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THE STRAUSS CONJECTURE ON ASYMPTOTICALLY FLAT

SPACE-TIMES

JASON METCALFE AND CHENGBO WANG

Abstract. By assuming a certain localized energy estimate, we prove the
existence portion of the Strauss conjecture on asymptotically flat manifolds,
possibly exterior to a compact domain, when the spatial dimension is 3 or
4. In particular, this result applies to the 3 and 4-dimensional Schwarzschild
and Kerr (with small angular momentum) black hole backgrounds, long range
asymptotically Euclidean spaces, and small time-dependent asymptotically flat
perturbations of Minkowski space-time. We also permit lower order perturba-
tions of the wave operator. The key estimates are a class of weighted Strichartz
estimates, which are used near infinity where the metrics can be viewed as small
perturbations of the Minkowski metric, and the assumed localized energy es-
timate, which is used in the remaining compact set.

1. Introduction

The purpose of this article is to establish global existence for semilinear wave
equations with small initial data on a wide class of space-times. Given a space-time
(M, g), we shall examine

(1.1)

{

�gu := ∇α∂αu = Fp(u), (t, x) ∈M,

u(0, x) = u0(x), ∂tu(0, x) = u1(x),

for sufficiently nice initial data u0, u1. Here

(1.2)
∑

0≤j≤2

|u|j |∂juFp(u)| . |u|p for |u| ≪ 1,

and typical examples include Fp(u) = ±|u|p and Fp(u) = ±|u|p−1u. In the pro-
cess, we shall also weaken some hypotheses that were made on the data in [25].
We shall consider asymptotically flat space-times that permit a localized energy
estimate. This suffices in a large compact set where the influence of the geometry
is most significant. The flatness then guarantees that we are sufficiently close to
the Minkowski space-time outside this compact set to derive analogs of the esti-
mates that have been previously used, namely weighted Strichartz estimates. This
strategy has become quite common and is found in, e.g., a large number of the
references. See, amongst others, [8], [16], [20], [25], [26], [31, 30], [32], [43, 44].
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Rather than considering (1.1), we shall instead examine

(1.3)

{

Pu = Fp(u), (t, x) ∈M

u(0, x) = u0(x), ∂tu(0, x) = u1(x),

where
Pu = ∂αg

αβ∂βu+ bα∂αu+ cu.

Here we shall be permitted to work with the volume form dV = dx dt. A conjugation
by g−1/4 reduces (1.1) to this case. In the above, the common convention t = x0 is
employed. The Einstein summation convention is used, as well as the convention
that Greek indices α, β, γ range from 0 to n while Latin indices i, j, k will run from
1 to n. We will use µ, ν to denote multi-indices.

Let us begin with the ambient space-time manifolds. We shall setM = R+×Rn

or M = R+ × (Rn\K) where K ⊂ {|x| < R0} for some R0 > 0 and has a smooth
boundary. In the case of a (1 + 3)-dimensional black hole space-time, K will be a
ball of radius R0. The manifold M is equipped with a Lorentzian metric g

g = gαβ(t, x)dx
αdxβ

where gαβ ∈ C3(M) has signature (1, n) and inverse gαβ.
Many of our estimates will rely on a spatial dyadic summation. So before pro-

ceeding, we introduce the notation

‖u‖ℓsqA = ‖φj(x)u(t, x)‖ℓsqA =
∥

∥

∥

(

2js‖φj(x)u(t, x)‖A
)∥

∥

∥

lq
j≥0

,

for a norm A and a partition of unity subordinate to the inhomogeneous dyadic
(spatial) annuli. Thus,

∑

j≥0

φ2j (x) = 1, supp φj ⊂ {〈x〉 ≈ 2j}.

Similarly, we use ℓ̇sq to denote the homogeneous version.
Hypothesis 1: Asymptotic Flatness. We shall assume that (g, b, c) is asymp-

totically flat in the following sense. We first assume that g can be decomposed as

(H1) g = m+ g0(t, r) + g1(t, x)

where m = diag(−1, 1, . . . , 1) denotes the Minkowski metric, g0 is a radial long
range perturbation, and g1 is a short range perturbation. More specifically, we
assume

(H1.1) ‖∂µt,xgi,αβ‖ℓi+|µ|
1 L∞

t,x
= O(1), i = 0, 1, |µ| ≤ 3.

The long range perturbation is radial in the sense that when writing out the metric
g with g1 = 0, in polar coordinates (t, x) = (t, rω) with ω ∈ Sn−1, we have

m+ g0(t, r) = g̃00(t, r)dt
2 + 2g̃01(t, r)dtdr + g̃11(t, r)dr

2 + g̃22(t, r)r
2dω2.

In this form, the assumption (H1.1) is equivalent to the following requirement

‖∂µt,x(g̃00 + 1, g̃11 − 1, g̃22 − 1, g̃01)‖ℓ|µ|
1 L∞

t,x
= O(1), |µ| ≤ 3.

Moreover, for the lower order perturbations, we shall assume that

(H1.2) ‖∂µt,xb‖ℓ1+|µ|
1 L∞

t,x
+ ‖∂µt,xc‖ℓ2+|µ|

1 L∞
t,x

= O(1), |µ| ≤ 2.

We note that these hypotheses are reminiscent of those that have appeared pre-
viously in [43, 44], [31], [32], and [48]. The radial symmetry on the long range
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perturbation is primarily used to assist with commuting rotational vector fields Ω
with P in the sequel.

