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Robust Fusion of Diffusion MRI 
Data for Template Construction
Zhanlong Yang1,2, Geng Chen2, Dinggang Shen2,3 & Pew-Thian Yap2

Construction of brain templates is generally carried out using a two-step procedure involving registering 
a population of images to a common space and then fusing the aligned images to form a template. In 
practice, image registration is not perfect and simple averaging of the images will blur structures and 
cause artifacts. In diffusion MRI, this is further complicated by intra-voxel inter-subject differences in 
fiber orientation, fiber configuration, anisotropy, and diffusivity. In this paper, we propose a method to 
improve the construction of diffusion MRI templates in light of inter-subject differences. Our method 
involves a novel q-space (i.e., wavevector space) patch matching mechanism that is incorporated in 
a mean shift algorithm to seek the most probable signal at each point in q-space. Our method relies 
on the fact that the mean shift algorithm is a mode seeking algorithm that converges to the mode of a 
distribution and is hence robust to outliers. Our method is therefore in effect seeking the most probable 
signal profile at each voxel given a distribution of signal profiles. Experimental results show that our 
method yields diffusion MRI templates with cleaner fiber orientations and less artifacts caused by inter-
subject differences in fiber orientation.

Brain templates1,2 capture the common features of a population of images and play crucial roles in the processing 
and analysis of brain images. They are widely used for guiding brain tissue segmentation, normalization of images 
to a common space, and brain labeling with regions of interest. Unlike templates of anatomical T1-weighted 
images, diffusion MRI templates afford additional white matter microstructural information that can be har-
nessed for tissue characterization and axonal tracing. To ensure that the microstructural information captured at 
each voxel location is properly encoded in the template, dedicated techniques are needed.

Template construction generally involves fusing a population of images that are aligned to a common space. 
The major challenge is to retain the fine anatomical details during the template construction process, which is 
often affected by inaccurate image registration, especially in highly convoluted cortical regions. Many methods 
have been proposed to improve the quality of the constructed template3–8. They sought accurate image alignment 
to create templates with sharp anatomical details. To this end, nonlinear image registration9–13 is often adopted 
for better alignment accuracy. However, in practice, perfect registration is difficult, if not impossible. Averaging 
misaligned images to construct a template blurs details and introduces artifacts. In diffusion MRI14, the problem 
is even more challenging, since the alignment of gross anatomical structures does not necessarily guarantee the 
alignment of the microstructural information captured in each voxel. For example, Fig. 1 shows that the orien-
tation distribution functions (ODFs) at a common voxel location might differ in orientation and configuration 
across subjects. In this situation, it is unclear for example how signals characterizing fiber bundles of varying 
orientations, which can occur naturally across subjects, should be fused to form the template. Moreover, the 
commonly used simple averaging method is sensitive to outliers. For instance, if the distribution of signal profiles 
of single-directional fiber bundles is contaminated with a small number of signal profiles of crossing fibers, sim-
ple averaging will result in a crossing profile, albeit with a small secondary peak. This outcome apparently is not 
representative of the majority.

In this paper, we propose a novel q-space patch-matching mechanism that is incorporated in a mean shift 
algorithm to seek the most probable signal at each point in q-space. Mean shift is a versatile non-parametric 
iterative algorithm that can be used for mode seeking15. Instead of the mean, our method employs the mean shift 
algorithm to determine the mode of a distribution of signal profiles. The mean shift algorithm uses a kernel to 
measure the distance between signals. To increase robustness to noise, we measure the distance between signals 
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using patches defined in the q-space. Patch matching is key to the success of many state-of-the-art denoising 
algorithms, such as non-local means16,17. Patch matching in q-space is performed with the help of azimuthal equi-
distant projection18 and rotation invariant features19. Experimental results focusing on inter-subject differences 
in fiber orientation confirm that our method yields diffusion templates with cleaner fiber orientations and are less 
susceptible to artifacts caused by inter-subject differences. A preliminary version of this work has been presented 
in a workshop20. Herein, we provide a more comprehensive evaluation using more sophisticated synthetic data 
and high-quality data from the Human Connectome Project (HCP)21. The relevant experimental results, analyses, 
and discussions are new and not part of our workshop publication.

