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Abstract

Objectives—Childhood stressors including physical abuse predict adult cancer risk. Prior 

research portrays this finding as indirect through coping behaviors including adult smoking or 

through increased toxic exposures during childhood. Little is known about potential direct causal 

mechanisms between early-life stressors and adult cancer. Because prenatal conditions can affect 

gene expression by altering DNA methylation with implications for adult health, we hypothesize 

that maternal stress may program methylation of cancer-linked genes during gametogenesis.

Methods—To illustrate, we relate maternal social resources to methylation at the imprinted 

MEG3 differentially methylated regulatory region linked to multiple cancer types. Mothers 

(n=489) in umbilical cord blood of diverse birth cohort (Durham, North Carolina) provided 

newborn’s cord blood and completed a questionnaire.

Results—Newborns of currently-married mothers show lower (−0.321 SD, p<0.05) methylation 

vs. newborns of never-married mothers, who did not differ from those whose mothers are 

cohabiting and others (adjusted for demographics). MEG3 DNA methylation levels are also lower 

when maternal grandmothers co-reside before pregnancy (−0.314 SD, p<0.05). A 1-SD increase in 

prenatal neighborhood disadvantage also predicts higher methylation (−0.137 SD, p<0.05).

Conclusions—Maternal social resources may result in differential methylation of MEG3, which 

demonstrates a potential partial mechanism priming socially disadvantaged newborns for later risk 

of some cancers.
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Introduction

Adverse social conditions during early life are known to associate with increased cancer 

incidence and mortality in adulthood, but the mechanisms are poorly understood. For 

instance, childhood stressors including physical and sexual abuse (Brown et al., 2010; 

Fuller-Thomson & Brennenstuhl, 2009; Goldsmith et al., 2010; Kelly-Irving et al., 2013; 

Morton, Schafer, & Ferraro, 2012), father absence or violence (Sobrinho et al., 2012), and a 

large sibship (Smedby et al., 2007) all predict increased cancer incidence. Excess cancer 

cases among those with adverse childhood experiences have been explained as either due to 

an increased risk of toxic or infectious exposures during childhood (Montgomery, Ehlin, 

Sparen, Bjorksten, & Ekbom, 2002; Sandler, Everson, Wilcox, & Browder, 1985), or to 

carcinogenic health behaviors (Maynard, Gunnell, Emmett, Frankel, & Davey Smith, 2003) 

and emotional coping mechanisms throughout the lifecourse (Boynton-Jarrett, Rich-

Edwards, Jun, Hibert, & Wright, 2011; Clark, Beesley, Holcombe, & Salmon, 2011; 

Williams et al., 2012) resulting from problematic conditions during childhood (Colditz & 

Wei, 2012). However, the link between adverse childhood experiences and adult cancer risk 

can only partly be explained by health and psychosocial behaviors in epidemiological 

models (Brown et al., 2010).

Another possibility is that the prenatal environment has long-lasting physiological effects on 

adult cancer risk, as the fetal origins hypothesis (Barker, 1995) proposes for cardiovascular 

disease risk. The last several years have seen an evolution in understanding of the etiology of 

cancer, of epigenomics more broadly, and more specifically the role of epigenetic 

mechanisms in regulating carcinogenesis (Dawson & Kouzarides, 2012). Still, the role of the 

prenatal social environment highlighted by the fetal origins literature (Barker, 2004) and 

others (Copper, Goldenberg, Das, & al., 1996; Farley et al., 2006; Lobel, Dunkerl-Schetter, 

& Scrimshaw, 1992) has heretofore been underappreciated in cancer epidemiology (e.g. 

(Hiatt & Breen, 2008)). Our view is that the role of epigenetics in guiding both normal and 

abnormal growth provides a mechanism for social differences in toxic exposures which 

influence perinatal epigenetic development to play a role in the social gradient in cancer risk 

in adulthood.