Hypothesis 2: Localized energy. We shall assume that the metric g permits
a uniform energy estimate and (weak) localized energy estimate. Specifically, we
assume that there exists R1 > R0 so that if u is a solution to the linear wave
equation Pu = F , then

(H2) ‖∂∂µu‖L∞
t L2

x
+ ‖(1− χ)∂∂µu‖

ℓ
−1/2
∞ L2

t,x
+ ‖∂µu‖

ℓ
−3/2
∞ L2

t,x

. ‖u(0, · )‖H|µ|+1 + ‖∂tu(0, · )‖H|µ| +
∑

|ν|≤|µ|

‖∂νF‖L1
tL

2
x

for all |µ| ≤ 2. Here χ is a smooth function that is identically 1 on BR1/2 := {|x| ≤
R1/2} and is supported in BR1 . The next section will discuss this hypothesis in
further detail and will provide some examples where it is known to hold.

The main result of this paper then states that solutions to (1.3) exist globally
for sufficiently small Cauchy data. See Theorem 5.1 for a more precise statement
once further notations are established.

Theorem 1.1. Let n = 3, 4, and assume (H1), (H1.1), (H1.2), and (H2). Consider
the problem (1.3) with p > pc where pc > 1 solves

(n− 1)p2c − (n+ 1)pc − 2 = 0.

Then there exists a global solution u for any initial data which are sufficiently small,

decaying, and regular.

The first result of this type regarding such nonlinear wave equations (on Min-

kowski space) with small powers p was [21] where global existence above 1+
√
2 and

blow-up for powers below the same was established in n = 3. In generic dimensions,
blow-up for powers below pc was established in [38], while global existence for small
initial data when p > pc followed in [19], [42].

Several recent works have generalized these results to exterior domains and
asymptotically flat backgrounds in dimensions n ≤ 4. This paper represents a
unification and generalization of these results, most of which will be outlined in the
next section. We refer the interested reader to, e.g., [50] for a complete history.

A key estimate that has permitted such progress is a class of weighted Strichartz
estimates, which was developed independently in [20] and [17]. This class of esti-
mate has subsequently been shown to be robust under small, asymptotically flat
perturbations. See, e.g., [40], [49], and [25]. The localized energy estimates (H2)
exactly permit us to pass to the case of such a small perturbation by handling the
regions where the geometry has the most significant role. This method stems from
[25].

The key difference between the current result and [25] is the approach to proving
the weighted Strichartz estimates. In [25] a duality argument of [49] is used to
“divide through” by a derivative in the localized energy estimate. That process
required that the data be compactly supported. Here we use the more robust ideas
of [31].

1.1. Notations. Before proceeding, let us set more notations. The vector fields to
be used will be labeled as

Y = (Y1, . . . , Yn(n+1)/2) = {∇x,Ω}, Z = {∂,Ω},
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where ∂ = ∂t,x. Here Ω denotes the generators of spatial rotations:

Ωij = xi∂j − xj∂i, 1 ≤ i < j ≤ n.

For a norm X and a nonnegative integer m, we shall use the shorthand

|Z≤mu| =
∑

|µ|≤m

|Zµu|, ‖Z≤mu‖X =
∑

|µ|≤m

‖Zµu‖X ,

with the obvious modification for ‖Y ≤mu‖X , e.g. Letting Lq
ω be the standard

Lebesgue space on the sphere Sn−1, we will use the following convention for mixed
norms Lq1

t L
q2
r L

q3
ω :

‖f‖Lq1
t L

q2
r L

q3
ω (M) =

∥

∥

∥

(

∫

‖f(t, rω)‖q2
L

q3
ω
rn−1 dr

)1/q2∥
∥

∥

Lq1({t≥0})
,

with trivial modification for the case q2 = ∞. Occasionally, when the meaning is
clear, we shall omit the subscripts.

2. Discussion of Hypothesis 2

In this section, we discuss the localized energy estimates, which are assumed to
hold by hypothesis (H2). On R+ × Rn, n ≥ 3 with the Minkowski metric, such
estimates look like

(2.1) ‖u′‖
L∞

t L2
x∩ℓ

−1/2
∞ L2

t,x
+ ‖u‖

ℓ
−3/2
∞ L2

t,x
. ‖u′(0, · )‖L2 + ‖�u‖

L1
tL

2
x+ℓ

1/2
1 L2

t,x

and the ℓ
−3/2
∞ on the second term may be replaced by ℓ

−3/2
2 summability in di-

mensions n ≥ 4. Estimates of this form date back to [33] and can be proved by

integrating �u against a multiplier of the form f(r)∂ru+ n−1
2

f(r)
r u. The estimate

follows after integration by parts and choosing f(r) = r/(r + R), where R is a
dyadic number. See, e.g., [27] for this proof and [32] for a more exhaustive history
of such estimates.

When the background geometry permits trapped rays, which roughly speaking
are light rays that do not escape a compact set in finite time, such estimates are
known to be false. See [34] and [36]. In certain situations, however, a related
estimate with a loss can be recovered. One such possibility is to ask for a local-
ized energy estimate to hold upon localizing away from the trapping, and this is
what Hypothesis 2 represents. See, e.g., [32] and [44] for situations where similar
hypotheses were employed.

It is worth noting that (H2) is assuming three sorts of bounds. The first is a
uniform bound on the energy and corresponds to the first term in the estimate.
The second term corresponds to the localized energy when cut off away from any
possible trapping. The last term is a lossless lower order term from the localized
energy. This term corresponds to the second term in the left side of (2.1), and we are
assuming that the same bound can be obtained in the presence of the geometry. It is
also assumed that higher order versions (corresponding to |µ| 6= 0) of each estimate
hold. It would suffice to assume that the first and third terms are controlled in a
sufficiently large ball and that the second term (without the cutoff) can be bounded
in the dyadic region with radii comparable to the same ball. Using standard cutoff
techniques, it is relatively easy to show that these two assumptions are equivalent,
and as such, we choose to employ the more common form.
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The hypothesis (H2) is known to hold in several cases, and we provide a sampling
of these here. In each case, one immediately obtains small data global existence for
(1.3) as a corollary of Theorem 1.1.

