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SPECIAL ISSUE: Biomaterial Foundations of Therapeutic Delivery

Tailoring non-viral delivery vehicles for transporting

genome-editing tools

Wujin Sun"? and Zhen Gu'***

ABSTRACT The CRISPR-Cas system, especially the type II
CRISPR-Cas9 system from Streptococcuspyogenes, has rapidly
emerged as a popular genome editing tool. The development
of Cas9 derivatives further expanded the toolbox of CRISPR-
Cas9 based genome editing kit. However, therapeutic transla-
tion of the CRISPR-Cas9 system in vivo is severely impeded by
the absence of an appropriate delivery carrier. The complex-
ity and high molecular weight of the CRISPR-Cas9 system,
together with the physiological barriers for nucleus targeted
cargo transportation have made it a huge challenge for in
vivo therapeutic CRISPR-Cas9 delivery. Currently, the main
stream carriers for systemic delivery of CRISPR-Cas9 are vi-
ral based, such as adeno-associated virus. However, the safety
concerns surrounding viral vectors call for the development
of non-viral nanocarriers. In this review, we survey the recent
advances in the development of non-viral delivery systems for
CRISPR-Cas9. Challenges and future directions in this field
are also discussed.
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INTRODUCTION

The promise of treating disease from the genetic roots
made gene therapy an actively pursued modality by both
scientists and the general public [1-4]. The therapeutic
effect is achieved by applying genetic tools to precisely ma-
nipulate genetic materials within targeted cells, including
disruption, insertion, deletion, mutation and replacement
[5]. Ongoing clinical trials of gene therapy shed light on
treating serious genetic diseases associated with different
physiological systems, such as the immune, nervous or
blood circulation systems [6]. The type II CRISPR-Cas

(clustered regularly interspaced short palindromic repeats
(CRISPR)-CRISPR associated protein) system has rapidly
emerged as a facile genetic engineering tool for targeted in-
terrogation of almost any gene in any organism [7,8]. Early
investigations coined the popular CRISPR-Cas9 system
from Streptococcus pyogenes as a site-specific endonuclease
that could bind with a single guiding RNA (sgRNA) to
recognize specific DNA sequences for cleavage [9]. Cleav-
age of the targeted DNA loci in the genome introduces
double stranded DNA breaks, which could be repaired
by the cells through different pathways. Typically, DNA
repair of the cleavage introduces insertions or deletions
(indels) through the error-prone non-homologous end
joining pathway (NHE]), a mechanism usually adopted for
targeted gene disruptions [10]. In the presence of a pre-de-
signed donor DNA, precise genome editing could occur
incorporating sequence from the donor DNA into the
genome by homologous recombination [11]. The site-spe-
cific nuclease activity makes CRISPR-Cas9 a powerful tool
in achieving permanent changes to the genomes. Further
development of Cas9 by disabling its enzymatic activities
generates a “dead” version of Cas9, termed as dCas9, that
could be fused with different functional protein domains
to achieve transcriptional control, epigenetic regulation or
imaging [12].

Delivered by traditional gene transfection methods, such
as mechanical deformation of cell membrane [13], elec-
troporation [14], lipofection [15], microinjection [16] or
viral based transfection [17], CRISPR-Cas9 system were
widely adopted in ex vivo editing of germline cells from dif-
ferent species for the purpose of curing genetic disease in
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the off-springs of genetically diseased rats [18], reprogram-
ming mice [19,20] or monkey zygotes [21] to create animal
models for scientific study, or even the controversial human
germline cells for therapeutic studies [22,23]. However,
these proof-of-principle studies may not be directly trans-
lated into therapeutic applications [24]. Recent therapeu-
tic application of CRISPR is an indirect approach that fo-
cused on the ex vivo editing of immune cells for cancer im-
mune therapy, like chimeric antigen receptors T (CAR-T)
cells [25]. However, to realize the prospect of curing hered-
itary genetic disease in animals after birth, the development
of a suitable delivery method is the number one challenge
[26,27].

NONVIRAL CARRIER-MEDIATED CRISPR

DELIVERY

Many obstacles exist for delivering the CRISPR-Cas9 sys-
tem: 1) Cas9 is a large protein (~160 kDa) with genetic
sequence over 4000 base pairs (bp), making it an over-
whelmingly huge load even for the well-established adeno-
associated virus (AAV) based carriers [28]; 2) CRISPR-
Cas9 is multicomponent system composed of Cas9 protein,
sgRNA and an optional donor DNA, which makes it desir-
able to create carriers capable of delivering the three differ-
ent types of biomolecules simultaneously; 3) CRISPR-Cas9
takes effect in the nuclei of cells, and to reach this des-
tination, multiple physiological barriers need to be over-
come, such as avoiding proteases and nucleases in blood
circulation, extravasation into desired tissue, penetrating
the plasma membrane of targeted cells, escaping the en-
dolysosome entrapment after endocytosis, and infiltrating
the nuclear membrane [29].

In contrast to the facile adaptation of almost all types
of viral carriers to fit the CRISPR-Cas9 system [30], it has
been a tough task to design efficient non-viral nanocarriers
for systemic administration. In the first demonstration
of CRISPR based therapeutic genome editing in adult
animal, Anderson and coworkers [11] directly admin-
istered a plasmid encoding the Cas9 and sgRNA with a
single-stranded DNA (ssDNA) donor to correct a single
point mutation associated disease (hereditary tyrosinemia
type I, HTI) in mouse liver by hydrodynamic injection via
the tail vein. A 0.4% initial gene correction efficacy was
achieved by this method. Recently, a core-shell structured
polymeric nanocarrier has been reported to deliver the
all-in-one plasmid for gene disruption in cancer therapy
[31]. The fluorinated polymer core and hyaluronic acid
shell based formulation induced 44% gene disruption in
vitro and reduced targeted gene expression in vivo after
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intraperitoneal drug administration.