Meaney, Szyf, and colleagues explain the epigenetic mechanism by which stress response is 

transmitted in early care as due to a cascade of effects beginning with the release of 

serotonin in offspring’s’ brains during grooming (Szyf et al., 2007). This is consistent with 

prenatal transmission in humans in at least three ways. First, the relationship between 

maternal social resources and methylation in our study could occur if the newborn largely 

inherited the mother’s epigenome, and the mother’s epigenome influenced the mother’s 

family composition. A good relationship between mother and grandmother during the 

mother’s childhood could lead both to lower methylation through the already proposed 
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mechanism, and also to coresidence with mother (and putting marriage before childbirth) 

later on. Second, given that human gestation is long and ‘bonding’ between mother and child 

begins in utero, the release of serotonin during interaction with the mother (and perhaps 

caresses from father, grandmother, and others) could already have begun during gestation. 

Third, the methylation of MEG3 is not known to be similar to or differ from the mechanism 

described by Meaney and colleagues, except that accrual of additional methylation normally 

occurs on both the paternally- and maternally-derived chromosome post-fertilization. 

Finally, social resources appear to differentially relate to DNA methylation at different 

promoter sites (King et al., 2015), but the reasons why are not yet known.

Family members’ roles in encouraging healthy behaviors such as prenatal vitamin use, 

maintaining a healthy weight, avoiding smoking and other toxic exposures and consuming a 

healthy diet may also be crucial (Sear & Mace, 2008). Husbands contribute to early 

initiation of prenatal care (Albrecht & Miller, 1996; Kimbro, 2008; Redshaw & Henderson, 

2013), and early prenatal care initiation is generally considered to be protective against poor 

perinatal health (Goldenberg, Culhane, Iams, & Romero, 2008). Folate is a key dietary 

source of methyl groups for methylation reactions. Methylation varies by folate levels 

(Haggarty et al., 2013; Hoyo, Murtha, Schildkraut, Forman, et al., 2011), and folic acid 

supplementation varies substantially within a population (Hoyo, Murtha, Schildkraut, Jirtle, 

et al., 2011). Nutrition can also remedy epigenetic irregularities in adulthood, at least in 

mice (Weaver et al., 2005), so the extent to which parental nutrition that favors optimizing 

the epigenome is passed to offspring may be better in families. In a bivariate model, 

maternal folate level predicted MEG3 methylation, but this association was not significant 

when added to the full model (not shown).

However, links between family composition and perinatal health can be complex. For 

instance, unmarried women and those in high-conflict/abusive relationships are at greater 

risk of prenatal smoking (Kimbro, 2008). In turn, smoking during pregnancy partially 

accounts for an effect of never-married status on birth weight (Kane, 2012), supporting the 

notion that social support mechanisms can influence growth of a fetus. Prenatal smoking 

also influences the epigenome (Breton et al., 2009; Joubert et al., 2012; Murphy, Adigun, et 

al., 2012). Meanwhile, obese people are less likely to have a partner (Averett, Corman, & 

Reichman, 2013; Kane & Frisco, 2013; Metwally, Li, & Ledger, 2007), and (both maternal 

and paternal) obesity is associated with altered methylation (Soubry et al., 2013). Stress 

(Hoffmann & Spengler, 2012) and mental health (Galea, Uddin, & Koenen, 2011; A. Soubry 

et al., 2011) also have epigenetic facets which may relate to family conditions.

The epigenome has been prominently endorsed as a key link between neighborhood 

disadvantage and health disparities (Olden, Olden, & Lin, 2015). Neighborhood physical 

and social conditions can causally influence prenatal health, and neighborhoods also serve as 

a powerful proxy for household wealth, household composition, and for selection processes 

which sort mothers and children into other sorts of spatially-variant individual-level health 

risks and resources. The present analysis may be the first to demonstrate epigenetic variation 

by neighborhood.
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In this study, we hypothesize that a potential additional and more proximal pathway between 

prenatal social conditions and adult cancer may involve DNA methylation. Below we 

discuss how perinatal maternal social context may also alter the epigenome in ways which 

may influence cancer risk in adulthood, giving illustrative empirical evidence of such a 

mechanism. Recent research has revealed that childhood adverse social circumstances are 

often accompanied by changes in epigenetic regulation and gene expression (Mehta et al., 