2.1. Nontrapping asymptotically Euclidean manifolds. In the case thatR0 =
0, b = 0, c = 0, and the manifold is a product manifold, in the sense that

g = −dt2 + gij(x)dx
idxj ,

and the metric is nontrapping, then the localized energy estimates, at least when
the summability in (H1.1) is replaced by any additional power decay, were shown in
[5]. The resulting nonlinear result contained herein, then, recovers and generalizes
the p > pc portions of [40] and [49]. The localized energy estimate in this setting
is generalized further in the forthcoming result [29], which permits manifolds of
general structure, only requires (H1.1) and (H1.2), allows for the lower order terms
(even complex valued) provided that eigenvalues and resonances are not introduced,
and allows for some time dependence in the coefficients.

Similarly, even with the possibility of a boundary, for compactly supported, time-
independent, nontrapping perturbations of the Euclidean Laplacian, the localized
energy estimates were proved in [8, Theorem 3]. The result given there can easily be
supplemented with (2.1) to drop the assumption of compact support on the initial
data. Moreover, the higher order estimates follow from standard elliptic estimates
upon noticing that ∂t commutes with the equation. Our theorem, then, recovers
the corresponding nonlinear results of [20]. This also recovers a result of [16] in the
n = 4 flat case exterior to a star-shaped obstacle.

2.2. Time-dependent, small, asymptotically flat manifolds. In the case where
the constants in (H1.1) and (H1.2) are sufficiently small, the localized energy hy-
pothesis follows from the same argument outlined for proving (2.1). See [27, 28]
and [31]. The same can also be proved exterior to a star-shaped obstacle with
Dirichlet boundary conditions [27, 28], [30]. And as such, the existence portion of
the Strauss conjecture immediately follows from Theorem 1.1.

2.3. Kerr space-times. The hypothesis (H2) has been verified (in the |µ| = 0
case) on Schwarzschild backgrounds in [4, 3], [11, 12], [26]. And in the setting of Kerr
space-times with a ≪ M , similar results have been shown in [45], [1], [13, 14, 10].
See [45] for the higher order (|µ| 6= 0) case. In these settings, Theorem 1.1 recovers
the results of [25], and in the case of Kerr, it relaxes some assumptions on the data.
Here, we also note that (H2) was proved for a class of small perturbations of such
Kerr metrics in [32], and thus, the nonlinear existence result extends to such cases
as well. We note also that [15] essentially verifies (H2) for the full subextremal case
|a| < M .

2.4. (1+4)-dimensional Myers-Perry space-times. Recent studies have proved
similar localized energy results on higher dimensional black hole backgrounds.
These include the results of [23], [37] on (hyperspherical) Schwarzschild backgrounds
and [24] on Myers-Perry backgrounds with small angular momenta. While these
results are given for |µ| = 0, the techniques of [45] can be mimicked to obtain the
higher order estimate. And as a result, solutions to (1.3) will exist globally for suf-
ficiently small data provided that p > 2. Here pc = 2 when the spatial dimension
is 4.
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2.5. Surfaces of revolution with degenerate trapping. An interesting class
of surfaces of revolution where the generating function has a unique degenerate
minimum were introduced in [9]. On such manifolds, it can be shown that the local
smoothing estimate for the Schrödinger equation necessitates an algebraic loss of
smoothness. The |µ| = 0 analog of (H2) was explored in [6] (non-degenerate case)
and [35]. See also the forthcoming work [7]. Using elliptic estimates and the fact
that the metrics are static, one could easily obtain the full of (H2). So, again, a
small data global existence result for (1.3) with p > pc follows immediately. The
setup here is slightly different in that the manifolds under consideration have two
ends (both asymptotically Euclidean), but the modifications that would be required
are straightforward.

2.6. Equations with lower order perturbations. In (1.3), we also permit lower
order perturbations of the d’Alembertian. A number of preceding results studied
the case of the flat Laplacian with such lower order perturbations, but here we
allow for full generality. Moreover, the hypothesis (H2) generalizes many of the
conditions, such as a sign condition or a smallness condition, on the perturbations.
See, e.g., [41] where small potentials were examined; [18] which allowed non-negative
compactly supported potentials; and [47] where potentials with some time-decay
are permitted. The case of damping represents a fundamentally different problem
for which there have been a number of studies following the seminal work [46], but
we do not explore these here.

3. Sobolev-type estimates

In this section, we gather several Sobolev-type and trace estimates.
To begin, we recall a standard trace estimate on the sphere. See, e.g., [17, (1.3)]

Lemma 3.1 (Trace estimates). Let n ≥ 2 and 1/2 < s < n/2, then

(3.1) ‖rn/2−su‖
L∞

r H
s−1/2
ω

. ‖u‖Ḣs .

We shall also need the following variant of the Sobolev embeddings. This has
essentially been proved in [25, Lemma 3.1] in the case n = 3 and ε = 0 and is akin
to the original estimates of [22]. In the case of n = 4, extra care is required so that
the number of derivatives does not exceed 2.

Lemma 3.2 (Weighted Sobolev estimates). Let n ≥ 2 and R ≥ 3. We have

(3.2) ‖rβu‖Lq
rL∞

ω (r≥R+1).
∑

|µ|≤[(n+1)/2]

‖rβ−(n−1)/p+(n−1)/qY µu‖Lp
rL

2+ε
ω (r≥R)

for any β ∈ R, 2 + ε ≤ p ≤ q ≤ ∞ and ε > 0. When ε = 0, we need to require

|µ| ≤ [(n+ 2)/2] instead. Moreover, we have

(3.3) ‖rβu‖Lq
rL4

ω(r≥R+1).
∑

|µ|≤[(n+3)/4]

‖rβ−(n−1)/p+(n−1)/qY µu‖Lp
rL2

ω(r≥R)

for any 2 ≤ p ≤ q ≤ 4 and β ∈ R.

