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Neonatal cardiac dysfunction and 
transcriptome changes caused by 
the absence of Celf1
Jimena Giudice1,2, Zheng Xia3,4, Wei Li3,4 & Thomas A. Cooper1,3,5

The RNA binding protein Celf1 regulates alternative splicing in the nucleus and mRNA stability 
and translation in the cytoplasm. Celf1 is strongly down-regulated during mouse postnatal heart 
development. Its re-induction in adults induced severe heart failure and reversion to fetal splicing 
and gene expression patterns. However, the impact of Celf1 depletion on cardiac transcriptional and 
posttranscriptional dynamics in neonates has not been addressed. We found that homozygous Celf1 
knock-out neonates exhibited cardiac dysfunction not observed in older homozygous animals, although 
homozygous mice are smaller than wild type littermates throughout development. RNA-sequencing 
of mRNA from homozygous neonatal hearts identified a network of cell cycle genes significantly up-
regulated and down-regulation of ion transport and circadian genes. Cell cycle genes are enriched for 
Celf1 binding sites supporting a regulatory role in mRNA stability of these transcripts. We also identified 
a cardiac splicing network coordinated by Celf1 depletion. Target events contain multiple Celf1 binding 
sites and enrichment in GU-rich motifs. Identification of direct Celf1 targets will advance our knowledge 
in the mechanisms behind developmental networks regulated by Celf1 and diseases where Celf1 is mis-
regulated.

CUGBP, Elav-like family member 1, Celf1, belongs to a family of RNA binding proteins containing six paral-
ogs (Celf1-6). Celf1 and Celf2 are mainly expressed in heart, skeletal muscle, and brain1,2. Celf1 is highly con-
served and is involved in multiple RNA processing functions. In the nucleus, Celf1 regulates alternative splicing, 
polyadenylation, and RNA editing. In the cytoplasm Celf1 controls mRNA stability, and translation3. CELF1 
has been implicated in diverse human diseases including mis-regulation in several cancers4–7, up-regulation in 
Myotonic Dystrophy type 1 (DM1)8–11, and more recently it has been associated with Alzheimer disease12,13.

Celf1 protein expression patterns during development are conserved in the chicken and mouse14. In heart 
Celf1 protein expression levels are high during embryogenesis and the perinatal period, start to decrease at post-
natal (PN) day 6–7, and at adult stages are dramatically reduced14,15. This developmental down-regulation of Celf1 
protein correlates with coordinated alternative splicing transitions that occur between birth and adulthood15. We 
previously demonstrated that transgenic over-expression of human CELF1 specifically in cardiomyoctes in adult 
mice leads to severe cardiac failure. These animals exhibit extensive mis-regulation of alternative splicing and 
gene expression developmental networks15–18. Heart failure has been shown to induce a switch to fetal programs 
of alternative splicing19,20 and gene expression21. When Celf1 is re-induced in adults it is unclear which transcrip-
tional and posttranscriptional changes are directly driven by Celf1 rather than an indirect effect of cardiomyopa-
thy. We thus chose to use homozygous Celf1 knock out (Celf1 −​/−​) mice to identify putative Celf1 pre-mRNA 
(splicing) and mRNA (stability) targets in mouse neonatal hearts.

Constitutive Celf1 −​/−​ mice have previously been shown to be viable when in a mixed strain background but 
with early mortality, growth retardation, and impaired fertility in surviving adults22. Here we aimed to identify 
the transcriptional and posttranscriptional networks regulated in heart by Celf1 using these Celf1 −​/−​ mice22. 
We were particularly interested in the perinatal period when Celf1 protein levels are relatively high prior to post-
natal down-regulation. We first confirmed previous findings regarding the smaller size and reduced viability of 
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homozygous mice22. We detected altered electrophysiological and contractile functions at early postnatal stages 
that could explain reduced viability. Animals did not show abnormal cardiac functions at five weeks of age. Deep 
RNA-sequencing (RNA-seq) of Celf1 −​/−​ heart samples identified extensive transcriptional changes at post-
natal day 3 (PN3). We identified 45 alternative splicing events that are responsive to Celf1 depletion. Most of 
these events contain Celf1-CLIP tags and are enriched for GU rich motifs within the alternatively spliced regions 
and/or the flanking sequences suggesting that they are direct Celf1 splicing targets. Ion transport and circadian 
rhythm genes are significantly down-regulated in hearts from PN3 Celf1 −​/−​ animals in comparison with wild 
type PN3 hearts. Furthermore, we identified a network of cell cycle genes that are significantly up-regulated in 
PN3 Celf1 −​/−​ hearts. These genes are enriched for Celf1 binding sites based on CLIP-seq data supporting a reg-
ulatory role for Celf1 at neonatal stages in regulating the stability of mRNAs from cell cycle genes.