2013). Stress, depression, and social isolation can alter neurochemical balance (Lutgendorf 

et al., 2011), hormone status (Kalantaridou, Makrigiannakis, Zoumakis, & Chrousos, 2004), 

immune response (Salim, Chugh, & Asghar, 2012; Sanna et al., 2013), gene expression 

patterns (Cole et al., 2010; Volden et al., 2013), and cancer aggressiveness (Moreno-Smith, 

Lutgendorf, & Sood, 2010). DNA methylation status of the glucocorticoid receptor gene 

differs in adolescent children by their mother’s experience of intimate partner violence 

during pregnancy (Radtke et al., 2011) and also differs in suicide victims by history of 

childhood abuse (McGowan et al., 2009). Glucocorticoid receptor genes are often 

hypermethylated in breast tumors (Nesset, Perri, & Mueller, 2014). A case-control study of 

abused/neglected children found significantly different methylation at 2868 CpG sites, 

including genes involved in lung, colon, breast, prostate and ovarian cancers (Yang et al., 

2013). Studies in mice show an increased risk of breast cancer in pups separated for 

extended periods from their mothers postnatally (Schuler & Auger, 2010), indicating that 

psychosocial stressors may influence cancer risk during multiple developmental windows.

Some of the strongest evidence for social factors in epigenetic programming relates to 

effects of prenatal stress and early maternal care on stress responses (Champagne & Curley, 

2011; Szyf, Weaver, & Meaney, 2007), documented by numerous animal and human studies, 

in vitro, and for over 900 genes (Weaver, Meaney, & Szyf, 2006). Prenatal stress is 

important here as it is often found to be inversely related to mother’s level of prenatal 

emotional support{Landale, 2001 #6829}. Prenatal stress can also inhibit neurological 

development (McEwen, Eiland, Hunter, & Miller, 2012), specifically related to the HPA axis 

(Kapoor, Dunn, Kostaki, Andrews, & Matthews, 2006; Welberg & Seckl, 2001) and 

hippocampus (Maccari & Morley-Fletcher, 2007), both of which are linked with stress 

responsiveness. Also, male mouse pups prenatally exposed to stress differed in epigenetic 

markers of stress response, specifically methylation of central corticotropin-releasing factor 

and glucocorticoid receptor genes (Mueller & Bale, 2008).

These and similar data now constitute an emerging model where variations in one’s social 

and physical environment may affect health outcomes through changes in the epigenome at 

multiple life stages, changes which likely endure across the lifecourse and may be passed to 

future generations. Maternal smoking (Joubert et al., 2012; Murphy, Adigun, et al., 2012) 

and depression also predict methylation patterns (A Soubry et al., 2011) in numerous regions 

including an association between maternal severe depressed mood and a 2.4% higher 

methylation of MEG3 (the present outcome) (Liu et al., 2012). Another study found 

differential methylation of MEG3 by maternal smoking in utero, but did not adjust for 

predictors of smoking, including stress or social support (Markunas et al., 2014). Depression 

and tobacco smoke exposure are risk factors for cancer (Sandler et al., 1985; Zonderman, 

Costa, & McCrae, 1989). Moreover, there is also a longer history of research linking early 

life family climate and socioeconomic status (SES) with health – through what are deemed 
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to be epigenetic processes – but without identifying specific epigenetic markers (e.g. 

Gregory E. Miller & Chen, 2010; G. E. Miller, Chen, & Parker, 2011). No known prior 

research has linked maternal social resources with epigenetic transmission of risk factors for 

cancer.

While understanding of social-epigenetic links is emerging, genetic instability clearly both 

causes and contributes to the development of cancer, and epigenetics appear to as well. 