Proof. By Sobolev estimates on R × Sn−1, we have for each j ∈ N the uniform
bounds

‖v‖L∞
r L∞

ω ([j,j+1]×Sn−1) .
∑

|µ|≤[(n+1)/2]

(

∫ j+2

j−1

∫

Sn−1

|Y µv|2+ε dωdr
)

1
2+ε

.
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Hence, for any β ∈ R and j ≥ 3,

(3.4) ‖rβv‖L∞
r ([j,j+1])L∞

ω
.

∑

|µ|≤[(n+1)/2]

‖rβ−(n−1)/(2+ε)Y µv‖L2+ε
r ([j−1,j+2])L2+ε

ω
.

The factor r−(n−1)/(2+ε) on the right comes from the fact that the volume element
for Rn is rn−1drdω. By Hölder’s inequality, it follows that for every 1 ≤ q ≤ ∞
and p ≥ 2 + ε,

(3.5) ‖rβv‖Lq
r([j,j+1])L∞

ω
.

∑

|µ|≤[(n+1)/2]

‖rβ+
n−1
q −n−1

p Y µv‖Lp
r([j−1,j+2])L2+ε

ω
.

This yields the inequality (3.2) if we lp-sum over j ≥ R + 1 using the Minkowski
integral inequality and the fact p ≤ q.

Inequality (3.3) follows from a similar argument. The proof of (3.4) also yields

‖v‖L4
r([j,j+1])L4

ω
. j−

n−1
4

∑

|µ|≤[(n+3)/4]

‖Y µv‖L2
r([j−1,j+2])L2

ω
,

which implies (3.3) after an application of Hölder’s inequality, weighting appropri-
ately, and lp-summing over j.

4. Weighted Strichartz estimates

The key linear estimate near infinity is a weighted Strichartz estimate akin to
those introduced in [20] and [17]. As a corollary to our techniques, the same holds for
small, asymptotically decaying perturbations of the Minkowski metric. In essence,
this is what the main theorem below states as the estimate is only applied outside
of a large compact set where the metric perturbation may be taken to be small due
to the asymptotic flatness.

Theorem 4.1. Let n ≥ 3, and suppose that (H1), (H1.1), (H1.2), and (H2) hold.
Then there exists R > R1 so that if ψR is identically 1 on Bc

2R and vanishes on

BR, we have

(4.1) ‖ψRZ
≤2w‖

ℓ
n
2

−
n+1
p

−s

p Lp
t,rH

σ
ω

. ‖w(0, · )‖H3 + ‖∂tw(0, · )‖H2

+ ‖ψRY
≤2w(0, · )‖Ḣs + ‖ψRY

≤2∂tw(0, · )‖Ḣs−1 + ‖ψRZ
≤1Pw(0, · )‖Ḣs−1

+ ‖ψp
RZ

≤2Pw‖
ℓ
−n−2

2
−s

1 L1
t,rH

s−1/2
ω

+ ‖∂≤2Pw‖L1
tL

2
x

for any p ∈ (2,∞), s ∈ (1/2−1/p, 1/2), and 0 ≤ σ < min(s−1/2+1/p, 1/2−1/p).

For clarity, as a corollary of the techniques of proof of Theorem 4.1, we state
separately what would result for sufficiently small perturbations, which removes the
need to cutoff to the exterior of BR, when there are no vector fields with which to
contend. Moreover, in the case of sufficiently small perturbations, the hypothesis
(H2) is known due to [27], [31].

Corollary 4.2. Let n ≥ 3, and suppose that gαβ = gβα ∈ C2, bα ∈ C1, and c ∈ C.
Then there exists δ1 > 0 so that if (g, b, c) satisfies

‖g −m‖ℓ̇01L∞
t,x

+ ‖(∂g, b)‖ℓ̇11L∞
t,x

+ ‖(∂2g, ∂b, c)‖ℓ̇21L∞
t,x

≤ δ1,
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we have

(4.2) ‖w‖
ℓ̇
n
2

−n+1
p

−s

p Lp
t,rH

σ
ω

. ‖w(0, · )‖Ḣs + ‖∂tw(0, · )‖Ḣs−1

+ ‖Pw‖
ℓ̇
−n−2

2
−s

1 L1
t,rH

s−1/2
ω +ℓ̇

3/2−s
2 L2

tL
2
x

for any p ∈ (2,∞), s ∈ (1/2−1/p, 1/2), and 0 ≤ σ < min(s−1/2+1/p, 1/2−1/p).

It is the technique to prove Theorem 4.1 that is the biggest departure from [25],
and it is these techniques that permit us to drop the assumption that the data are
compactly supported. The key new ideas that are being implemented are from [31].
To begin, we have the following localized energy estimate for small, asymptotically
flat metric perturbations.

Theorem 4.3 ([31], Corollary 1). Let n ≥ 3 and −1 < δ < 0. Under the same

conditions as in Corollary 4.2, we have

(4.3) ‖∂w‖L∞
t Ḣδ∩Xδ . ‖∂w(0, · )‖Ḣδ + ‖Pw‖L1

t Ḣ
δ+(X−δ)′ .

Here

‖f‖2Xδ =

∞
∑

k=−∞

22kδ‖Skf‖2Xk

with

‖f‖Xk
= 2k/2‖f‖L2

t,x(A≤−k) + sup
j≥−k

‖|x|−1/2f‖L2
t,x(Aj),

Aj = R+ × {|x| ≈ 2j}, A≤−k = ∪j≤−kAj, and homogeneous Littlewood-Paley

projections Skf .

For the Xs norm, we observe that we have the following.

Lemma 4.4. Let n ≥ 2 and 0 < δ < (n− 1)/2. Then

(4.4) ‖r−1/2−δu‖L2
t,x
.‖u‖Xδ , ‖r−1/2−δu‖L2

t,x
.‖∇u‖Xδ−1.

