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We previously demonstrated that altered activity of lysophosphatidic acid in murine mammary glands promotes tu-
morigenesis. We have now established and characterized a heterogeneous collection of mouse-derived syngeneic
transplants (MDSTs) as preclinical platforms for the assessment of personalized pharmacological therapies. Detailed
molecular andphenotypic analyses revealed thatMDSTs are themost heterogeneous groupof genetically engineered
mousemodels (GEMMs) of breast cancer yet observed. Response ofMDSTs to trametinib, amitogen-activated protein
kinase (MAPK) kinase inhibitor, correlated with RAS/MAPK signaling activity, as expected from studies in xenografts
and clinical trials providing validation of the utility of themodel. Sensitivity of MDSTs to talazoparib, a poly(adenosine
5′-diphosphate–ribose) polymerase (PARP) inhibitor, was predicted by PARP1 protein levels and by a new PARP sen-
sitivity predictor (PSP) score developed from integrated analysis of drug sensitivity data of human cell lines. PSP score–
based classification of The Cancer Genome Atlas breast cancer suggested that a subset of patients with limited
therapeutic options would be expected to benefit from PARP-targeted drugs. These results indicate that MDSTs
are useful models for studies of targeted therapies, and propose novel potential biomarkers for identification of
breast cancer patients likely to benefit from personalized pharmacological treatments.
INTRODUCTION
Breast cancer is a heterogeneous disease characterized by remarkable
intertumor dissimilarity in terms of presentation, progression, and prog-
nosis (1–3). Integrative molecular analyses suggest that human breast
cancers can be subclassified into at least fourmain groups and six intrin-
sic subtypes (4, 5). Although these classification systems contribute to
clinical management of breast cancer, they fail to capture the broadmo-
lecular diversity of this disease (6). Under these circumstances, comple-
mentary approaches need to be deployed to reduce experimental noise
and validate relevant therapeutic targets.

Murine models of diseases have helped unveil highly conserved
molecular pathways and master regulators involved in human onco-
genesis (7, 8). Comparative studies of transcriptomic data from genet-
ically engineered mouse models (GEMMs) of breast cancer revealed
that severalmodels likely representpreclinical counterparts of bothbasal-like
and human epidermal growth factor receptor 2 (HER2)–enriched human
tumors (9). AlthoughGEMMshave been used for preclinical evaluation
of targeted therapy (10), in most cases, these models may have limited
applicability to human disease because they are driven by a single mo-
lecular aberration and do not reflect underlying tumor heterogeneity.

Here, we developed a series of mouse-derived syngeneic transplant
(MDST)models by sequential orthotopic transplantation of tumors orig-
inating from autotaxin (ATX)–lysophosphatidic acid receptor (LPAR)
transgenicmice (11), amurinemodel of breast cancer in which receptors
for LPA [awell-knownpleiotropic bioactive lipidwithmodulatory effects
on various cellular and bodily functions (12)] and ATX [the key enzyme
responsible for extracellular LPA synthesis (13)] were up-regulated in the
epithelial cells of mammary glands. Studies with this model showed that
tumor susceptibility was associated with a proinflammatory status (14), a
feature that parallels the dynamics of human breast carcinogenesis (15).

Longitudinal and multiregional resampling of MDST tumor trans-
plants, coupled to phenotypic and molecular characterization, showed
that the core molecular identity of each MDST was independent of the
number of transplantation passages and thus an intrinsic feature of each
model. A group of MDSTs categorized as carcinomas displayed signif-
icant intertumor heterogeneity and harbored several distinct molecular
aberrations commonly found in human ductal breast cancers.