Cancer is a process of abnormal cell growth and death, with DNA altered at various genes in 

tumor cells and microenvironments. MEG3 (maternally expressed gene 3) is a genomically 

imprinted gene from which is transcribed a long non-coding RNA (Benetatos, 

Vartholomatos, & Hatzimichael, 2011). MEG3 can activate one of the most well-known 

tumor suppressor genes, p53 (Zhou, Zhang, & Klibanski, 2012; Zhou et al., 2007), and 

lower levels of the p53 inhibitor, MDM2 (Benetatos et al., 2011), as well as regulating 

senescence genes (Gritz & Bhandari, 2015). MEG3 gene expression levels are inversely 

associated with incidence of pituitary adenomas, renal carcinoma, multiple myelomas, 

meningiomas, bladder cancer, and hepatocellular carcinoma (Anwar et al., 2012; Benetatos 

et al., 2008; Benetatos et al., 2011; Kawakami et al., 2006; Ying et al., 2013; Zhang et al., 

2010; Zhou et al., 2012). In many human cancer cell lines, MEG3 RNAs are not detectable 

(Benetatos et al., 2011). In ovarian cancer tissues, loss of MEG3 expression is linked to high 

MEG3 promoter methylation (Sheng et al., 2014). Alteration of the genome in cancer cells 

occurs through multiple mechanisms (loss- and gain-of-function mutations, amplifications, 

deletions, epigenetic deregulation, etc.) Researchers are still learning more about how loss of 

the integrity of epigenetic mechanisms, such as methylation of MEG3, alters the function of 

other tumor suppressor genes.

MEG3 is maternally expressed, meaning that only the maternal allele is actively transcribed. 

Methylation present on the paternally-derived allele contributes to silencing of this gene. 

Theoretically imprinted gene regulatory regions have methylation levels that are close to 

50%, since only one of the parental alleles carries the methylation marks. Since methylation 

averaged 72.3% for MEG3 in umbilical cord blood, and MEG3 methylation is 

approximately normally distributed, the maternally-derived chromosome also carries partial 

methylation in this tissue, suggesting that the increased methylation in umbilical cord blood 

may function to repress MEG3 expression in leukocytes.

This paper proposes a potential additional and direct mechanism between early-life social 

conditions and adult cancer and demonstrates that involves maternal prenatal social stress/

support is associated with MEG3 tumor suppressor DNA methylation. The present analysis 

examines prenatal maternal social (e.g. relationship status and coresidence with her mother) 

and neighborhood sociodemographic resources in relation to methylation of the MEG3 
differentially methylated region in cord blood in a sizeable (n=489) birth cohort in Durham, 

NC. The central contribution of this study is that we assess, for the first time, the role of 

maternal prenatal social resources and neighborhood disadvantage in the epigenetic 

programming of the child related to cancer risk.
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Materials and Methods

Study Design

The Newborn Epigenetic STudy (NEST) recruited pregnant women from six prenatal clinics 

in Durham, North Carolina (Liu et al., 2012; Vidal et al., 2013). Participants were enrolled 

during their first prenatal clinic (mean gestational age ~13 weeks). Questionnaire and 

peripheral blood were collected at enrollment, and offspring and maternal blood specimens 

and parturition data were collected at birth. Eligible expectant mothers were ≥18, literate, 

without known HIV infection, intending to deliver in one of the participating obstetric 

facilities (Duke and Durham Regional Hospitals), and to retain custody of the child locally 

for ≥3 years. NEST Wave II (2009–2011), approached 2548 pregnant women and 67% (n= 

1700) agreed to participate and were consented. Umbilical cord blood was successfully 

collected in 1304. DNA methylation of umbilical cord blood leukocytes was evaluated for 

nine DMRs of imprinted genes in the first 619 newborns early in Wave II, the only wave in 

which household composition was reported. Among remaining mothers, methylation of the 

promoter region of MEG3 was evaluated by bisulfite pyrosequencing of umbilical cord 

blood DNA for 518 newborns, as some data were lost at random due to laboratory 

processing. Home addresses were geocoded, yielding sufficient data for 489 newborns. The 

study protocol was approved by the Duke University Institutional Review Board.

Umbilical cord blood is a readily available fetal tissue and has the advantage of being naïve 

to the external environment; thus any epigenetic alterations that occur are a direct result of 

the context of the in utero environment. Epigenetic marks do vary by cell and tissue type, but 

studies of buccal cells and umbilical cord blood mononuclear and polymorphonuclear cells 

in NEST (Joubert et al., 2012; Murphy, Huang, & Hoyo, 2012) did not detect cell type 

differences in DNA methylation marks in this region.

Variables and Measurement

Maternal relationship status was coded as: never married, currently married (reference 

category), cohabiting with partner, and other (e.g. divorced/separated, widowed, other). 