Results
Celf1 loss of function impacts viability.  Celf1 protein is down-regulated more than ten times during 
postnatal heart development15. Therefore, we first evaluated Celf1 protein expression levels in hearts at neonatal 
(PN3) and later (PN38-42) stages from Celf1 −​/−​ and Celf1+​/+​ animals by Western blot assays. Celf1 protein 
was completely absent in hearts from Celf1 −​/−​ neonates (Fig. 1a). Celf1 mRNA levels at PN3 were decreased 
20-fold in Celf1 −​/−​ hearts based on RNA-seq data. Celf1 protein expression in adult (PN38-42) Celf1 +​/+​ ani-
mals decreased approximately 40-fold and was not detected in Celf1 −​/−​ mice (Supplementary Fig S1). Only a 
slight up-regulation of the paralog Celf2 was observed and there was no change in level of Mbnl1, an RNA bind-
ing protein that co-regulates a subset of Celf1 targets (Fig. 1a).

As described previously22, Celf1 −​/−​ animals were smaller than their wild type littermates throughout post-
natal development (Fig. 1b) and the number of three-four week old Celf1 −​/−​ animals from Celf1 −​/+​ matings 
was significantly lower than expected. At PN3, we observed that out of 75 mice (from ten Celf1 −​/+​ matings), 
42 were heterozygous, 21 were wild type, and only 12 were homozygous. On the other hand, out of 107 PN21-
28 mice from 15 Celf1 −​/+​ matings, 65 were heterozygous, 32 were wild type, and only 10 were homozygous 
(Supplementary Table S1). For litters evaluated at PN3, χ2 did not reach significance, (Supplementary Table S1) 
although the data showed a trend toward a lower than expected number of Celf1 −​/−​ animals. However, χ2 
was significant (p <​ 0.001) at PN21-28 demonstrating that fewer homozygous animals than expected survived 
(Supplementary Table S1). Taken together and consistent with a previous report22, we conclude that Celf1 loss of 
function leads to retarded growth and reduced viability.

Cardiac function is significantly affected in Celf1 −/− neonates.  We next examined cardiac func-
tions at two developmental stages, early after birth (PN3-5) and in young adults (PN35-36). Echocardiogram 
and electrocardiogram (ECG) studies showed no significant differences between homozygous and wild type ani-
mals at PN35-36 (Supplementary Tables S2 and S3). However, at neonatal stages QTc (corrected QT interval) 
and QT dispersion (maximum QT interval minus minimum QT interval) were increased in Celf1 −​/−​ animals 
reflecting abnormalities in repolarization23 and disparity of ventricular recovery times24 (Fig. 2a, Supplementary 

Figure 1.  Celf1 knock out impacts viability and animal size throughout postnatal development. (a) Celf1 
protein levels were evaluated by Western blot assays at PN3 and PN38-42. Cropped blots are displayed. Full-
length blots are shown in Supplementary Fig. S6. (b) Body weight was measured for PN3, PN21, and PN38-42. 
Results are shown as mean ±​ s.e.m. *p ≤​ 0.05 Student t-test (2 tails), for PN3: n =​ 6 (3 females +​ 3 males) (Celf1 
−​/−​) and n =​ 8 (4 males +​ 4 females) (Celf1 +​/+​), for PN21: n =​  4 (2 females +​ 2 males) (Celf1 −​/−​) and 
n =​ 12 (6 males +​ 6 females) (Celf1 +​/+​), for PN38-42: n =​  3 (2 females +​ 1 male) (Celf1 −​/−​) and n =​ 3 males 
(Celf1 +​/+​) Sarc: sarcomeric.
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Figure 2.  Cardiac functions and heart and body weights are reduced in Celf1 −/− neonates. (a) QT 
dispersion and QTc were measured by ECG assays in neonates at PN3-5. See Supplementary Table S4.  
(b) Ejection fraction (EF) and fraction shortening (FS) were evaluated by echocardiograms in neonates at PN3-
5. See Supplementary Table S5. Results are shown as mean ±​ s.e.m. *p ≤​ 0.05 Student t-test (2 tails), n =​ 4  
(Celf1 −​/−​), n =​ 11 (Celf1 +​/−​), n =​ 7 (Celf1 +​/+​). (c) Body and heart weights (BW and HW, respectively) and 
tibia length (TL) were measured in neonates at PN3. Results are shown as mean ±​ s.e.m. *p ≤​ 0.05 Student t-test 
(2 tails). Females: n =​ 4 (Celf1 −​/−​), n =​ 13 (Celf1 +​/−​), n =​ 4 (Celf1 +​/+​). Males n =​ 3 (Celf1 −​/−​), n =​ 12 
(Celf1 +​/−​), n =​ 6 (Celf1 +​/+​). n.s: not significant.
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Table S4). The volumetric fraction of blood pumped out of the left and right ventricles per heart-beat is known 
as the ejection fraction (EF). EF was reduced in Celf1−​/−​ animals (62% ±​ 3%, n =​ 4) in comparison with hete-
rozygous (69% ±​ 2%, n =​ 11, p =​ 0.18 homozygous versus heterozygous), and wild type mice (75% ±​ 3%, n =​ 7, 
p =​ 0.03 homozygous versus wild type) (Fig. 2b, left, Supplementary Table 5). Similarly, the shortening level of 
left the ventricular diameter between end-diastole and end-systole (fractional shortening, FS) was significantly 
reduced in homozygous animals (31% ±​ 2%, n =​ 4) in comparison with heterozygous (36% ±​ 2%, n =​ 11, p =​ 0.12 
homozygous versus heterozygous), and wild type mice (41% ±​ 2%, n =​ 7, p =​ 0.02 homozygous versus wild type) 
(Fig. 2b, right, Supplementary Table S5). The other echocardiographic parameters showed no differences between 
genotypes and M-mode images (Supplementary Fig. S2) from each genotype are consistent with the quantitative 
data presented in Fig. 2b and Supplementary Table S5 in that there is little difference between the genotypes in the 
gross anatomic changes during contraction.

