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Measuring Spectral Inconsistency 
of Multispectral Images for 
Detection and Segmentation of 
Retinal Degenerative Changes
Jian Lian1,2, Yuanjie Zheng1, Peiyong Duan1, Wanzhen Jiao3, Bojun Zhao3, Yanju Ren4 & 
Dinggang Shen5,6

Multispectral imaging (MSI) creates a series of en-face fundus spectral sections by leveraging an 
extensive range of discrete monochromatic light sources and allows for an examination of the retina’s 
early morphologic changes that are not generally visible with traditional fundus imaging modalities. 
An Ophthalmologist’s interpretation of MSI images is commonly conducted by qualitatively analyzing 
the spectral consistency between degenerated areas and normal ones, which characterizes the image 
variation across different spectra. Unfortunately, an ophthalmologist’s interpretation is practically 
difficult considering the fact that human perception is limited to the RGB color space, while an MSI 
sequence contains typically more than ten spectra. In this paper, we propose a method for measuring 
the spectral inconsistency of MSI images without supervision, which yields quantitative information 
indicating the pathological property of the tissue. Specifically, we define mathematically the 
spectral consistency as an existence of a pixel-specific latent feature vector and a spectrum-specific 
projection matrix, which can be used to reconstruct the representative features of pixels. The spectral 
inconsistency is then measured using the number of latent feature vectors required to reconstruct the 
representative features in practice. Experimental results from 54 MSI sequences show that our spectral 
inconsistency measurement is potentially invaluable for MSI-based ocular disease diagnosis.

Multispectral imaging (MSI) is non-invasive computational photography that penetrates various features of 
physical objects within the field of view by leveraging a variety of spectral bands1–3. MSI involves light from fre-
quencies not only within the visible light range but also from beyond (e.g. infrared), thus allowing extraction of 
additional information that is difficult for a human eye to capture. MSI has thus established itself as an important 
imaging tool in research areas of airborne mapping, astronomical imaging, dentistry, dermatology, histopathol-
ogy and ophthalmology4. For ophthalmologists, MSI offers dissections and visualizations of the inner limiting 
membrane all the way to the choroid by taking a sequence of spectral images via MSI systems like the Retinal 
Health Assessment (RHA, Annidis Health System Corp., as shown in Fig. 1)5–7. As an advanced imaging modal-
ity, MSI enables ophthalmologists’ differentiation of and followup on a wide variety of complex eye conditions 
and diseases. Interpreting MSI images based on human visual inspection remains the reference standard in MSI 
applications. However, computer-based algorithms are attracting more and more research interests due to their 
ability to provide objective and automatic image assessments.

An Ophthalmologist’s diagnosis with MSI is commonly carried out by examining the spectral inconsistency of 
retinal degenerations compared with normal tissues, which reflects the absorbtion variations of light in different 
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wavelengths. MSI differs from other retinal imaging instruments in that it exploits an extensive range of discrete 
monochromatic LED-sourced wavelengths (ranging from 550 nm to 950 nm) to create a collection of noninva-
sive en-face spectral sections, which highlight the anatomic and metabolic signatures throughout the thickness 
of retina and choroid. The long-wavelength light (beyond 600 nm) reveals properties of melanin while a slightly 
longer wavelength reflects liposfuscin5. In contrast, wavelenghths ranging from 533 nm to 850 nm are selectively 
absorbed by hemoglobin, melanin and macular pigments. An assessment of the spectral inconsistency allows 
ophthalmologist’s early detection of pathologies. For example, early changes of retinal pigment epithelium (RPE) 
of RPE disruption are observed as normal structures in short wavelengths and a slight structural variation in 
pigment pattern in the red (620 nm, 660 nm, 690 nm and 740 nm) and infrared (760 nm, 780 nm, 810 nm and 
850 nm) spectral slices4.

Visual estimation of the MSI spectral inconsistency remains the reference standard for MSI-based diagnostic 
pathology, with which the ophthalmologist qualitatively assesses image variations across different spectra and 
compares these variation properties between different locations. However, automated and quantitative assess-
ment of the spectral inconsistency is increasingly required along with elevated usage of MSI. Automated tools are 
potentially capable of providing more prognostic and predictive markers, which might enable ophthalmologists 
to assess the aggressiveness of a disease in its early stage or review its response to therapy. In addition, automated 
analysis is not aimed at replacing but rather assisting the ophthalmologists, to not only increase diagnostic preci-
sion and inter-observer reliability but also reduce labor costs.