Coresidence of mother’s mother in household was coded as: present or not present. We 

adjust for individual SES of the mother as it may predict household composition and 

residential disadvantage, and also DNA methylation. Maternal race was categorized as 

Black, Asian, Other, and White (reference category), and ethnicity as Hispanic or non-

Hispanic. At present, it is not clear how ancestral DNA may relate to DNA methylation, and 

we lack DNA methylation markers of race/ethnicity, so we treat race/ethnicity as a social 

measure. Maternal household income was categorized as ranging from less than $25,000; 

$25,000–50,000 (reference category); or more than $50,000. Mother’s years of schooling 

ranged from 1–20. Newborn gender was coded as: female or male. DNA methylation can 

vary by sex even outside sex chromosomes, but the reasons why are not yet fully understood. 

Maternal antibiotic use and smoking periconceptionally or during pregnancy were each 

coded as: yes or no. Maternal pre-pregnancy body mass index was coded as ranging from 

less than 18.49 (underweight), 18.5–24.9 (normal), or over 25 (overweight). Missing data 

was represented by categorical variables.

King et al. Page 6

Biodemography Soc Biol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mothers’ residential addresses were geocoded to match 2010 Census tracts. Adapting a 

respected procedure (King, Morenoff, & House, 2011; Sampson, Raudenbush, & Earls, 

1997), neighborhood disadvantage was assessed as a principal components factor of six 

measures of tract social composition: % non-Hispanic Black, % of families with income 

below the poverty level, % of households on public assistance, % households with an 

unmarried female head, % population under age 18, and % of the civilian labor force over 

age 16 unemployed. Using national data to facilitate comparability with other research, the 

factor analysis included 73,097 Census tracts with non-missing data in the 50 states, the 

District of Columbia, and Puerto Rico. One factor with an eigenvalue of 3.2 (above the 

standard cutoff value of 1) was retained and standardized to the mean. Factor loadings and 

descriptive statistics are given in Supplementary Table 1.

DNA Methylation Analysis

Measurement and analysis of MEG3 methylation was performed as described previously 

(Murphy, Huang, et al., 2012). Briefly, bisulfite pyrosequencing was used to quantitatively 

assay the level of methylation at CpG sites within a differentially methylated region (DMR) 

of the DLK1/MEG3 imprinted domain on chromosome 14q32.2.

Reported values represent the mean methylation for the CpG sites contained within the 

sequence analyzed. Validation of the pyrosequencing assays was performed using 

predetermined mixtures of fully methylated/unmethylated Epitect control genomic DNAs 

(Qiagen) (Murphy, Adigun, et al., 2012).

Statistical Analysis

We reported frequencies and percentages of sociodemographic variables, along with 

summary statistics and analysis of variance (ANOVA) statistics on how MEG3 methylation 

varies by sociodemographic group. We used a multilevel model (Snijders & Bosker, 1999) to 

estimate associations of social circumstances with MEG3 methylation, adjusting for 

clustering of residences within Census tracts.

Results

The sample was diverse in terms of mother’s race and ethnicity, relationship status, and 

education, and coresidence of maternal grandmother (Table 1). Methylation of the MEG3 
promoter region DMR averaged 72.3% and showed significant (p<0.05) unadjusted 

differences in means across maternal race, ethnicity, relationship status and coresidence of 

mother’s mother. Tract mean levels of disadvantage for NEST mothers were 0.55 SD higher 

than for the nation overall.

Table 2 presents the results of a regression model predicting methylation of MEG3. The 

model considers individual-level maternal social circumstances in a hierarchical linear 

(multilevel) framework (the xtmixed command in Stata 13.0 (StataCorp, 2011)) which 

includes neighborhood variables while considering the potential that residents of the same 

tract are more similar than the overall study population. Specifically, we examine how 

neighborhood disadvantage and maternal household composition, as indicators of maternal 

social resources, might relate to MEG3 methylation. The model adjusts for factors 
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previously associated with DNA methylation: maternal race/ethnicity, sex of newborn, 

mother’s years of schooling, maternal household income, pre-pregnancy body mass index, 

and cigarette smoking and use of antibiotics during pregnancy.