We studied more in detail the neonatal animals measuring their body weight, heart weight and tibia length. 
We normalized heart weights and body weights to tibia length since we observed differences in body weight. 
Overall, we observed that both PN3-5 homozygous females and males exhibited significant smaller body and 
heart weights than wild type animals (Fig. 2c).

In conclusion we found that neonate cardiac functions and morphology are impacted by the absence of Celf1. 
Hearts of PN3-5 Celf1 −​/−​ pups are smaller and show reduced function compared to those from wild type and 
heterozygous littermates, possibly contributing to reduced viability.

Celf1 regulates alternative splicing in neonatal hearts.  To identify the transcriptional and post-
transcriptional networks regulated by Celf1 in neonatal hearts, we performed RNA-seq using polyadenylated 
mRNA isolated from ventricles of Celf1 −​/−​ and Celf1 +​/+​ animals at PN3 and from Celf1 +​/+​ animals at 
PN38 at which point Celf1 levels have decreased (Supplementary Fig. S1). The high quality of the RNA-seq data 
was reflected by efficient mapping to the genome for all samples (85–86%) and sufficient depth for alternative 
splicing analysis (>​179,000,000 paired end reads) (Supplementary Table S6). Alternative splicing data (percent 
spliced in, PSI) from two replicates of homozygous or two wild type samples showed high levels of correlation 
(Pearson =​ 0.98 for Celf1 +​/+​ animals, Pearson =​ 0.95 for Celf1 −​/−​ animals) (Fig. 3a).

We identified 45 alternative splicing events affected in Celf1 −​/−​ neonatal heart (|Δ​psi| ≥​ 15%) 
(Supplementary Table S7). Out of the 45 events, 27 (60%) exhibited more inclusion in Celf1 −​/−​ compared 
to wild type animals (psiCelf1+​/+​ <​ psiCelf1/−) and 18 (40%) transitions showed the opposite change (psiCelf1+​/+​ >​  
psiCelf1/−) (Fig. 3b). The affected alternative splicing events were mainly cassette exons (28 events, 62%) and a 
lower proportion of them were intron retention (IR) (nine events, 20%), mutually exclusive exons (MXE) (six 
events, 13%), and alternative 3′​ splice site selection (A3SS) (two events, 4%) (Fig. 3c). On the other hand, alter-
native splicing events regulated during postnatal development (PN3 to PN38) were more equally distributed in 
terms of skipping/inclusion: 161 events (52%) showed more inclusion at PN38 than in neonates, and 150 events 
(48%) showed more skipping at PN38 (Fig. 3d). Developmentally regulated splicing events were also mainly 
cassette exons (168 events) and 62 IR events, 45 MXE, 15 A3SS, and 21 alternative 5′​ splice sites (A5SS) (Fig. 3e).

From the 45 alternative splicing events responsive to Celf1 depletion at PN3 only nine events were also regu-
lated during development between PN3 and PN38 when Celf1 levels decrease (five of them in the same direction 
as development and four in the opposite direction) (Fig. 3f). Gene ontology analysis of the genes with alternative 
splicing changes in PN3 Celf1−​/−​ animals revealed that the most significantly enriched categories were related 
to chromatin organization (purple), cytoskeleton functions and cell-cell contact (green), and lipid and glucose 
metabolism (yellow) (Fig. 3g).