In this paper, we propose a method for measuring MSI spectral inconsistency based on an outlier detec-
tion framework, which can be used to detect retinal degenerations and segment the corresponding deteri-
orated regions. Specifically, we measure spectral consistency by extracting the common spectral properties of 
normal tissues and specify degenerations as outliers that bear inconsistent spectral properties with normal tis-
sues. Mathematically, we define spectral consistency as the fact that the representative features of any pixel in 
any spectrum can be reconstructed by projecting linearly a unique pixel-specific latent feature vector with a 
spectrum-specific projection matrix. In contrast, the reconstruction of a spectrally inconsistent pixel requires 
more than one latent feature vector. The proposed method is founded on a probabilistic Gaussian mixture model 
and designed to find a MAP (maximum a posteriori) estimate of the projection matrix and the assignment to the 
latent feature vector(s) via a stochastic expectation-maximization (SEM) algorithm. One unique property of this 
algorithm lies in the fact that the latent feature vectors do not need to be explicitly resolved, leading to a robust 
and fast estimation.

Results
Our validation database is comprised of 54 MSI image sequences acquired by using an Annidis RHATM instru-
ment (Annidis Health Systems Corp., Ottawa, Canada). These images are of oculus dexter (OD) or oculus sinister 

Figure 1.  A collection of MSI images captured by Annidis RHA from a patient aged 60 and diagnosed with 
diabetic retinopathy. Ordered from left to right and from top to bottom, the first 11 sequential images are 
captured with short wavelengths of MSI-550, MSI-580, MSI-590, MSI-620, MSI-660, MSI-690, MSI-740, MSI-
760, MSI-780, MSI-810 and MSI-850, respectively.
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(OS) from 5 healthy subjects and 22 patients diagnosed with diabetic retinopathy, branch retinal vein occlusion 
or age-related macular degeneration. From the unhealthy images, microaneurysm, retinal hemorrhages, hard 
exudates, cotton wool spots, retinal thickening or macular edema were documented. These images are provided 
in the format of DICOM with a bit depth of 16 and in size of 208 × 2048. Each sequence bears 11 spectral slices 
captured with wavelengths of MSI-550, MSI-580, MSI-590, MSI-620, MSI-660, MSI-690, MSI-740, MSI-760, 
MSI-780, MSI-810 and MSI-850, which correspond to amber, green, infrared, red and yellow, respectively.

The spectral inconsistency measurement approach we present in this paper offers a score value for each pixel 
to indicate the probability (a value in [01]) of this pixel being degenerated. We carry out 3 experiments in order to 
validate the usefulness of the output of the proposed approach. First, we compare both qualitatively and quantita-
tively between the algorithm-measured spectral inconsistency and the manually delineated degenerated regions 
in the MSI sequence. Second, we show that the inclusion of spectral inconsistency as an additional feature can 
help boost the performance of the classification-based retinal degeneration segmentation algorithm. Third, we 
test the speed of and agreement between ophthalmologists in manual segmentation of retinal degenerations and 
compare between a case of using the spectral inconsistency as a guide and another case without using it.

To eliminate the spatial misalignment between MSI spectral slices, we employ the semidefinite 
programming-based joint alignment algorithm8 to register the sequential images in each MSI sequence. This 
algorithm solves a low-rank and semidefinite matrix that stores all pairwise-image feature mappings by minimiz-
ing the total amount of point-to-point matching cost via a convex optimization of a semidefinite programming 
formulation. It takes in a complete consideration of the information aggregated by all point-matching costs and 
enables the entire set of pairwise-image feature mappings to be solved simultaneously and near-optimally. This 
algorithm has been shown to be extremely effective in aligning sequential multimodel images.

