, 1] such that

iii.
 uniformly in t ∈ [0, 1], for 

some σ2(t).

E (Lindeberg condition) For any ε > 0, j = 1, …, p

F
(Asymptotic regularity conditions) s(j)(β, t) and  are continuous 

functions of β ∈ ℬ uniformly in t ∈ [0, 1] that are bounded on ℬ × [0, 1] for j = 

0, 1, 2 and k = 1, 2. For all (β, t) ∈ ℬ × [0, 1] and m = 0, 1,

Here s(0) and  are bounded away from zero and the matrices Σ and ΣW(k) 
are positive definite.

G-1 (Stability of subcohort average)

i. (Nontrivial subcohort) ñn−1 →p α for some α ∈ (0, 1].

ii. (Asymptotic normality of subcohort averages at β0) For any ε > 0

and the sequences of distributions of n1/2{Ẽ(β0, t) − E(β0, t)} are tight on 

the product space of cadlag functions equipped with the product 

Skorohod topology, and so are n1/2{ẼW(1) (β0, t) − EW(1) (β0, t)}.
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G-2 (Asymptotic stability and regularity of covariance function) There exists a 

neighborhood ℬ of β0 and functions q(j)(β, t, u) for j = 0, 1, 2, defined on ℬ × 

[0, 1]2 such that q(j)(β, t, u) are continuous functions of β ∈ ℬ uniformly in (t, u) 

∈ [0, 1]2, the q(j) are bounded on ℬ × [0, 1]2 and

Moreover, supn≥1 ℰ[Q(j)(β, t, u)] for j = 0, 1, 2 are bounded sequences where ℰ 

denote expectation.

G-3 (Asymptotic stability of subcohort averages) If Q̃(j)(β, t, u) are covariance 

functions based on subcohort members i = 1, …, ñ, then

the subcohort average converges to the limit of the full cohort in probability 

uniformly in β ∈ ℬ and t ∈ [0, 1], and

the subcohort covariance functions converge in probability uniformly in β ∈ ℬ 

and t ∈ [0, 1] to the full cohort covariance functions. In addition,

for some σ̃2(t).

All conditions except A and B are extensions of the regularity conditions from Self and 

Prentice (1988) by incorporating IPWs. Conditions A and B are required for IPWs to ensure 

asymptotic properties of the proposed estimators.
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Condition A

Ŵ(·) and W(·) are assumed to be predictable with respect to the filtration ℱt because weights 

are determined by predictable processes: A(·), L(·), and their histories. Then along with the 

assumption of no misspecification of the model used to estimate denominator probabilities 

in W(·), the finite number of jumps assumption on the treatment and censoring processes are 

sufficient for this condition to hold. From a practical point of view, having a finite number of 

time points when treatment status can change or when censoring might occur may be 

reasonable to assume. For instance, studies often have planned visits at finite discrete 

intervals when a patient can have treatment altered. Similarly, the censoring time for a 

subject is often assumed to be the last observed visit time before the subject became lost-to-

follow-up.

Condition B

All weights discussed in Section 2.2 satisfy conditions A and B in general, except the 

unstabilized weights. Unstabilized weights satisfy conditions A and B only when the 

assumption of finite support of A(·) and C(·) is met. The IPWs are strictly positive by (2.3).

Conditions C and D

Condition C is the same as in Self and Prentice (1988). When the IPWs are equal to 1, 

in D is S(j) in Self and Prentice (1988) for all j = 0, 1, 2 and k = 1, 2. Then ΣW(k) defined in 

Section 3 and Δα defined in Theorem 3.5 are Σ and Δ defined in Self and Prentice (1988), 

respectively. Hence, ΣŨ in Theorem 3.5 is Σ + Δ, the asymptotic covariance matrix of the 

case-cohort score statistic in Self and Prentice (1988), in the absence of IPWs.

Condition E

If the treatment process A(·) is bounded (as assumed here) and B and F are satisfied, then E 

holds trivially.

Condition F

eW(k) can be interpreted as the weighted average of a treatment function with the weights 

taking an inverse-probability weighted exponential form. The positive definite condition on 

Σ in Andersen and Gill (1982) can easily be extended to the ΣW(k) assuming W(t) are 

bounded away from zero on t ∈ [0, 1].

Condition G

This is the same as condition G in Self and Prentice (1988), incorporating individual-specific 

time-varying weights Wi(t)(i = 1, …, n). Conditions A–F are sufficient to prove consistency 

and asymptotic normality of β̂. To show asymptotic properties of β̃ and β*, this additional 

condition is required to ensure asymptotic stability of certain quantities estimated using 

subcohort data.
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