Results
Quantitative and qualitative experiments using synthetic and real data were performed to evaluate the proposed 
template construction method. For quantitative evaluation, we use the peak signal-to-noise ratio (PSNR, in dB) 
as the metric:

= ⋅










PSNR 10 log MAX
MSE

,
(1)10

2

where MSE is the mean squared error and MAX is the maximum possible signal value. The MSE is computed as 
the average squared difference calculated across voxels and gradient directions.

Synthetic Data Experiment.  The dataset was simulated with b = 3,000 s/mm2 and 81 non-collinear gra-
dient directions. In order to simulate the dispersion of fiber orientations across subjects, we generated a set of 
diffusion signal profiles of fiber bundles oriented according to the Watson probability distribution function22, 
which in modified form is given as

θ κ κ θ| ∝ − −f ( ) exp[ (1 cos ( ))], (2)2

where θ is the angle of deviation from the ground truth direction and the concentration parameter κ is defined as 
κ θ= − −2(1 cos ( ))2

T
1. Parameter θT determines the degree of dispersion of the orientations of the fiber bundles. 

The distributions for θT = 15°, 30°, 45° are shown in Fig. 2. Based on the resulting fiber orientations, we use a 
multi-tensor model23 to generate the diffusion signal profiles. The axial and radial diffusivities are estimated from 
the corpus callosum of the real data, which is described in the next section. The b-value is chosen to match the 

Figure 1.  Inter-subject variation. The orientation distribution functions (ODFs) from a single voxel of the 
spatially registered diffusion MRI datasets of five subjects (A–E), overlapped in (F). The shapes and orientations 
of the ODFs vary across subjects.
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real data. The fiber ODFs24,25 of diffusion profiles with single direction, two equally weighted directions (60° and 
90° apart), and two unequally weighted directions (90° apart) are shown in Fig. 3. The “template” is computed 
using this distribution of diffusion signal profiles and the outcome is compared with the ground truth without 
deviation. Four levels of Rician noise (3%, 5%, 7% and 9%) were added to the noise free dataset. Rician noise was 
simulated by adding Gaussian noise (i.e. v p(0, ( /100)) ) to the complex domain of the signal with noise variance 
determined by noise-level percentage p and maximum signal value v (150 in our case).

As shown in Fig. 4, for the various noise levels, our method improves the PSNRs over simple averaging for 
both one- and two-directional cases. The PSNR improvement is over 2 dB and sometimes even up to 7 dB. The 
fiber ODFs of some representative results, shown in Fig. 5, indicate that simple averaging causes artifacts and that 
the proposed method yields results that are very close to the ground truth.

We further show in Table 1 the orientational discrepancy (OD)10 between the fiber orientation estimates24,25 
computed from the signal profiles generated using the two methods and the ground truth. Suppose that 1  and 2 
are the sets of directions obtained from the local minima of two ODFs, OD10 is defined as

   
=





 +





∈ ∈ ∈ ∈
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2

max min ( , ) max min ( , ) ,
(3)g g g g1 2 2 1

1 1 2 2 2 2 1 1

Figure 2.  The distribution of Watson probability distribution function. The distribution of orientations 
according to the Watson probability distribution function with different values for parameter θT.

Figure 3.  Synthetic dataset. Examples from the synthetic dataset simulating (first row) one direction, (second 
row) two equally-weighted directions 90° apart, (third row) two equally-weighted directions 60° apart, and 
(fourth row) two unequally-weighted directions 90° apart.



www.nature.com/scientificreports/

4Scientific RePorTS | 7: 12950  | DOI:10.1038/s41598-017-13247-w

where = ⋅−d g g g g( , ) cos ( )1 2
1

1 2  is the angle difference between g1 and g2.
As Table 1 shown, the two methods give reasonably good results at low level of noise and when the dispersion 

is small. However, when the noise level and dispersion increase, the OD values given by simple averaging are 
significantly higher than the proposed method.