Agreement Between Spectral Inconsistency and Degenerated Retinal Regions.  To assess the 
agreement between the spectral inconsistency and the degenerated retinal regions, we randomly chose 34 MSI 
sequences (3 from healthy subjects and 31 from patients), and in each sequence from patients, two ophthalmolo-
gists manually drew the degenerated areas by carefully observing and comparing different spectral slices. We then 
ran our algorithm to measure the spectral inconsistency value for each pixel of each sequence. We then obtained 
a set of degenerative regions by establishing a threshold for the spectral inconsistency in a way that pixels with a 
value above this threshold are treated as degenerated and as healthy otherwise. By varying the threshold value, we 
plotted the receiver operating characteristic (ROC) curve using the ROCKIT algorithm9 and calculated the area 
under the curve (AUC) values, as shown by the results in Fig. 2. In addition to the AUC value, we also found that 
the best segmentation (as shown in Fig. 3) accuracy of our algorithm is 0.73 and 0.75 when treating the manual 
delineations of ophthalmologist #1 and #2 as the gold standard, respectively. From Fig. 3, we can see that microa-
neurysm, retinal hemorrhages and hard exudates can be observed from this subject, and our algorithm detected 
them successfully.

Classification-based Degeneration Recognition by Using Spectral Inconsistency.  We trained a 
SVM binary classifier10 with a Gaussian kernel to distinguish normal pixels from the degenerated ones. The clas-
sifier treats all spectral values of each pixel as its features. A leave-one-out cross-validation strategy is exploited, 
which involves treating each of the 34 MSI sequences as the validation set and the remaining as the training 
set and repeating on all these ways to cut the original set into validation and training. We then consider the 
spectral inconsistency measured by our algorithm as an additional feature of the SVM classifier in order to val-
idate its value in this per-pixel classification. The AUC values obtained without/with the spectral inconsistency 
are 0.73/0.77 and 0.74/0.76 when treating ophthalmologist #1 (as shown in Fig. 4) and ophthalmologist #2 as 
the gold-standard, respectively. In addition, we found that the best accuracies without/with using the spectral 
inconsistency are 0.79/0.84 and 0.79/0.83 when treating ophthalmologist #1 and ophthalmologist #2 as the 
gold-standard, respectively.

Figure 2.  ROC curves generated by comparing the manual degeneration delineations from two 
ophthalmologists and our algorithm’s corresponding segmentations, which are obtained by establishing a 
threshold for the spectral inconsistency with different thresholds.
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Figure 3.  Manual degeneration delineations (lower two images) from two ophthalmologists and the automatic 
degeneration detection result (top-right) obtained with the best threshold on the spectral inconsistency 
measured by our algorithm, as indicated by the red color added in the spectral slice of MSI-550 (top-left) in 
Fig. 1.

Figure 4.  ROC curves measuring the performance of the SVM classifier in distinguishing the degenerated 
pixels and the normal ones, by including or not including the spectral inconsistency as an additional feature, 
respectively.
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Manual Retinal Degeneration Segmentation Guided by Spectral Inconsistency.  The spectral 
inconsistency measured by our algorithm is also invaluable due to its guidance on ophthalmologist’s diagnosis. 
This guidance is actually founded on the fact that the spectral inconsistency indicates the probability of the pixel 
being degenerated. By observing the spectral inconsistency map, ophthalmologists may locate and recognize the 
details of the degenerated area more easily and quickly.

To validate this benefit from the spectral inconsistency, the two ophthalmologists manually outlined the 
degeneration by observing all the MSI spectral slices and the generated spectral inconsistency map for the remain-
ing 20 MSI sequences. The average time (averaged over these two ophthalmologists) spent on each sequence 
is reduced from approximately 25 minutes on the 34 sequences (for which the spectral inconsistency was not 
involved) to approximately 14 minutes on the 20 sequences (for which the spectral inconsistency was used). In 
addition, we found that the Dice’s coefficient (averaged over these two ophthalmologists), which measures the 
overlapping ratio between the two ophthalmologists’ segmentation, is improved from 0.84 (generated without the 
spectral inconsistency) to 0.91 (generated with the spectral inconsistency).

Discussion
MSI employs multiple wavelengths of light sources to capture images of the retina and choroid and provides 
the ophthalmologists with the identification, interpretation, diagnosis and management of ocular pathology via 
spectral dissections. MSI represents a major advance in ocular diagnostics4 because the carefully selected spectral 
bands used by MSI are targeted to the clinically relevant structures and metabolic characteristics, particularly the 
ocular chromophores melanin and hemoglobin, as well as the fluorophore lipofuscin. MSI allows for an isolation, 
identification and interpretation of the early and subtle ocular pathologies that are often difficult when using a 
traditional instrument.

However, visual inspection-based diagnosis with MSI is absolutely not trivial although it remains the reference 
standard. In the process of visual inspection of the MSI images, the ophthalmologists observe and compare the 
spectral characteristics across different spectra in order to measure qualitatively the spectral inconsistency. This 
is rather difficult considering the fact that the number of spectral slices in an MSI sequence may be more than 10 
(as in the data set we are using in this paper).