Alternative splicing events sensitive to Celf1 depletion contain Celf1 CLIP tags and are enriched 
in GU rich motifs.  We next validated the alternative splicing data by reverse transcription (RT) PCR experi-
ments. We designed primers annealing in the constitutive flanking regions of 16 alternative regions regulated by 
Celf1 depletion at PN3 (Supplementary Table S8). We performed RT-PCR using heart RNA from Celf1 +​/+​ and 
Celf1−/− animals at PN3 and PN38–42 (Fig. 4a,b, and Supplementary Fig. S3). The correlation between Δ​psi 
(psiCelf1−​/−​ - psiCelf1+​/+​) at PN3 obtained by RT-PCR and by RNA-seq was high (Pearson coefficient =​ 0.89) con-
firming the validity of quantitative splicing analysis from the RNA-seq data (Fig. 4c and Supplementary Table S8).

Celf1 binds GU rich motifs in regions in close proximity to the regulated splicing event25. We thus analyzed 
the motifs enriched in 22 alternative regions and 500 bp up- and downstream using MEME software26. A GU rich 
motif was most significantly enriched being present in 16 out of the 22 splicing events analyzed (Supplementary 
Fig. S4a,b). Interestingly a GA rich motif was also enriched (Supplementary Fig. S4a). Motif enrichment analy-
sis was used as a first approach to investigate the potential splicing targets of Celf1. However, to better evaluate 
direct Celf1 effects on alternative exons we looked for already available experimental evidence of Celf1 binding to 
pre-mRNAs. High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP)27 
allows global identification of targets for specific RNA binding proteins in cells. We used a Celf1 HITS-CLIP 
data set from the mouse C2C12 cell line28 to analyze Celf1-CLIP tags within or in close proximity to the alter-
native splicing events sensitive to the absence of Celf1 in neonatal hearts. Out of the 45 events we found that 
31 (69%) contained at least one Celf1-CLIP tag within the alternative region +​/−​ 500 bp up- or downstream 
(Supplementary Fig. S4c, left). The presence of Celf1-CLIP tags was significantly higher (p =​ 0.001) within  
+​/−​ 500 bp around alternative spliced regions affected by Celf1 −​/−​ than around 50 alternative splicing events 
responsive only to Mbnl1 −​/−​ (Supplementary Fig. S4c, right). Four events (9%) contained Celf1-CLIP tags in 
the flaking 500–800 bp, and the remaining 10 events (22%) did not contain any Celf1-CLIP tag within the alter-
native region or the flanking sequences (+​/−​800 bp) (Supplementary Fig. S4c).
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In summary, we identified alternative splicing events that are likely to be direct Celf1 targets in neonatal 
mouse heart. This conclusion is mainly based on the fact that they i) respond to Celf1 depletion in neonatal 
hearts, and ii) contain Celf1-CLIP tags within the alternative exons and/or the flanking regions.

Figure 3.  Celf1 loss of function results in alternative splicing changes in neonatal hearts. (a) Analysis of 
duplicate RNA-seq data sets (PN3) showed high levels of reproducibility evaluated by Pearson coefficients.  
(b,c) Number (b) and type (c) of alternative splicing events responsive to Celf1 absence at PN3. (d,e). Number 
(d) and type (e) of alternative splicing events regulated during development in wild type animals. (f) Alternative 
splicing events responsive to Celf1 absence at PN3 and also developmentally regulated between PN3 and PN38. 
(g) Gene ontology analysis of splicing events responsive to Celf1 absence in neonates (PN3). BP: biological 
processes. CC: cellular components. Dev: development. MF: molecular functions. Org: organization. Reg: 
regulation.
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Figure 4.  Validation of neonatal alternative splicing changes in the absence of Celf1. (a,b) Celf1 responsive 
splicing events identified by RNA-seq were validated by RT-PCR assays in RNA from Celf1−​/−​ and Celf1+​/+​  
hearts at PN3 and PN38-42. Left panel (a) shows three examples of events where Celf1 deletion induced more 
inclusion and right panel (b) three examples where Celf1 deletion promoted skipping. Other examples are 
shown in Supplementary Fig. S3. Results are shown as mean ±​ s.e.m. *p ≤​ 0.05 Student t-test (2 tails), n =​ 3. 
(c) Correlation analysis between Δ​psi values (psiCelf1−​/−​ - psiCelf1+/+) obtained by RNA-seq and RT-PCR for 16 
splicing events at PN3 (see Supplementary Table S8). Cropped gels are displayed. Full-length gels are shown in 
Supplementary Fig. S7.
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Cell cycle gene mRNAs are up-regulated in PN3 Celf1−/− hearts and are enriched for Celf1 
CLIP tags.  RNA-seq revealed a large number of genes differentially expressed in the absence of Celf1 in neo-
natal hearts (Supplementary Table S9). Correlation analysis of the gene expression levels expressed as FPKM 
(fragments per kilobase of transcript per million mapped reads) for Celf1 −​/−​ and Celf1 +​/+​ biological replicates 
at PN3 showed high Pearson coefficients (1.00 and 0.91, respectively) demonstrating reproducibility (Fig. 5a). We 
next analyzed the number of transcripts differentially expressed (≥​1.5 fold, with FDR ≤​ 0.05) in Celf1 −​/−​ com-
pared to Celf1 +​/+​ hearts at PN3 and those differentially expressed during heart development between PN3 and 
PN38 in Celf1 +​/+​ mice (≥​2.0 fold, with FDR ≤​ 0.05; threshold differences are due to the extensive number of 
genes developmentally regulated). There were 483 genes differentially expressed in Celf1 −​/−​ compared to Celf1 
+​/+​ in PN3 hearts (287 down-regulated and 198 up-regulated) (Fig. 5b, left). During Celf1 +​/+​ mouse postnatal 
heart development 3,023 genes were down-regulated and 976 genes were up-regulated (Fig. 5b, right).