Moreover,

(4.5) ‖u‖(Xδ)′.‖r1/2+δu‖L2
t,x
.

Proof. The first estimate in (4.4) has appeared in [43, Lemma 1] (when δ = 1/2) and
[31] as equation (13). The estimate (4.5) follows from the first by duality and has
appear in [31] as equation (15). The second estimate in (4.4) follows immediately
from the first as it is elementary to show

(4.6) ‖Sku‖Xk
. 2−k‖∇Sku‖Xk

.

For the convenience of the reader, we present a proof of (4.6). We write the
symbol, φk(ξ) = φ(ξ/2k), of Sk as

φk(ξ) =
n
∑

i=1

(

2kξi|ξ|−2ψ(ξ/2k)
)

2−kξiφk(ξ)

where ψ ∈ C∞
0 is identically 1 on the support of φ and vanishes in a neighborhood

of 0. If we let Ψi
k be the operator with symbol 2kξi|ξ|−2ψ(ξ/2k), it suffices to show

that ‖Ψi
k‖Xk→Xk

= O(1).
We expand

1AjΨ
i
ku = 1AjΨ

i
k1A≤−k

u+
∑

l>−k

1AjΨ
i
k1Al

u.



THE STRAUSS CONJECTURE ON ASYMPTOTICALLY FLAT SPACE-TIMES 9

The operators 1AjΨ
i
k1Al

have kernel

Kjl(x, y) = 2kn1Aj (x)1Al
(y)a(2k(x− y))

for some Schwartz function a. In the case that l = −k, the indicator function 1Al

is replaced by 1A≤−k
. The analogous substitution is made when j = −k.

Now suppose that j > −k. Since for any given N ≫ 1,

2l/2‖Kjl(x, y)‖L∞
x L1

y∩L∞
y L1

x
.

{

2l/2 , l− j ≤ 2

2−lN2−k(N+1/2) , l− j ≥ 3,

it follows from Young’s inequality that

‖1Aj (x)Ψ
i
k‖Xk→L2 .

∑

l≥−k

2l/2‖Kjl‖L∞
x L1

y∩L∞
y L1

x
. 2j/2,

as desired.
When j = −k, we similarly note that

2l/2‖K(−k)l(x, y)‖L2
xL

2
y
.

{

2−k/2 l = −k,
2(k+l)n/22−lN2−k(N+1/2) , l > −k.

Thus, by the Schwarz inequality,

‖1A≤−k
Ψi

k‖Xk→L2 .
∑

l≥−k

2l/2‖K(−k)l‖L2
xL

2
y
. 2−k/2,

which completes the proof.
�

We also have

Lemma 4.5 ([31], Lemma 2).

(a) Suppose that ‖b‖ℓ̇11L∞
t,x

+ ‖∂b‖ℓ̇21L∞
t,x

≤ δ1 and that |δ| ≤ 1, |δ| < n−1
2 . Then

(4.7) ‖b∂u‖(X−δ)′ . δ1‖∂u‖Xδ .

(b) Suppose n ≥ 3, ‖c‖ℓ̇2∞L∞
t,x

≤ δ1, and −1 < δ < 0. Then

(4.8) ‖cu‖(X−δ)′ . δ1‖∂u‖Xδ .

Finally, we record the following regarding the interpolation of Xs spaces.

Lemma 4.6. For Xs as in Theorem 4.3, we have [Xs1 , Xs2 ]θ = Xθs1+(1−θ)s2 and

[(Xs1)′, (Xs2)′]θ = (Xθs1+(1−θ)s2)′, for any θ ∈ (0, 1).

Proof. Fixing β ∈ C∞
0 (R) with suppβ ⊂ [1/2, 2] and

∑

j∈Z
(β(|x|/2j))2 = 1 for any

0 6= x ∈ Rn, we notice that

‖u‖2Xs = ‖β(〈2k · 〉/2j)Sku‖2
ℓ̇
s+1

2
2 ℓ

− 1
2

∞ L2
t,x

where the ℓ̇
s+ 1

2
2 summation is over k ∈ Z and ℓ

− 1
2

∞ is in j ≥ 0. It follows that Xs is

a retract of ℓ̇
s+ 1

2
2 ℓ

− 1
2

∞ L2
t,x. See, e.g., [2, Definition 6.4.1] for the definition of retract.

Indeed, the co-retraction and retraction are given by

Qf =
(

β(〈2kx〉/2j)Skf
)

j∈N,k∈Z

, Q : Xs → ℓ̇
s+ 1

2
2 ℓ

− 1
2

∞ L2
t,x ,
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R(alm)l∈N,m∈Z =
∑

m∈Z

Sm

∑

l≥0

β
(〈2mx〉

2l

)

alm, R : ℓ̇
s+ 1

2
2 ℓ

− 1
2

∞ L2
t,x → Xs.

Moreover, RQf = f for f ∈ Xs. By [2, Theorem 5.6.3], we know that, with
s = θs1 + (1− θ)s2,

[ℓ̇
s1+

1
2

2 ℓ
− 1

2
∞ L2

t,x, ℓ̇
s2+

1
2

2 ℓ
− 1

2
∞ L2

t,x]θ = ℓ̇
s+ 1

2
2 ℓ

− 1
2

∞ L2
t,x .

Then we have [Xs1 , Xs2 ]θ = Xs by [2, Theorem 6.4.2]. For the dual estimate,
[(Xs1)′, (Xs2)′]θ = (Xs)′, it follows from [2, Theorem 4.5.1]. �

With these results in place, we now proceed to the proof of the main linear
estimate.

Proof of Theorem 4.1. We first note that, using (H1),

[P, ∂µΩν ]w =
∑

|µ̃|+|ν̃|≤|µ|+|ν|
|ν̃|≤|ν|

b̃αµ̃ν̃∂
µ̃Ων̃∂αw + c̃µ̃ν̃∂

µ̃Ων̃w.