In this paper, we propose a generative model for quantitatively measuring the MSI spectral inconsistency, 
which is validated to be able to reveal retinal degenerations. This model is built on our proposed mathemati-
cal definition of spectral consistency, which considers a pixel to be spectrally consistent when its representa-
tive features at any spectrum can be reconstructed by a linear projection of a single latent feature vector with a 
spectrum-specific projection matrix. With this definition, spectral inconsistency means a requirement of more 
than one latent feature vectors in the linear reconstruction. One key advantage of the proposed model is that the 
latent feature vectors (which play an import role in measuring the spectral inconsistency) are free from being 
inferred explicitly, which makes our algorithm robust and fast.

We have several findings from the experimental results described in the last section. First, segmentation of 
retinal degenerations by establishing a threshold for the spectral inconsistency measured using our algorithm 
complies well with manual segmentation of experienced ophthalmologists. This also means that the spectral 
inconsistency is potentially an invaluable indicator of retinal degenerations. Second, the spectral inconsistency 
measurement can help boost the performance of a classification algorithm designed for distinguishing the degen-
erated pixels from the normal ones and therefore can be treated as a new biomarker, which is potentially useful 
for early detection of pathologies. Third, the spectral inconsistency measurement can also offer a guidance for the 
ophthalmologists on recognizing pathological areas from MSI images, which reduces human effort and increases 
human speed in analyzing the sequential slices of MSI.

Disregarding the concrete generative model (to be detailed in next section) for measuring the spectral incon-
sistency from MSI, we can explain the mystery of why the proposed spectral inconsistency measurement can 
help to recognize the pathological areas from MSI based on an application of a similar mathematical model 
with multi-view anomaly detection11. Anomaly detection means identifying outlier observations, which do not 
conform to an expected pattern in a dataset. Unsupervised anomaly detection assumes that the majorities of the 
observations in the provided dataset are normal and looks for observations that seem to least fit to the remainder 
(i.e., outliers) of the dataset. In our spectral inconsistency measurement based on the proposed generative model, 
we assume that most pixels in MSI are normal, and then focus our efforts on searching for the potential outlier 
(i.e., degenerated) pixels whose spectral properties are different from the normal ones. The resulted spectral 
inconsistency is therefore associated with the probability of being pathological. This unsupervised identification 
of retinal pathologies is potentially invaluable in early diagnosis and easier differentiation of occult or overlapping 
pathologies.

Methods
Our method is based on a basic assumption that normal retinal tissues are consistent over certain spectral prop-
erties, whereas retinal degenerations are inconsistent. We propose a generative model approach for extracting the 
consistent spectral properties of normal tissues and measuring the spectral inconsistency of each retinal pixel, 
with which we can detect and segment the regions bearing degenerative changes by establishing a threshold for 
the spectral inconsistency. Specifically, we define spectral consistency as the fact that the representative features 
at any spectrum of a pixel can be reconstructed by a linear projection of a single latent feature vector with a 
spectrum-specific projection matrix. In contrast, the reconstruction of spectrally inconsistent pixels requires 
more than one latent feature vectors. As a key advantage of the proposed model, the latent feature vector are not 
needed to be explicitly inferred, which makes the algorithm robust and fast.
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Probabilistic Model for Measuring Spectral Inconsistency.  We are given a sequence of s retinal MSI 
spectral slices, each with n pixels. We then have a data matrix = ∈ ×

X x x[ , , ]n
d n

1 , where ∈x i
d denotes a 

vector of features extracted from all spectral slices at pixel i. Supposing that there are dj features extracted from the 
jth spectral slice, we then have = ∑ =d dj

s
j1 . We use xij to represent the vector of features extracted at pixel i and 

from the jth spectral band. Our goal is then to specify degenerative pixels that bear inconsistent observation fea-
tures across different spectral slices compared with normal pixels.

We define mathematically that a pixel i is spectrally consistent if its representative features xij at any spectrum 
j can be reconstructed by a linear projection of a single latent feature vector ∈zi

l with a spectrum-specific 
projection matrix ∈ ×Pj

d lj , i.e., =x P zij j i. We can see from this definition that zi is shared in the reconstruction 
of all spectra for a spectrally consistent pixel i. At the same time, we assume Pj is shared by all pixels. In contrast, 
for a pixel i that is spectrally inconsistent, different spectra might be reconstructed with different latent feature 
vectors, which are denoted by = ∈ +mZ z{ , }i im , where + represents the set of positive integers.