Real Data Experiment.  Further evaluation was performed using the diffusion-weighted (DW) images of 
20 subjects from the HCP21. The 1.25 × 1.25 × 1.25 mm3 data were acquired with diffusion weightings b = 1000, 
2000, 3000 s/mm2, each in 90 non-collinear gradient directions. 18 baseline images with low diffusion weighting 
b = 5 s/mm2 were also acquired. To reduce memory cost and computational burden, we only use the b = 3,000 s/
mm2 shell in our evaluation. Prior to template construction, the DW images were registered to the FSL fractional 
anisotropy (FA) standard space (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) via diffeomorphic demons12 
using the FA images. Based on the estimated deformation fields, the DW images were warped to the standard 
space and reorientated26.

As shown in Fig. 6 (axial, close-ups in Fig. 7), Fig. 8 (coronal, close-ups in Fig. 9) and Fig. 10 (sagittal, 
close-ups in Fig. 11), our method produces ODFs with more consistent directions and less spurious peaks. Visible 

Figure 4.  PSNR comparison. PSNR comparison of results given by simple averaging and the proposed method 
using the synthetic data.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA
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differences are marked using arrows and boxes. For simple averaging, the ODF glyphs are generally shorter, 
indicating less directionality. On the other hand, our method gives sharper and longer glyphs. Simple averaging 
is found to cause spurious peaks, whereas the proposed method shows clean results with clear directions. See, for 
example, the ODFs marked by arrows in the green region of interest (ROI) shown in Fig. 10.

We also evaluated the proposed method using normal quality non-HCP data. DW images of 10 subjects were 
acquired using a Siemens 3 T TRIO MR scanner following a standard imaging protocol: 30 diffusion directions 

Figure 5.  ODF comparison. For each case, the ground truth is shown on the far left for reference, the top row 
shows the results for simple averaging and the bottom row shows the results for the proposed method. The 
results were generated using the synthetic dataset with 5% noise and θT = 15°, 30°, 45°.
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uniformly distributed on a hemisphere, b = 1,000 s/mm2, one image with no diffusion weighting, 128 × 128 imag-
ing matrix, voxel size of 2 × 2 × 2 mm3, TE = 81 ms, TR = 7,618 ms. As shown in Fig. 12, our method obtains 
ODFs that are more consistent and exhibit stronger directionality. Visible differences are marked using arrows 

θT Noise

Single Direction
90° Separation (Equally 
Weighted)

60° Separation (Equally 
Weighted)

90° Separation 
(Unequally Weighted)

Averaging (°)
Proposed 
(°) Averaging (°)

Proposed 
(°) Averaging (°)

Proposed 
(°) Averaging (°)

Proposed 
(°)

15°

3% 0.0455 0.0182 0.1353 0.0348 0.0380 0.0371 0.0337 0.0227

5% 0.0599 0.0267 0.1496 0.0437 0.2351 0.1643 0.1052 0.0410

7% 0.0658 0.0458 0.2107 0.1814 0.3802 0.1766 0.3129 0.2341

9% 0.2506 0.1157 0.2780 0.1830 2.9184 0.2912 0.3737 0.2381

30°

3% 0.0696 0.0381 0.0701 0.0635 2.7727 0.1057 0.1180 0.0652

5% 0.1677 0.0804 0.2521 0.1863 3.1273 0.1856 0.2342 0.0756

7% 3.8070 0.2173 3.9694 0.2314 3.9297 1.9592 3.7208 0.1542

9% 7.0452 0.2596 6.6786 2.4269 8.2865 3.8886 4.0710 0.2392

45°

3% 0.0765 0.0554 2.8817 0.0931 6.7836 0.0797 0.0751 0.0317

5% 3.8793 0.0831 3.8226 0.2400 25.7778 3.1191 0.2293 0.0792

7% 7.1966 0.0968 7.2697 2.8693 27.5585 4.0779 7.2373 0.1717

9% 11.0748 0.3150 15.1399 5.4962 28.7225 6.0309 11.0473 0.2234

Table 1.  The average OD between fiber orientation estimates and the ground truth.