And given δ1 ≪ 1, by (H1.1) and (H1.2), we may fix R > 2R1 sufficiently large so
that

‖1>Rb̃‖ℓ11L∞
t,x

+ ‖1>R(∂b̃, c̃)‖ℓ21L∞
t,x

≤ δ1.

We suppose that Pw = F . Thus,

PψR∂
µΩνw = [P, ψR]∂

µΩνw + ψR[P, ∂
µΩν ]w + ψR∂

µΩνF.

Then with n ≥ 3 and s1 ∈ (0, 1), we apply Theorem 4.3 with δ = s1 − 1 to get

‖∂(ψRZ
≤2w)‖

L∞
t Ḣ

s1−1
x ∩Xs1−1.‖ψRZ

≤2w(0)‖Ḣs1 + ‖ψR∂tZ
≤2w(0)‖Ḣs1−1

+ ‖ψRZ
≤2F‖L1

t Ḣ
s1−1 + ‖[P, ψR]Z

≤2w‖(X−(s1−1))′

+ ‖ψRb̃Z
≤2∂w‖(X−(s1−1))′ + ‖ψRc̃Z

≤2w‖(X−(s1−1))′ .

Subsequently using Lemma 4.4, we then obtain

‖r−1/2−s1ψRZ
≤2w‖L2

t,x
+‖∂(ψRZ

≤2w)‖Xs1−1+‖ψRZ
≤2w‖L∞

t Ḣs1.‖ψRZ
≤2w(0)‖Ḣs1

+ ‖ψR∂tZ
≤2w(0)‖Ḣs1−1 + ‖ψRZ

≤2F‖L1
t Ḣ

s1−1 + ‖r3/2−s1 [P, ψR]Z
≤2w‖L2

t,x

+ ‖ψRb̃Z
≤2∂w‖(X−(s1−1))′ + ‖ψRc̃Z

≤2w‖(X−(s1−1))′ .

Moreover, if s2 ∈ (1/2, 1), we have by the trace estimate (3.1),

‖rn/2−s2ψRZ
≤2w‖

L∞
t,rH

s2−1/2
ω

+ ‖∂(ψRZ
≤2w)‖Xs2−1.‖ψRZ

≤2w(0)‖Ḣs2

+ ‖ψRZ
≤2∂tw(0)‖Ḣs2−1 + ‖ψRZ

≤2F‖L1
t Ḣ

s2−1 + ‖r3/2−s2 [P, ψR]Z
≤2w‖L2

t,x

+ ‖ψRb̃Z
≤2∂w‖(X−(s2−1))′ + ‖ψRc̃Z

≤2w‖(X−(s2−1))′ .

Then, by interpolation (using Lemma 4.6), for p ∈ (2,∞) and s ∈ (1/2− 1/p, 1)

‖rn/2−(n+1)/p−sψRZ
≤2w‖Lp

t,rH
σ
ω
+ ‖∂ψRZ

≤2w‖Xs−1

.‖ψRZ
≤2w(0)‖Ḣs + ‖ψRZ

≤2∂tw(0)‖Ḣs−1 + ‖ψRZ
≤2F‖L1

tḢ
s−1

+ ‖r3/2−s[P, ψR]Z
≤2w‖L2

t,x
+ ‖ψRb̃Z

≤2∂w‖(X−(s−1))′

+ ‖ψRc̃Z
≤2w‖(X−(s−1))′
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for any σ < min(s − 1
2 + 1

p ,
1
2 − 1

p ). Here, to obtain the estimate when s ∈ (1/2−
1/p, 1 − 2/p], we interpolate with θ = 1 − 2/p, s1 = δ < 2

p

[

s −
(

1
2 − 1

p

)]

, s2 =

(s − 2δ/p)/θ ∈ (1/2, 1). Then s = (1 − θ)s1 + θs2 and σ = θ(s2 − 1/2) = s −
1/2 + 1/p − 2δ/p. For s ∈ [1 − 2/p, 1), with 0 < δ <

(

1 − 2
p

)−1

(1 − s), we set

θ = 1− 2/p, s2 = 1− δ, s1 = p(s− θ+ δθ)/2 ∈ (0, 1). Then s = (1− θ)s1 + θs2 and
σ = θ(s2 − 1/2) = 1/2− 1/p− δθ.

We have

‖ψRb̃Z
≤2∂w‖(X−(s−1))′.‖r3/2−sb̃ψ′

RZ
≤2w‖L2

t,x
+ ‖b̃∂ψRZ

≤2w‖(X−(s−1))′ ,

and so by Lemma 4.4,

‖rn/2−(n+1)/p−sψRZ
≤2w‖Lp

t,rH
σ
ω
+ ‖∂ψRZ

≤2w‖Xs−1

.‖ψRZ
≤2w(0)‖Ḣs + ‖ψRZ

≤2∂tw(0)‖Ḣs−1 + ‖ψRZ
≤2F‖L1

tḢ
s−1

+ ‖r3/2−s[P, ψR]Z
≤2w‖L2

t,x
+ ‖r3/2−sb̃ψ′

RZ
≤2w‖L2

t,x

+ ‖b̃∂ψRZ
≤2w‖(X−(s−1))′ + ‖ψRc̃Z

≤2w‖(X−(s−1))′ .

We may now apply (4.7) and (4.8) to bootstrap the last two terms, provided that
δ1 is sufficiently small. The remainder of the proof is independent of the choice of
R, and as such, our implicit constants moving forward may now depend on R.

Since [P, ψR] and ψ′
R are supported on the fixed annulus {|x| ≈ R} and since

the coefficients of Z are O(1) on this annulus, it follows that

‖r3/2−s[P, ψR]Z
≤2w‖L2

t,x
+ ‖r3/2−sb̃ψ′

RZ
≤2w‖L2

t,x

. ‖(1− χ)∂∂≤2w‖
ℓ
−1/2
∞ L2

t,x
+ ‖∂≤2w‖

ℓ
−3/2
∞ L2

t,x
.