Global gene ontology analysis of the genes differentially expressed in Celf1 −​/−​ hearts at PN3 revealed a sig-
nificant enrichment in functions related to cell cycle and proliferation (up-regulated) and ion transport, immune 
response, and circadian rhythm (down-regulated) (Fig. 5c and Supplementary Tables S10 and S11). Celf1 has 
been shown to bind 3′​ UTRs of transcripts and regulate mRNA stability28–30. To test the hypothesis that the 
absence of Celf1 in PN3 hearts affected mRNA levels of cell cycle genes we evaluated the presence of Celf1-CLIP 
tags within all of the 31 genes listed in the cell cycle category that was one of the most significant and the category 
with the highest number of genes (cell cycle, p =​ 2E-31) (Supplementary Table S10). We analyzed two groups of 
genes side by side: i) the 31 cell cycle genes (group a), and ii) a set of randomly selected 31 genes that did not show 
mRNA expression changes in Celf1−​/−​ mice (group b). Visual inspection of all 62 genes using the UCSC genome 
browser revealed that cell cycle genes (group a) contained more Celf1-CLIP tags per gene in their 3′​ UTRs in 
comparison with genes that were not affected by Celf1 loss (group b) (Fig. 6 show two examples of each group).

This observation led us to systematically compute the Celf1-CLIP tags present within the 3′​ UTRs and those 
located within intronic and exonic regions for each of the cell cycle genes of group a (left side of Supplementary 
Table S12). We performed similar analysis in the 31 genes randomly selected that were unaffected by Celf1 dele-
tion (group b) (right side of Supplementary Table S12). The analysis revealed that Celf1-CLIP tags are significantly 
more prevalent in 3′​UTRs of the regulated cell cycle genes (group a) compared to the set of control genes (group 
b) that are not affected by Celf1 loss of function (Fig. 6b). There were no significant differences in the presence 
of Celf1-CLIP tags within intronic or exonic regions of these two sets of genes (group a versus group b) however 
the total number of CLIP tags (3′​UTR +​ introns and exons) was significantly different reflecting the differences 
in the 3′​UTRs (Fig. 6b). In addition the correlation between Celf1-CLIP tags and the level of up-regulation (fold 
change) was higher for the 3′​UTRs (Pearson =​ 0.5) than for the intronic or exonic regions (Pearson =​ −​0.1) and 
total (Pearson =​ 0.2) (Fig. 6c) consistent with a correlation between Celf1 binding and mRNA levels.

Although our experiments and data cannot rule out other mechanistic scenarios, one possible explanation is 
that Celf1 may regulate the mRNA stability of a subset of cell cycle genes by binding to the 3′​UTRs. Assuming 
the hypothesis that Celf1 binding promotes mRNA decay31, mRNAs would be stabilized in the absence of Celf1 
consistent with the observed mRNA up-regulation in PN3 Celf1−​/−​ hearts. Further molecular experiments will 
be necessary to confirm this hypothesis and/or identify more complex mechanistic explanations for our global 
and high-throughput findings.

Discussion
We have characterized the Celf1 −​/−​ mice complementing previous work from Luc Paillard and colleagues22,32. 
While past studies focused on the physiological impact of Celf1 depletion in growth, spermatogenesis, and skel-
etal muscle, we provide characterization of the cardiac features in Celf1−​/−​ neonatal heart when Celf1 protein is 
normally high. Celf1 is a RNA binding protein that orchestrates multiple transcriptional and posttranscriptional 
programs important in normal development and disease. The mis-regulated expression of CELF1 seen in several 
diseases highlights the potential physiological importance of these coordinated networks. While the transcrip-
tional and posttranscriptional effects of CELF1 over-expression have been studied in vivo15–17, the effects of Celf1 
loss of function have not. This is particularly important in cardiac biology because Celf1 is down-regulated during 
postnatal development and its up-regulation in adult cardiomyocytes leads to heart failure15,16,18.