Neighborhood disadvantage was associated with significantly higher methylation (β= 0.76 

SD, p<0.01). Newborns with never-married (β= 1.79 SD, p<0.05) and divorced/widowed/

other (β= 2.41 SD, p<0.05) (vs. married) mothers and with coresiding maternal 

grandmothers (β= −1.75 SD, p<0.05) have significantly different MEG3 methylation levels. 

Newborns with Black (β= 1.64 SD, p<0.05) (vs. White) and Hispanic (β= 2.44 SD, p<0.01) 

mothers also had significantly higher methylation levels, as did Asian (vs. White) mothers, 

with marginal significance (β= 2.93, p<0.1). These results are consistent with a pattern of 

lower methylation of MEG3 in socially advantaged mothers (e.g. non-Hispanic White, 

married, living with mother, advantaged neighborhoods). i

Discussion

Understanding how social factors can mold risk of disease will move forward by identifying 

biological intermediaries of a downstream outcome (e.g. “diagnosis”) which are influenced 

by the same social factors as the downstream outcome (G. Miller, Chen, & Cole, 2009). In 

this paper we present evidence relevant to the hypothesis that a potential additional and more 

proximal pathway between prenatal social conditions and adult cancer may involve DNA 

methylation. DNA methylation varies in cancer. We demonstrate that early life social 

conditions can be related to cancer-relevant DNA methylation as early as birth, before the 

child’s own behavior can come into play. These findings lend credence to a role of maternal 

prenatal social resources in the epigenetic programming of the child related to cancer risk.

This is the first known finding of differential methylation in socioeconomically 

disadvantaged neighborhoods, and joins extensive evidence linking neighborhoods with 

health. Indeed, neighborhood SES accumulates over the life course and childhood 

neighborhood SES remains predictive of adult health even after adjustment for extensive 

controls (Clarke et al., 2013). Several studies link neighborhood features, including SES, 

population density, and air pollution, with cancer incidence in adults and children (Borugian, 

Spinelli, Abanto, Xu, & Wilkins, 2011; Ghosh et al., 2013; Meijer, Bloomfield, & Engholm, 

2013; Reynolds et al., 2002; Schootman et al., 2010). Air pollution exposure during 

gestation predicts birth outcomes (Stieb, Chen, Eshoul, & Judek, 2012), perhaps by 

influencing the epigenome (Janssen et al., 2013). Neighborhood SES also predict birth 

outcomes (Buka, Brennan, Rich-Edwards, Raudenbush, & Earls, 2003; Culhane & Elo, 

2005; Messer, Kaufman, Dole, Savitz, & Laraia, 2006; Reichman, Teitler, & Hamilton, 

2009; Schempf, Kaufman, Messer, & Mendola, 2011), likely both as an additional indicator 

iAs a check to explore if household composition is confounded by unobserved factors, in supplementary analyses (Supplementary 
Table 2) using two-stage least squares regression we verified that selection into household composition by sociodemographics can 
explain the household composition results (i.e. we are not suggesting single motherhood causes cancer in offspring.) Maternal 
relationship status per se is likely not causally related to DNA methylation, but rather mothers and romantic partners likely tend to 
offer social support to the mother. To assess the potential for causality, a supplementary two-stage least squares model in which an 
overlapping set of covariates was used to predict aspects of household composition, and residuals from these models were used to 
replace household composition in the analytic model. Results from that model show no remaining associations between MEG3 DMR 
methylation and household composition, and thus do not support a causal interpretation.
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of wealth, and also because of risks, resources, and norms which assort by neighborhood and 

influence fetal development. Given “remarkable continuity in neighborhood economic status 

from one generation to the next” (Sharkey, 2008), how neighborhood resources/risks may 

influence epigenetic programming in early life deserves additional attention.

We interpret race/ethnic differences as likely social in origin rather than linked to genetic 

ancestry, although we do not adjust for genetic population structure. A prior analysis of 

NEST data (King, Murphy, & Hoyo, 2015) found that race/ethnic differences in MEG3 
DMR methylation lost significance after adjustment for maternal education, household 

income, and paternal race/ethnicity, but in the present framework adjusting for father’s race/

ethnicity did not affect the pattern of results; father’s race/ethnicity was not significant, even 

when mother’s race/ethnicity was removed from the model (not shown). Some other studies 

have found differences between populations in epigenome-wide DNA methylation (e.g. 