To these last terms, we may apply (H2). Moreover, as ψR − ψp
R is supported on

{|x| ≈ R} and as ‖f‖Ḣ−δ . ‖f‖L2 for f supported on a fixed ball and 0 ≤ δ < n
2 ,

we have

‖(ψR − ψp
R)Z

≤2F‖L1
tḢ

s−1 . ‖∂≤2F‖L1
tL

2
x
.

So, with s ∈ (1/2 − 1/p, 1/2), which ensures that 1 − s > 1/2, we get by the dual
to the trace estimates (3.1),

‖rn/2−(n+1)/p−sψRZ
≤2w‖Lp

t,rH
σ
ω
.‖ψRZ

≤2w(0)‖Ḣs + ‖ψRZ
≤2∂tw(0)‖Ḣs−1

+ ‖w(0)‖H3 + ‖∂tw(0)‖H2 + ‖r−(n−2)/2−sψp
RZ

≤2F‖
L1

t,rH
s−1/2
ω

+ ‖∂≤2F‖L1
tL

2
x
.

Finally, we recast the first two terms on the right in terms of our initial data.
For the first term, the only issue is when both vector fields are ∂t. Since R is chosen
sufficiently large so that P is a small perturbation of � on the support of ψR, we
may use the equation to establish

‖ψR∂
2
tw(0)‖Ḣs . ‖ψRY

≤2w(0)‖Ḣs + ‖ψRY
≤2∂tw(0)‖Ḣs−1 + ‖ψRY

≤1F (0)‖Ḣs−1 .

Similarly using the equation to convert occurrences of ∂3t and ∂2t yields

‖ψRZ
≤2w(0)‖Ḣs + ‖ψRZ

≤2∂tw(0)‖Ḣs−1 . ‖ψRY
≤2w(0)‖Ḣs

+ ‖ψRY
≤2∂tw(0)‖Ḣs−1 + ‖ψRZ

≤1F (0)‖Ḣs−1 ,

and completes the proof. �
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5. Small data global existence

Here we state a more precise version of Theorem 1.1 and provide a proof. For
a given q, we shall apply Theorem 4.1 with s = n

2 − 2
q−1 . We note that s ∈

(1/2 − 1/q, 1/2) precisely pc < q < pconf := 1 + 4
n−1 , where the latter is the

conformally invariant exponent above which small data global existence may be
established in the flat case using Strichartz estimates. See, e.g., [39]. We set
−α = n

2 − n+1
q − s = 2

q−1 − n+1
q to be the power of the weight in the left side of

(4.1) and note that −n−2
2 − s = −αq. We define the norms

(5.1) ‖u‖Xk
= ‖r−αψRZ

≤ku‖LqLqLθ + ‖∂≤ku‖
ℓ
−3/2
∞ L2L2L2 + ‖∂≤k∂u‖L∞L2L2 ,

(5.2) ‖g‖Nk
= ‖r−αqψq

RZ
≤kg‖L1L1L2 + ‖Z≤kg‖L1L2L2

where R > R1 is sufficiently large as dictated by Theorem 4.1. Here we may choose
any θ satisfying

2 < θ < min
(

q,
2(n− 1)

n− 1− 2min(s− 1/2 + 1/q, 1/2− 1/q)

)

,

where we additionally note that min(s − 1/2 + 1/q, 1/2 − 1/q) > 0 provided q >
max(2, pc). In the case of n = 3, it would suffice to work with θ = 2.

Theorem 5.1. Let n = 3, 4, and assume that (H1), (H1.1), (H1.2) and (H2) hold.
Consider (1.3) with p > pc. Set s = n

2 − 2
q−1 ∈ (1/2 − 1/q, 1/2) where q = p if

p ∈ (pc, pconf) and q ∈ (pc, pconf) is any fixed choice when p ≥ pconf . Then there

exists ε0 > 0 sufficiently small and a R > R0 sufficiently large, so that if 0 < ε < ε0
and

(5.3) ‖Y ≤2∇≤1
x u0‖L2 + ‖∇≤2

x u1‖L2 + ‖Y ≤2u1‖Ḣs−1 ≤ ε,

then there exists a global solution u with ‖u‖X2 . ε.

The proof follows that of [25] quite closely, and we only highlight the main
points. First of all, it suffices to assume p ∈ (pc, pconf). If not, one need only fix any
q ∈ (pc, pconf) and apply the proof below while noting that Sobolev embeddings
provide ‖u‖L∞

t,x
. ‖u‖X2 , which suffices to handle the p − q extra copies of the

solution in the nonlinearity.
An iteration is set up in X0. The estimate (4.1) can be combined with (5.3) and

Sobolev embeddings to show that

‖u‖Xk
. ε+ ‖Fp(u)‖Nk

.

The key points to bound the iteration (in X2) and to show that it converges (in
X0) are to show

(5.4) ‖Fp(u)‖N2 . ‖u‖pX2

and

(5.5) ‖Fp(u)− Fp(v)‖N0 . ‖(u, v)‖p−1
X2

‖u− v‖X0 .

To this end, for functions f, g, we shall show

(5.6) ‖gp−2f2‖N0 . ‖g‖p−2
X2

‖f‖2X1
,

(5.7) ‖gp−1f‖N0 . ‖g‖p−1
X2

‖f‖X0 .
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To see how these yield (5.4) and (5.5), we observe that (1.2) guarantees

|Z≤2Fp(u)| . |u|p−1|Z≤2u|+ |u|p−2|Z≤1u|2.