The alternative splicing events that we found to be responsive to the absence of Celf1 in PN3 heart were also 
enriched for Celf1-CLIP tags within the variable region or in the flanking sequences together with GU rich pre-
ferred binding motifs for Celf1. These data suggest that the identified splicing events are likely to be direct Celf1 
targets. Many of these splicing events are regulated by Celf1 depletion in C2C12 cells (unpublished data), reduc-
ing concern of secondary effects in vivo.

In terms of gene expression, it is interesting to note that it was previously shown that a dominant nega-
tive CELF protein expressed in heart produced a mild phenotype in young animals that resolved with aging33. 
Similarly to that study, our results also described the spontaneous recovery of a heart phenotype. Overlapping 
analyses indicate that only three of the genes affected by the mild or severe CELF1 dominant negative were also 
affected in the Celf1−​/−​ PN3 hearts using the 2.0 fold change in gene expression. For all three, the gene expres-
sion was affected in the same direction for the dominant negative and Celf1−​/−​ hearts consistent with a loss of 
function. However the relatively small number of genes precludes making firm conclusions.

We identified a set of cell cycle genes that are up-regulated in the absence of Celf1 in PN3 hearts. We also 
provided evidence that the 3′​UTRs of the cell cycle gene mRNAs are enriched for Celf1 binding sites. This bind-
ing is expected to destabilize the mRNA and therefore the absence of Celf1 at early neonatal stages is expected 
to stabilize cell cycle transcripts consistent with the up-regulation we observed. In heart and other tissues such 
as liver and brain, cell cycle and cell proliferation genes are strongly down-regulated after birth to allow cell dif-
ferentiation and tissue maturation for adult functions16,34,35. The fact that cell cycle genes are up-regulated when 
Celf1 is absent at PN3 together with the Celf1-CLIP tag presence in their 3′​UTRs is compatible with the idea that 
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Celf1 is exerting a destabilizing role on those transcripts. However, we cannot rule out other molecular mecha-
nisms involved in the up-regulation of cell cycle genes observed in neonatal hearts when Celf1 is absent. Among 

Figure 5.  Celf1 loss of function correlates with altered expression of mRNAs from cell cycle, ion transport 
and circadian genes. (a) Analysis of duplicate RNA-seq data sets (PN3) showed high levels of reproducibility 
evaluated by Pearson coefficients. (b) Genes differentially expressed ≥​ 1.5 fold (FDR ≤​ 0.05) (PN3 Celf1 −​/−​ 
vs Celf1 +​/+​) or ≥​ 2.0 fold (FDR ≤​ 0.05) (PN38 versus PN3 wild type animals). (c) Gene ontology analysis 
of differentially regulated genes in Celf1 −​/−​ animals in comparison with Celf1 +​/+​ was performed using 
DAVID software (biological processes and KEGG pathways) (See Supplementary Tables S10 and S11). Catab: 
catabolism. Down reg: down regulated. Metab: metabolism. Org: organization. Reg: regulation. Up reg: up 
regulated.
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these other mechanisms we should mention regulators acting in concert with Celf1 and transcriptional mod-
ifiers (transcription factors, epigenetics modifiers, etc.) regulated by Celf1 depletion that are the direct drivers 
of the changes in cell cycle genes. In addition, during normal postnatal development Celf1 is down-regulated15 
as are the cell cycle genes16 leading to an apparent discrepancy However, postnatal heart development is highly 
dynamic with regard to gene expression changes16 (Fig. 5). This apparent discrepancy can be likely due to a sce-
nario in which Celf1 contributes to maintaining a level of mRNAs by acting in combination with additional reg-
ulatory factors that become dominant repressors of mRNA, chromatin or transcription in the postnatal to adult 

Figure 6.  Cell cycle gene mRNAs that are sensitive to Celf1 depletion are enriched for Celf1 CLIP tags.  
(a) Celf1-CLIP tags and RNA-seq data were visualized using the UCSC genome browser. Two examples of cell 
cycle genes regulated by Celf1 depletion (left) and two for Celf1-nonresponsive genes (right) are shown. (b) 
Celf1-CLIP tags located within the 3′​UTRs and those located within intronic and exonic regions were computed 
for all 31 genes included in the “cell cycle” gene category (group a) and randomly selected 31 genes non 
responsive to Celf1 absence (group b) (Supplementary Table S12 left side shows group a and right side shows 
group b). Total Celf1-CLIP refers to the sum of those in the 3′​UTRs and those in the intron and exon regions. 
Results are shown as mean ±​ s.e.m. *p ≤​ 0.05 Student t-test (2 tails). n.s: not significant. (c) Correlation graphs 
between the Celf1-CLIP tags and up-regulation levels (fold change) (3′​UTRs, the exonic and intronic regions, 
and total).
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transition. Although our work open important new molecular questions to address experimentally, this work 
provides a new high-throughput view of the transcriptional dynamics in the absence of Celf1 in neonatal hearts.