Figure 6.  Axial view of ODFs. ODFs estimated using simple averaging and the proposed method. Visible 
improvements are marked by arrows.
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and boxes. For simple averaging, the ODF glyphs are generally shorter, indicating weaker directionality. In con-
trast, our method gives sharper and longer ODF glyphs, indicating its superiority.

Discussion
In this paper, we propose a novel patch-based mean-shift algorithm for constructing diffusion templates. Our 
method is less sensitive to outliers and is able to deal with inter-subject fiber dispersion. Experimental results 
confirm that our method yields improvements over the commonly used simple averaging method and generates 
diffusion templates with cleaner fiber orientations and less artifacts caused by orientation dispersion.

Reasons for Effectiveness.  Most template construction methods have been focused on improving struc-
tural alignment in the x-space, but less so in the q-space. This work presents an effort in the direction of improv-
ing microstructural alignment in the q-space by using a patch matching mechanism with the mode-seeking mean 
shift algorithm. The resulting improvements can be attributed mainly to the following factors: (1) Concurrent 
consideration of both x-space and q-space allows more fine-grained alignment. We have in fact shown that patch 
matching in the x-q space results in good edge preservation17; (2) Matching in this joint x-q space is in general 
simpler and more reliable because diffusion signal profiles are generally smooth with more predictable shapes; 
and (3) The mode is more robust to outliers than the mean.

Figure 7.  Axial view of ODFs (close-ups). Rows 1, 3, and 5 are the results given by simple averaging and rows 2, 4,  
and 6 by the proposed method.
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Future Directions.  Future efforts to improve the proposed framework will include (1) Extending the current 
framework to cater to more general q-space sampling methods, including multi-shell and Cartesian sampling 
schemes. This involves not only considering the directional aspects of the data but also the signal decay with 
respect to the changes of diffusion weighting. This also involves a more general representation in the q-space to 
take into account both changes in gradient direction and diffusion weighting; see for example Chen et al.’s work17; 
(2) Incorporating other methods with possibly better mathematical properties and robustness to outliers and 
noise than the mean-shift algorithm; (3) Incorporating pre-screening strategies to discard early mismatching 
patches so that the computational cost can be reduced; (4) Incorporating more sophisticated features for better 
q-space patch matching; see for example Chen et al.'s work27 and (5) Improving scalability to cope with popula-
tions involving hundreds or thousands of subjects. Our current implementation stores all the weights resulting 
from patch matching and is hence memory demanding.

Method
Overview.  Our method employs neighborhood matching in q-space for effective template construction. For 
each point in the x-q space, (xi, qk), where ∈x i

3 is a voxel location and ∈qk
3 is a wavevector, we define a 

spherical patch, i k, , centered at qk with fixed qk = |qk| and subject to a neighborhood angle αp. The diffusion sig-
nals on this spherical patch are mapped to a disc using azimuthal equidistant projection (AEP) before computing 
the rotation invariant features via polar complex exponential transform (PCET)19 for patch matching. The simi-
larity weights resulting from patch matching will be used in the mean shift algorithm to determine the most 
probable signal at each point in x-q space. See Fig. 13 for an overview. Each step is detailed below.

Patch Features.  To make it easier to compute and compare features of a patch on a sphere, we use azimuthal 
equidistant projection (AEP)18 to map the coordinates on a sphere to a flat plane. Azimuthal equidistant projec-
tion (AEP) is a one-to-one mapping that preserves the distances and angles between points along the longitudinal 
lines originating from a reference point. The reference point (φ0, λ0), with φ being the latitude and λ being the 

Figure 8.  Coronal view of ODFs. Similar to Fig. 6, but in coronal view. Visible improvements are marked by 
arrows.
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longitude, corresponds in our case to the center of the spherical patch and will be projected to the center of a disc. 
Viewing the reference point as the ‘North pole’, all points along a given azimuth, θ, will project along a straight line 
from the center of the disc. In the projection plane, this line subtends an angle θ with the vertical. The distance 
from the center to another projected point is given as ρ. The relationship between (φ, λ) and (ρ, θ) is given as18