An alternative to the delivery of nucleic acid based
CRISPR-Cas9 system is to deliver the CRISPR-Cas9 com-
ponents as purified protein and RNA. Direct delivery of
the ribonucleoprotein would save the time for cells to
express them from the all-in-one plasmid, facilitating the
onset of the gene editing process [32]. The absence of
a plasmid DNA when delivering the ribonucleoprotein
would obviate the concern of integrating plasmid into the
genome of targeted cells [33]. It has been demonstrated
that the Cas9/sgRNA ribonucleoprotein delivery strategy
enabled better control of Cas9/sgRNA dosage and reduced
the chance of off-target cleavage when compared with the
plasmid delivery strategy [34]. Kim and coworkers [35]
applied a cell penetrating peptide with 9 Arginine (9R) to
deliver purified Cas9 and sgRNA (Fig. 1a). Cas9 was con-
jugated to 9R via a redox cleavable linker while sgRNA was
complexed with 9R through electrostatic interaction. After
co-administration of these two nanoparticles, 8.7% gene
disruption was achieved in a HEK293T cell line. Besides
the highly positively charged peptide, cationic lipids were
also applied for Cas9/sgRNA ribonucleoprotein delivery
[32,36]. The Cas9/sgRNA ribonucleoprotein has a net neg-
ative charge, making it easy to form stable nano-complex
with the cationic lipids. A synthetic redox responsive lipid
nanocarrier showed 70% gene disruption in a reporter cell
line [36], and a commercially available lipid based carrier
(Fig. 1b) has generated 20% gene modifications in an in
vivo hair cell model after local injection [32].

Our group has recently developed a synthetic DNA nan-
oclew (NC) based carrier for delivering the CRISPR-Cas9
system in vitro and in vivo for gene disruption [37]. As
shown in Fig. 1Ic, the DNA NC containing sequence
complementary to the targeting region of sgRNA was
prepared by a facile DNA synthesis technique named
rolling circle amplification [38]. Purified Cas9 protein and
sgRNA formed a ribonucleoprotein that could bind to the
DNA NC via specific base-pairing between sgRNA and
DNA NC. After loading Cas9/sgRNA into the DNA NC,
a positively charged polymer polyethylenimine (PEI) was
coated onto the nanoparticle for facilitated endosome es-
cape. The final formulation containing the DNA NC core,
Cas9/sgRNA cargo and a PEI coating formed uniformly
sized nanoparticles with a mean hydrodynamic size of
56 nm, which was an appropriate size for efficient drug
delivery. A model bone osteosarcoma cell line expressing
a destabilized version of EGFP (U20S.EGFP) was chosen
as reporter cell line [39]. Optimized DNA NC with partial
complementarity to the sgRNA showed the highest Cas9/
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Figure 1 Recently developed nonviral systems for CRISPR-Cas9 delivery. (a) CPP mediated delivery of Cas9 protein and sgRNA, adapted with permis-
sion from [35]. (b) Cationic lipid for delivering Cas9/sgRNA ribonucleoprotein complex, adapted with permission from [32], Copyright 2014, Nature
Publishing Group. (c) A DNA nanoclew based carrier was tailored via nucleic acid complementation for delivering the Cas9/sgRNA ribonucleoprotein,
adapted with permission from [37], Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA. (d) Lipid nanoparticle for delivery of Cas9 mRNA in
combination with AAV delivered sgRNA and DNA donor, adapted with permission from [40], Copyright 2016, Nature Publishing Group.

sgRNA delivery efficacy, disrupting EGFP gene in 37% of
the treated population in vitro. We also investigated the in
vivo gene editing efficacy of Cas9/sgRNA delivered by the
DNA NC based carrier. In a xenograft tumor model built
with the U20S.EGFP cell line, 25% of the U20S.EGFP cells
in the locally treated region lost EGFP expression after 10
days of the treatment while cells in the untreated group all
remained EGFP positive.

Besides using non-viral carriers only, combined non-vi-
ral and viral carriers were also demonstrated for enhanced
genome editing efficacy. With the HTT as model disease,
modified mRNA of Cas9 was encapsulated into a C12-200
based lipid nanoparticle, while the sgRNA and donor DNA
was packaged into AAV (Fig. 1d). Single administration of
the lipid complexed mRNA could lead to 77% gene disrup-
tion in a reporter cell line, while the combined viral and
non-viral therapy induced 6% gene correction in the tar-
geted hepatocytes after intravenously injection [40].
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CONCLUSIONS

In summary, the task of delivering the huge and complex
CRISPR system for therapeutic applications in vivo has re-
mained challenging, and the race to develop an efficient
and biocompatible non-viral nanocarrier has just begun.
Currently reported non-viral nanocarriers share the com-
mon feature of adopting cationic materials. However, these
cationic components could interfere with serum proteins
if administered intravenously, which might compromise
their therapeutic efficacy as well as biocompatibility. To
develop a better nanocarrier, more biocompatible bioma-
terials that could efficiently package the multicomponent
CRISPR into one nanocarrier and escape the endosome en-
trapment for efficient nuclear delivery are needed [41,42].
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