Thus an application of (5.7) and (5.6) to the terms in the right side respectively
yields (5.4). Similarly, (1.2) shows that

|Fp(u)− Fp(v)| . |(u, v)|p−1|u− v|,

which shows that (5.5) is a direct consequence of (5.7).
Assuming (5.6) and (5.7), the remainder of the proof of Theorem 5.1 is exactly

as in [25]. In fact, by setting u(0) ≡ 0 and recursively define u(m+1) to be the
solution to the linear equation

{

Pu(m+1) = Fp(u
(m)), (t, x) ∈M

u(m+1)(0, x) = u0(x), ∂tu
(m+1)(0, x) = u1(x),

we have that

‖u(m+1)‖X2 . ε+ ‖Fp(u
(m))‖N2 . ε+ ‖u(m)‖pX2

,

which yields the uniform boundedness for the iteration sequence, ‖u(m+1)‖X2 . ε
provided that ε is sufficiently small. Then we get

‖u(m+2) − u(m+1)‖X0 . ‖Fp(u
(m+1))− Fp(u

(m))‖N0

. ‖(u(m+1), u(m))‖p−1
X2

‖u(m+1) − u(m)‖X0

and so the sequence converges in X0, provided that ε≪ 1. The limit u ∈ X2 with
‖u‖X2 . ε is the solution we are looking for.

We shall end by outlining the proof of (5.6) and (5.7). We first observe that

‖r−αpψp
R g

p−1f‖L1L1L2 . ‖r−αψRg‖p−1
LpLpL∞‖r−αψRf‖LpLpL2

and

‖r−αpψp
R g

p−2f2‖L1L1L2 . ‖r−αψRg‖p−2
LpLpL∞‖r−αψRf‖2LpLpL4 .

The Sobolev embeddings H2
ω ⊂ L∞

ω and H1
ω ⊂ L4

ω on Sn−1, n ≤ 4 then show that

these are dominated by ‖g‖p−1
X2

‖f‖X0 and ‖g‖p−2
X2

‖f‖2X1
respectively.

It remains to consider the L1L2L2 portions of the N0 norm. When r ≥ 2R+ 1,
we use a related argument that relies on the weighted Sobolev inequalities. To
begin, we note that

‖gp−1f‖L1L2
≥2R+1

L2 . ‖r α
p−1 g‖p−1

LpL

2p(p−1)
p−2

≥2R+1
L∞

‖r−αf‖LpLp
≥2R+1

L2 .

Noting also that

α

p− 1
− n− 1

p
+

(n− 1)(p− 2)

2p(p− 1)
≤ −α for p ≤ pconf .

and applying (3.2) establishes that is controlled by ‖g‖p−1
X2

‖f‖X0 . We note that this

is the crucial place where we use the Lθ
ω norm with θ > 2 in order to stay within
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the allowed regularity when n = 4.1 Similarly, noting that

2

p− 2

(

α− n− 1

p
+
n− 1

4

)

≤ −α+
n− 1

p
for p ≤ pconf ,

we may apply (3.2), (3.3), and Hölder’s inequality to bound

‖gp−2 f2‖L1L2
≥2R+1

L2

. ‖r 2
p−2 (α−

n−1
p +n−1

4 )g‖p−2
LpL∞

≥2R+1
L∞‖r−α+ n−1

p −n−1
4 f‖2LpL4

≥2R+1
L4

by ‖g‖p−2
X2

‖f‖2X1
.

Finally we need to control the same over B2R+1 where the vector fields Z all
have bounded coefficients. In n = 3, 4, we claim that we have

(5.8) ‖g‖L∞
x

. ‖g‖
1

p−1

H2 ‖g‖1−
1

p−1

Ḣ1∩Ḣ3
,

for any p > pc, and so

(5.9) ‖g‖L2(p−1)L∞
≤2R+1

L∞ . ‖g‖
1

p−1

L2
tH

2
≤2R+2

‖g‖1−
1

p−1

L∞
t (Ḣ3∩Ḣ1)

. ‖g‖X2.

As

‖gp−1 f‖L1L2
≤2R+1

L2 . ‖g‖p−1

L2(p−1)L∞
≤2R+1

L∞‖f‖L2L2
≤2R+1

L2 ,

it follows from (5.9) that the right side is controlled by ‖g‖p−1
X2

‖f‖X0 , which com-
pletes the proof of (5.7).

Similarly, as

‖gp−2 f2‖L1L2
≤2R+1

L2 . ‖g‖p−2
L∞L∞L∞‖f‖2L2L4

≤2R+1
L4 ,

the Sobolev embeddings Ḣ3 ∩ Ḣ1 ⊂ L∞, H1 ⊂ L4 show that this is also controlled
by ‖g‖p−2

X2
‖f‖2X1

, which finishes the proof of (5.6).

For the proof of (5.8), we recall that if 0 < a < b < c ≤ ∞ and 1
b = λ

a + 1−λ
c ,

then

‖g‖Lb ≤ ‖g‖λLa‖g‖1−λ
Lc .

We shall apply this with a = 2, c = 2n/(n − 2), and λ = 1
p−1 . This yields

b = 2n(p− 1)/(2 + (n− 2)(p− 1)) and b > 2 if p > 2. Hence, by standard Sobolev
embeddings, we obtain the following, which implies (5.8),

‖g‖L∞ . ‖∇≤2
x g‖

L
2n(p−1)

2+(n−2)(p−1)
. ‖∇≤2

x g‖
1

p−1

L2 ‖∇≤2
x g‖1−

1
p−1

L
2n

n−2

. ‖∇≤2
x g‖

1
p−1

L2 ‖∇≤2
x g‖1−

1
p−1

Ḣ1
.

1When n = 3, it would suffice to work with θ = 2. An alternate approach to the n = 4 case
would be to note that the δ = −1 analogs of Theorem 4.3, Lemma 4.4, and Lemma 4.5 are proved
for n = 4 in [31]. This suffices to prove an estimate akin to [16, Theorem 2.3] from which the
corresponding n = 4 existence theorem was shown to follow.
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