ρ φ φ φ φ λ λ

θ
φ λ λ

φ φ φ φ λ λ

= + −

=
−

− −
.

cos sin sin cos cos cos( ),

tan cos sin( )
cos sin sin cos cos( ) (4)

0 0 0

0

0 0 0

The projection can be described as q → (q, φ, λ) → (q, ρ, θ). Note that, since the diffusion signals are antipodal 
symmetric, we map antipodally all the points on the sphere to the same hemisphere as the reference point prior 
to performing AEP. After projection, the q-space spherical patch   is mapped to a 2D circular patch  .

After AEP, we proceed to compute the rotation invariant features. A number of rotation-invariant features 
have been proposed in the literature, such as the popular Zernike moments (ZMs)28, pseudo-Zernike moments 
(PZMs)29, and polar complex exponential transform (PCET)19. PCET transforms the signals onto a set of orthog-
onal basis that is complex-valued. Taking the absolute values of the complex transform coefficients results in a set 
of features that are not dependent on the orientation of the underlying domain. Compared with ZMs/PZMs, the 
computation cost of PCETs is extremely low. In addition, the PCETs are numerical more stable especially when 

Figure 9.  Coronal view of ODFs (close-ups). Rows 1, 3, and 5 are the results given by simple averaging and 
rows 2, 4, and 6 by the proposed method.
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the order of the transform is increased. For these reasons, PCET is used in this work. PCET with order n, |n| = 0, 
1, 2, …, ∞, and repetition l, |l| = 0, 1, 2, …, ∞, of AEP-projected signal profile S(x, q, ρ, θ) is defined as

∫π
ρ θ ρ θ ρ ρ θ=

ρ θ ∈




⁎M H S qx( ) 1 [ ( , )] ( , , , ) d d ,
(5)n l

q
n l

x
,

( , , , )
,



where [·]* denotes the complex conjugate and Hn,l(ρ, θ) is the basis function defined as

ρ θ = .π ρ θH e e( , ) (6)n l
i n il

,
2 2

For each patch  consisting of signal vector S( ) , the associated PCET features | |^M{ ( ) }n l,   computed up to max-
imum order m (i.e., −m ≤ l, n ≤ m) are concatenated into a feature vector M( ) .

Patch Matching.  The similarity of a reference patch i k,  with another patch  d( )j l,  associated with the d-th 
subject is characterized by weight
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where Zi,k is a normalization constant to ensure that the weights sum to one, i.e.,
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Figure 10.  Sagittal view of ODFs. Similar to Fig. 6, but in sagittal view. Visible improvements are marked by 
arrows.
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Here hM(i, k) is a parameter controlling the attenuation of the exponential function. As in Coupé et al.’s paper30, 
we set β σ= ˆh i k M( , ) 2 ( )i k i kM ,

2
, , where β is a constant30, σ̂i k,

2  is the estimated noise standard deviation, which 
can be computed globally31 or spatial-adaptively30. The former is used in this paper. Parameter σ=h 2x x con-
trols the attenuation of the second exponential function, where σx is a scale parameter estimated from the image 
background. M( )i k,  denotes the length of the vector M( )i k, .

Given D subjects, a “mean” signal can be computed based on the weights resulting from patch matching:


∑ ∑ σ=

















−
= ∈

S w d S dx q x q( , ) ( ) ( , ; ) 2 ,
(9)

i k
d

D

i k j l j l
x q1( , )

, ; ,
2 2

j l i k,

where S(xi, qk; d) is the measured signal associated with the d-th subject at location ∈x i
3 with wavevector 

∈qk
3. i k,  is a local x-q space neighborhood associated with (xi, qk), defined by a radius rs in x-space and an 

angle αs in q-space. Note the bias associated with the Rician noise distribution is removed in this process31. σ is 
the Gaussian noise standard deviation that can be estimated from the image background31. Without patch match-
ing, a “simple averaging” version of (9) is given as