Methods
Animals.  All animals were handled following the NIH Guidelines for Use and Care of Laboratory Animals 
that were approved by the Institutional Animal Care and Use Committee (IACUC) at Baylor College of Medicine. 
Dr. Luc Paillard from the Centre National de la Recherche Scientifique (CNRS, France) kindly provided us the 
Celf1 −​/+​ heterozygous mice (mixed 129Sv/BL6 strain)22. Animals were anesthetized before cervical disloca-
tion (older than PN21) or decapitation (neonatal) and the hearts were removed. Blood and atria were carefully 
removed and the ventricles were flash frozen in liquid nitrogen and kept at −​80 °C until use. Littermates were 
used for comparisons between genotypes for physiological and molecular analyses to standardize differences 
between animals and reduce variability as much as possible due to the mixed strain background. While we did not 
perform a formal survival analysis, an analysis of animals not selected for euthanasia provides a sense of reduced 
Celf1−​/−​ survival detected by PN3 suggesting either reduced fetal or neonatal survival and a fraction of animals 
survive beyond two months of age (Supplementary Fig. S5).

Western blot assays.  Ventricles were lysed in HEPES-sucrose buffer (10 mM HEPES pH 7.4, 0.32 M 
sucrose, 1 mM EDTA, and proteases inhibitors) using Bullet blender (Next Advance). SDS was added after tis-
sue disruption until a final concentration of 1%. Samples were sonicated for 3 min at 75 V (30 s on, 30 s off) and 
centrifuged for 10 min at 14,000 r.p.m at 4 °C. Supernatants were transferred into new tubes and the protein con-
centration was estimated utilizing the Pierce BCA protein assay kit (Thermo Scientific #23225). Samples were 
diluted in loading buffer (100 mM Tris-HCl pH 6.8, 4% SDS, 0.2% Bromophenol blue, 20% glycerol, 200 mM 
β​-mercaptoethanol) and boiled for 5 min. A total amount of 40 μ​g protein was separated by 10% SDS-PAGE 
and transferred into nitrocellulose membranes for 2 h at 120 V. Membranes were blocked with 5% non-fat dried 
milk in 0.1% Tween-TBS buffer (T-TBS) for 1 h, washed and incubated overnight at 4 °C with primary anti-
bodies diluted in 5% milk/T-TBS: mouse monoclonal anti-CUG-BP1, clone 3B1 (Milipore, #05-621) (1:1,000), 
mouse monoclonal anti-MBNL1 (Life Span #LS-B4372), a home made mouse monoclonal anti-Celf2 antibody 
(Etr3 clone 1H2)36 (1:1,000), rabbit polyclonal anti-sarcomeric alpha actinin (Abcam, #ab72592) (1:2,000). The 
next day, membranes were incubated with the secondary antibodies (1:5,000) diluted in 5% milk/T-TBS for 1 h 
at room temperature. The secondary antibodies were a peroxidase-conjugated goat anti-mouse IgG light chain 
specific (Jackson Immunoresearch, #115-035-174) and goat anti-rabbit IgG horseradish peroxidase-conjugated 
(Invitrogen, # 621234). Membranes were developed using the Super Signal West Pico Chemiluminiscent Substrate 
kit (Thermo Scientific #34080).

RNA isolation.  RNA was extracted using the RNeasy fibrous tissue mini-kit (Qiagen #74704) following man-
ufacturer protocols.

Alternative splicing validation by RT-PCR.  RT reactions were performed using the High Capacity 
cDNA RT Kit (Applied Biosystem #4368814) and PCRs using GoTaq DNA Polymerase (Promega #M7123). In 
both cases, manufacturer protocols were followed. PCR program contained the following steps: (i) 95 °C for 1 min 
45 s, (ii) 28 cycles of 95 °C for 45 s, 57 °C for 45 s and 72 °C for 1 min, (iii) 72 °C for 10 min, and (iv) 25 °C for 5 min. 
Primer sequences (Sigma) for the alternative splicing events evaluated are described in Table S8. PCR products 
were analyzed by 6% PAGE. We quantified the percentage spliced in (psi)37 of the alternative regions by densitom-
etry using ImageJ plugin for gel analysis and following equation 1 (Eqn 1).