(Fraser, Lam, Neumann, & Kobor, 2012)), but these studies have not always considered the 

very different physical and social contexts these populations live in and how the environment 

may influence the epigenome. Evidence of group differences is not enough, as both parents 

and grandparents may have experienced differential toxic and social exposures by social 

group. In addition, there should be limited heritability of DNA methylation between mothers 

and offspring given the complete erasure and re-establishment of DNA methylation (Kile et 

al., 2010; McRae et al., 2014) marks in the gametes and early embryo. Thus, additional 

evidence is needed in evaluating ancestry-linked epigenetic differences between “race” 

groups, including specific genes or gene variants that influence methylation. Any ancestry-

linked epigenetic differences may not follow the race/ethnic lines as socially constructed in 

the United States. In addition, these racial lines are blurred in our cohort in that 25% of our 

newborns and 7% of our mothers have parents for whom different race groups were reported 

or for whom father’s race/ethnicity was left blank. Furthermore, White mothers in our 

sample lived in neighborhoods which averaged .28SD above the national overall mean social 

disadvantage, while Black mothers’ neighborhoods averaged .95SD above the overall 

national mean.

This is a noteworthy model of special concern to etiologic investigation and subsequent 

public health policy, but there is also reason for caution. Although DNA methylation at the 

DLK1/MEG3 imprinted domain has been linked to both changes in allele-specific gene 

expression and hepatocellular carcinoma, it is a single region and unlikely, by itself to 

causally alter cancer risk. This study did not directly link cancer outcomes with either 

prenatal social circumstances or MEG3 methylation, and we do not claim that MEG3 
methylation is a central cancer concern. Rather, we chose MEG3 as one of a few maternally 

expressed genes whose expression and methylation status have been linked with cancer and 

which have been evaluated by pyrosequencing with social variables available in a sizeable 

diverse geographically-clustered sample. While a growing body of prior research links early 

life social circumstances with epigenetic programming of stress responses (Gudsnuk & 

Champagne, 2012; Heijmans et al., 2008; Isles, Davies, & Wilkinson, 2006; Kaati, Bygren, 

Pembrey, & Sjostrom, 2007; McGowan & Szyf, 2010), this is the first study we know of 

which links prenatal social circumstances and epigenetic programming of cancer risk, and 

both replication and further theoretical elaboration are needed.
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In addition, the finding that household structure may predict epigenetics should not 

necessarily be interpreted causally. While father presence can be beneficial (Cunningham, 

Elo, Herbst, & Hosegood, 2010), expectant mothers have likely sought the best possible 

circumstances available to them, and if they have not married the father of their child these 

findings are not an argument that they should do so. There are also social factors, such as 

mother’s race, education, family background (i.e., parental SES, childhood environment, 

family instability), health behaviors, and risk exposures which can simultaneously affect her 

relationship status (and thus indirectly birth outcomes) but also directly affect birth 

outcomes. Studies accounting for this type of confounding have shown that these underlying 

mechanisms account for about half of the association between marital status and birth 

weight, for example (Buckles & Price, 2013; Kane, 2012). We account for some of these 

social resources in our study (race, education), but it is plausible that at least a portion of the 

association we observe between marital status and methylation reflects the effect of earlier 

life social resources on methylation, such as family background. Also, given the sample and 

association sizes, the specific findings need confirmation in other datasets. We believe no 

suitable replication dataset exists at present, so the associations cannot be independently 

confirmed. How DNA methylation relates to maternal social conditions might vary by 

temporal or spatial context, for instance if another difference between the study sites (e.g. 

toxic exposure, folate consumption) altered these associations or if the implications of social 

conditions changed. However, our goal is not to prove a link between maternal social 

conditions and either MEG3 methylation or future cancer risk. Rather, we wanted to draw 

attention to DNA methylation in the relationship between social conditions in utero and later 

life health, and give an example of how conditions in utero can affect a biomarker associated 

with cancer. Future studies that collect an extensive social history of mothers would be better 

able to examine how social relationships relate to children’s DNA methylation. More 

broadly, future research can build on this study by delving into the complexities of the causal 

processes involved, some of which may even involve macro-level processes, or paternal 

epigenetic factors as well as maternal epigenetic factors (Richardson et al., 2014).