Figure 11.  Sagittal view of ODFs (close-ups). Rows 1, 3, and 5 are the results given by simple averaging and 
rows 2, 4, and 6 by the proposed method.
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∑ σ= − .
=

S
D

S dx q x q( , ) 1 ( , ; ) 2
(10)

i k
d

D

i k
1

2 2

Mean Shift.  Given a set of diffusion signal profiles ∈ = …S d d Dx q x q{ ( , ; ): ( , ) , 1, , }j l j l i k, , we want to 
determine the modal profile S x q( , )i k . This is achieved using a mean shift algorithm15 that is modified to take 
advantage of the patch matching mechanism described above. Mean shift is a non-parametric algorithm for locat-
ing the maxima of a density function and is hence a mode-seeking algorithm. It is an iterative algorithm where the 
mean is progressively updated by using the mean computed in the previous iteration as the reference for comput-
ing sample similarity. Let a kernel function K(xi − x) be given. This function determines the weight of nearby 
points for re-estimation of the mean. Typically a Gaussian kernel on the distance to the current estimation is used, 

− = − −K x x e( )i
c x xi

2
. The weighted mean of the density in the window determined by K:

Figure 12.  Normal-quality data. Comparisons of white matter fiber ODFs given by the simple averaging 
method (columns 1 and 3) and our method (columns 2 and 4). The fractional anisotropy images at the top are 
shown for reference. Visible differences between the methods are marked by arrows and boxes.
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where N(x) is the neighborhood of x, a set of points for which K(x) ≠ 0. The difference m(x) − x is called mean 
shift. The mean-shift algorithm now sets x ← m(x), and repeats the estimation until m(x) converges.

We first note that the weights computed using (7) is dependent on the signal vector S( ) of a patch . To 
explicitly express this dependency, we write  = ^ ^w d w dS S( ): ( ( ), ( ( )))i k j l i k j l, ; , , , . Note that we have made here the 
mean signal vector S( )i k,  the reference for weight computation. Our implementation of the mean shift algorithm 
involves the following steps. For iteration t = 1, 2, …, T,

	 1.	 Update weights  = − ^ ^w d w dS S( ) ( ( ), ( ( )))i k j l
t t

i k j l, ; ,
( ) ( 1)

, ,  based on (7).
	 2.	 Update the mean at each location (xi, qi) using (9) with weights w d{ ( )}i k j l

t
, ; ,
( )  and {S(xj, ql; d)} for 

∈x q( , )j l i k, .
	 3.	 Repeat steps above with t ← t + 1.

Figure 13.  Method overview. Three components of our method: (1) Computation of patch features: The 
spherical patches are mapped to a disc by using AEP so that rotation invariant patch features can be computed; 
(2) Patch matching: Using the computed patch features, patch matching is performed in a local x-q space 
neighborhood; (3) Mean-shift estimation: The mean shift algorithm is used to seek the most probable signal at 
each point in x-q-space.
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Parameter Settings.  For all experiments, we use the following parameters:

	 1.	 Coupé et al.30 suggested to set rs = 2 voxels and β = 1, we followed the former, but for the latter we set 
β = 0.1 since we have a greater number of patch candidates by considering the joint x-q space. Based on 
the theory of kernel regression, reducing the bandwidth when the sample size is large reduces bias. Results 
shown in Fig. 14 indicate that a suitable value for β is 0.1.

	 2.	 In our case, the minimal angular separation of the gradient directions is around 15° for each shell. We set 
the q-space neighborhood angle and search angle to twice of this value, i.e., αp = αs = 2 × 15° = 30°.

	 3.	 We set maximum order m = 4 with the consideration of both the quality of rotation-invariant features and 
the computational efficiency.

	 4.	 We compute the mean absolute difference tol between the outcomes of two consecutive iterations and stop 
iterating when γσ<tol , where σ is the standard derivation of Gaussian noise and γ = 0.001.

Figure 14.  PSNR in relation to β. PSNR in relationship to parameter β for synthetic dataset with (left column) 
one direction and (right column) two directions.
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