= ×
+

psi 100 inclusion band
inclusion band skipping band (1)

Genotyping.  DNA was extracted from tail clips using Direct PCR lysis reagent (Viagen #102-T) following 
manufacturer protocols. PCR reactions were then performed using GoTaq DNA Polymerase (Promega #M7123) 
and the following primers (Sigma): i) for the Celf1 mutant allele (expected size 690 bp), Celf1-ko-mut-F 5′​- GAA 
TTA TGG CCC ACA CCA GT-3′​ and Celf1-ko-mut-R 5′​-GAG GGT TTT GGC TCC TAT CC-3′​ and ii) for the 
wild type Celf1 allele (expected size 490 bp), Celf1-ko-wt-F 5′​-GGA CCA CCA GAG CTA CAG ACA-3′​ and 
Celf1-ko-wt-R 5′​-ACC ACC CAG ACC AAC CAG AT-3′​. In both cases we multiplexed these PCRs using beta 
casein as an internal loading control with the following primers: Csn2-F 5′​-GAT GTG CTC CAG GCT AAA 
GTT-3′​ and Csn2-R 5′​-AGA AAC GGA ATG TTG TGG AGT-3′​ (expected band size 525 bp). For gender deter-
mination of postnatal mice we used the following set of primers in combination with the Csn2-F and Csn2-R for 
internal loading control: SRYdn 5′​-GAG TAC AGG TGT GCA GCT CTA-3′​ and SRYup 5′​- CAG CCC TAC AGC 
CAC ATG AT-3′​ (male expected size band: 450 bp). PCR program contained the following steps: (i) 95 °C for 
1 min, (ii) 30 cycles of 95 °C for 30 s, 60 °C for 30 s and 72 °C for 30 s, (iii) 72 °C for 5 min, and (iv) 25 °C for 10 min. 
Amplification products were analyzed by 1% (mutant band) or 2% (wild type band and gender determination) 
agarose gel electrophoresis.

RNA-seq experiments.  RNA-seq samples were analyzed for quality and only those samples passing the 
following criteria were used for RNA-seq: i) RNA integrated number (RIN) ≥​ 8.6, ii) ratio A260nm/A280nm ≥​ 1.8, iii) 
ratio A260nm/A230nm ≥​ 1.4, and iv) ratio r28S/16S ≥​ 1.5. RNA sample preparation for sequencing was performed 
using Illumina TruSeq protocols as previously described16. A paired-end 100 cycles run was used to sequence the 
flow-cell on a HiSeq2000 Sequencing System
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Computational processing of RNA-seq data.  Paired-end reads were aligned to the mouse genome 
(mm9) using TopHat 2.0.538. RSEM39 was used for differentially expressed gene analysis and FPKM calculation. 
In this manner we computed the number of fragments that mapped into Ensembl gene models, and followed by 
edgeR40 we obtained the differentially expressed genes from those showing a false discovery rate FDR <​ 0.05. 
Gene expression was quantified by FPKM41. Differential alternative splicing events were identified utilizing the 
SpliceTrap42 that is based on Ensemble 65 gene model. Alternative splicing was quantified by the percentage of 
mRNAs containing an alternative region known as psi value37. The events with psi changes between two condi-
tions |Δ​psi| ≥​ 15% were considered differential splicing events.

Gene ontology analysis.  The Database for Annotation, Visualization and Integrated Discovery (DAVID) 
v6.743,44 was used for gene ontology analysis. We considered significant p values ≤​ 0.05.

Motif analysis.  MEME version 4.9.026 (motif>​6–15 bp) software was used for motif analysis (maximum 
number of motifs was set at ten, and any number of repetitions was allowed). The E-value is the enrichment of a 
motif based on the following parameters: background frequencies, log likelihood ratio, width, sites, and training 
set size.

Celf1 HITS-Clip data analysis.  Celf1 HITS-CLIP data are available from the murine C2C12 cell line28. 
These Celf1 HITS-CLIP data were downloaded from the European Nucleotide Archive (ENA, accession number 
ERP00078912). The 4-bp tags were trimmed and we removed the sequences composed primarily of Illumina 
adapter. These pre-processed reads were then aligned to the mouse genome (mm9) using Bowtie13 software45 
(allowing two mismatches). The reads with identical 5′​ starts were collapsed into a single read to avoid potential 
PCR duplicates. Therefore, only unique mapped reads were considered Celf1 binding CLIP tags.

Electrocardiograms and echocardiograms.  ECGs and echocardiograms were performed in the 
Mouse Phenotyping Core at Baylor College of Medicine. Echocardiograms were performed using a Vevo 770 
Visualsonics high-resolution ultrasound system with a 707B probe for the cardiac analysis. The animals were 
anesthetized with 2.5% isoflurane mixed with 100% oxygen and maintained with 1.0–1.5% isoflurane mixed with 
100% oxygen during imaging. Images were obtained by an experienced imager in the short axis confirmation. All 
data was quantified using the Visualsonics Vevo analysis software package. Electrocardiograms were measured 
using the ECGenie (MouseSpecifics) equipment. Mice were placed atop the ECGenie pad and were allowed to 
acclimate for 5–7 min before data collection. Two segments of ECG data were then obtained for each mouse. All 
data was analyzed offline using the ECGenie software package.

Statistics.  Results are expressed as the mean ±​ s.e.m, Except for the χ2 test shown in Supplementary Table S1, 
p-values were estimated by the Student´s T-test (two tails). p ≤​ 0.05 was considered significant.
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