In the probabilistic model introduced in this paper, the probability of the data xij for the ith pixel and jth spec-
trum is calculated with the following Gaussian mixture model


∑σ σ| = |−

∈ +
p x wZ P W I N x P z I( , , , ) ( , / ),

(1)
ij i j i

m
im ij j im

1

where N(x|μ, Σ) denotes a Gaussian distribution with mean μ and covariance matrix Σ, = | ∈ +mW w{ }i im  are 
the mixture weights, σ is a precision parameter and I means an identity matrix. We generate the mixture weights 
wm with a Dirichlet process, which is accomplished by a stick-breaking process12 with a concentration parameter 
γ. At the same time, we assume that σ and the latent feature vector zim are drawn from a Gamma distribution 
Gamma (α, β) and a Gaussian distribution N(0, I/(σr)), respectively.

To measure the spectral inconsistency of retinal MSI based on the probabilistic model in Eq (1), we employ the 
SEM algorithm11. This algorithm is an iterative method to find a MAP estimate of the projection matrix {Pj} and 
a latent vector assignment = ∈ +sS { }ij  where sij indexes the latent vector in Zi used for reconstructing xij. One 
strength of this algorithm lies in its property of being free from the requirement of an estimation of the latent 
feature vectors Zi, mixture weights Wi and precision parameter σ because they can be marginalized out 
analytically.

E-Step.  The E-step of the SEM algorithm samples a latent vector assignment value for any pixel i and spectrum 
j while fixing the projection matrix P with the following probability function
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where −ij means the related set excluding pixel i and spectrum j.
Mathematical deductions of Eq. (2) can be conducted for two cases of sij: 1) sampling from the existing latent 

feature vectors and 2) introducing a new latent feature vector. With a set of mathematical deductions11, Eq. (2) can 
be represented as the followings for the former case:
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where Nim−j denotes the number of spectra assigned to the mth latent feature vector without considering the jth 
spectrum, and −ij means the related values computed by excluding pixel i and spectrum j In Eq (3), A and B are 
calculated by
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where Mi denotes the number of latent feature vectors created for pixel i,
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When a new latent feature vector is needed in order to determine sij, Eq. (2) is expressed as
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M-Step.  The M-step of the SEM algorithm estimates the projection matrix P while fixing the latent feature 
assignment S with the following estimation equation, which is obtained by maximizing the logarithm of the joint 
likelihood of X and S given P, α, β, r and γ (here we omit the deduction details for economy).
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The SEM algorithm iterates the E-step and the M-step, which samples sij for each pixel i and spectrum j using 
Eq. (2) and estimates the projection matrix Pj for each spectrum j.

Measuring Spectral Inconsistency.  For each pixel i, we measure its spectral inconsistency ψi by computing the 
average probability of the event Mi > 1 over all iterations of the SEM algorithm with the following equation

∑ψ =
=

>�
T
1

(11)i
t

T

M
1

1i

where � is the indicator function which takes a value of 1 if the condition Mi > 1 is satisfied and 0 otherwise. 
Obviously, the condition Mi > 1 can be evaluated by using the estimations of sij in the E-Step of the SEM 
algorithm.

Specifying Representative Features and Setting Parameters.  The representative features are extracted to describe 
the local image pattern around each pixel and specified as the image gradient orientation13 rather than the image 
intensity. As shown in several works14, 15, image gradient orientations can boost the performance of image clas-
sification, multi-output regression and subspace learning. Specifically, we compute the image gradients and the 
corresponding gradient orientation at each pixel of each spectral slice. We then treat the vector formed by concat-
enating all gradient orientations with a local window (in a size such as 7 × 7) as the representative feature vector 
of this pixel.

We terminated the algorithm after 400 iterations and empirically set the parameters γ = 1.2, α = 1 and β = 1. 
We specified the length l of the latent feature vector with a cross-validation process. Specifically, we compared the 
manually drawn degenerative regions of retina with the algorithm’s results generated with different l values and 
then chose the smallest number of l with the best accuracy.

Data availability statement.  The datasets analysed during the current study are available from the corre-
sponding author on reasonable request.
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