Even though we did not link DNA methylation with health outcomes and genetic expression 

in this study, previous research has shown that MEG3 expression can be strongly affected by 

its methylation status and is downregulated in a number of different histological subtypes of 

cancer (Anwar et al., 2012; Benetatos et al., 2008; Benetatos et al., 2011; Ying et al., 2013; 

Zhang et al., 2010; Zhou et al., 2012). It is important to note though, that methylation is not 

the only established mechanism by which MEG3 expression may be regulated (Braconi et 

al., 2011; Zhao, Zhang, Zhou, Ansell, & Klibanski, 2006). This is just one of untold 

pathways to cancer. Still, these findings when taken together with existing literature support 

a model where maternal prenatal social resources potentially cause changes to the epigenetic 

landscape and thus to future health outcomes such as cancer. Further research is needed to 

replicate these findings and establish both causality and the range of genes for which 

perinatal social stressors predict methylation. This would suggest one concrete biological 

mechanism for observed enduring effects of poverty and social disorder in childhood on 

adult health and across generations.

This research takes place at a time when understanding of the role of epigenetic factors in 

disease etiology is still evolving, but links between MEG3 and cancer outcomes are 
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beginning to crystallize. Few studies have measured methylation of the MEG3 DMR, and 

even fewer have included social measures in a sizeable sample. This makes the present study 

unique, but also makes it difficult to seek to replicate or extend at present. Future research 

should consider that mothers often move or change household composition before, during, 

or shortly after pregnancy, so that living conditions are dynamic and evolving. Family 

relationships are complex and relatives tend to offer both support and stress, so that 

measures of relationship quality would also add to the picture.

Despite the noted shortcomings of the present study, these data are consistent with a 

burgeoning literature that could have profound implications in health disparities research. 

Specifically, maternal social support during gestation appears related to DNA methylation of 

MEG3 in a way that opens a line of investigation into how early life conditions influence 

later cancer risk. Such a model would effectively aid in substantiating one mechanism for 

the disturbing observation that social environmental and inequality tends to result in health 

effects that may persist for generations. Therefore, further research into this potentially 

paradigm-shifting model should be an important concern to future sociological and 

epidemiological studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2

Maternal and Neighborhood Predictors of MEG3 Methylation, Hierarchical Linear Model with Neighborhood 

Random Effects

Coef. SE p-value

Neighborhood Disadvantage 0.76 0.24 0.002**

Relationship Status (ref=Married)

 Never Married 1.79 0.84 0.033*

 Cohabiting 0.65 0.75 0.387

 Other 2.41 1.18 0.041*

Mother’s Mother Present −1.75 0.81 0.030*

Covariates

Mother’s Race (ref=White)

 Black 1.64 0.76 0.031*

 Asian 2.93 1.76 0.096+

 Other −0.09 0.97 0.040

Mother is Hispanic 2.44 0.90 0.007**

Mother’s Years of Schooling 0.03 0.09 0.752

Mother’s Household Income (ref=$25–49.9K)

 $0–24.9K 0.82 0.87 0.345

 ≥$50K 1.75 0.92 0.057+

 Missing 1.41 0.99 0.157

Mother Smoked During Pregnancy 0.72 0.73 0.326

Antibiotics Used During Pregnancy 0.15 0.58 0.789

Mother’s Pre-Pregnancy BMI (ref=Normal)

 Underweight −1.69 1.55 0.277

 Overweight −0.56 0.57 0.326

 Missing −0.20 0.83 0.805

Newborn is a Girl 0.87 0.50 0.079+

Constant 68.11 1.85 0.000***

***
p<0.001;

**
p<0.01;

*
p<0.05;

+
p<0.1;

Newborn Epigenetic Study, 2009–2011 (N=489)
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