To demonstrate the utility of theMDST as an experimental platform
for pharmacodynamic studies of personalized therapy, we first showed
that therapeutic response to mitogen-activated protein kinase (MAPK)
kinase (MEK) inhibitors inMDSTs correlateswithRAS/MAPKpathway
activation, as it does in xenografts and clinical trials. We then showed
that expression levels of poly(adenosine 5′-diphosphate–ribose) poly-
merase 1 (PARP1) protein, a key component of DNA repair pathways
currently being targeted in triple-negative and homologous recombina-
tion repair–defective breast cancers (16, 17), predict response to talazo-
parib, a selective and potent inhibitor of PARP1 activity that traps PARP
onDNA (18).MDSTswere used to test a newPARP sensitivity predictor
(PSP) score, which was developed from integrated analysis of drug sen-
sitivity data and predicted sensitivity to PARP inhibitors. Together, these
results demonstrate that MDSTs are useful models for the implementa-
tion of targeted therapeutics for breast cancer patients.
RESULTS
Growth rate and across-passage stability of the MDST models
We established 12 different transplantable tumor graft lines from pri-
mary mammary gland tumors of transgenic mice expressing LPAR1,
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LPAR2, and LPAR3, as well as bigenic MDST models coexpressing
the LPA-producing enzyme ATX and one of the LPARs (Fig. 1A and
Table 1). These immunocompetent transplantable tumor models were
termedMDSTs and designatedwith a randomnumerical identifier pre-
ceded by the name of the transgenic line from which the model was
originated (LPA1, LPA2, LPA3, ATXLPA2, and ATXLPA1) (Table 1).
Some MDST models grew rapidly and reached critical size in less than
20 days, whereas other models displayed amore indolent nature requir-
ingmore than50days to reach comparable dimensions (Fig. 1B).MDSTs
originating from different mice with the same transgenic alteration
showed marked differences in growth rate, and the simultaneous pres-
ence of transgenes encoding LPARs and the LPA-producing enzyme
ATX did not result in any apparent synergistic effect on the growth of
bigenic models (Fig. 1B; compare growth rates of LPA1-T22 and bigenic
ATXLPA1-T22MDST). Notably, growth rates ofMDSTs remain stable,
independent of the number of passages (Fig. 1C), although two rapidly
growing MDST models, LPA2-T43 and LPA2-T13, displayed greater
across-passage variation. These results suggest that the growth rate of
eachMDST is an intrinsic characteristicmaintainedover passage inmice.

Expression of LPA and ATX transgenes in the MDST models
Although the LPAandATX transgenes remained detectable in genomic
DNAofMDSTs, irrespective of passage number and region of collection
(Fig. 2A), the LPA and ATX transgenes were not detectable at the RNA
or protein level (Fig. 2, B and C), despite being expressed in the original
murine tumors (Fig. 2C, passage P0). Further selective inhibition of
ATX activity in vivo (Fig. 2, D and E) did not alter MDST growth rates
(Fig. 2F). Therefore, LPA signaling does not drive the growth ofMDSTs
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
following passage but may contribute to the formation of the primary
tumor through a proinflammatory process established by the LPA mi-
croenvironment (11).

Intertumor phenotypic heterogeneity of the MDST models
Average growth rates of MDSTs were heterogeneous across the panel
and ranged from 22 to 168mm3/day (Table 1 and Fig. 3A). On the basis
of histological features, E-cadherin (CDH1) expression, and growth
rate, MDSTs are separated into two groups: SG-CDH1+ carcinomas
(average growth rate, <55 mm3/day) and high-grade undifferentiated
FGM sarcomas (average growth rate, >55 mm3/day) (Fig. 3B, Table 1,
and fig. S1). One MDST, LPA2-T16, was classified as an FG-CDH1+

carcinoma (average growth rate, >55 mm3/day), whereas a second one,
ATXLPA2-T16 MDST, presented atypical disperse clusters of CDH1
positivity and was thus classified as an FG-mixed squamous carcinoma
(Fig. 3B and Table 1). Histological examination revealed a moderate de-
gree of mixed lymphocytic and myeloid infiltration in all carcinomas and
two sarcomas and a higher degree of neutrophilic infiltration in the
ATXLPA2-T16 MDST (see section S1).

Short-term in vitro cultures of cells isolated fromSG-CDH1+MDSTs
were more adhesive and showed an epithelial/cobblestone morphol-
ogy (Fig. 3C). In contrast, cells isolated from FGMMDSTs displayed
mesenchymal-like characteristics typical of loss of cell-cell contacts
and spindle morphology (Fig. 3C). Cells isolated from FGM MDST
models continued to grow at serum concentrations as low as 1.5%, which
was not permissive for the growth of SG-CDH1+MDSTs. Additionally,
in vitrodrug sensitivity studiesonsixMDST linesusing thegenotoxic agent
cisplatin that is used in therapy for triple-negative breast cancers (TNBCs)
Fig. 1. Growth rate and across-passage stability of the MDST models. (A) Schematic of the procedure for the establishment of MDSTs. Fragments of primary tumors
(T) were collected from mice with transgenic (TG) alterations of ATX-LPA signaling pathway members and orthotopically transplanted into immunocompetent wild-type
(WT) mice. A growth profile of each MDST was recorded and expressed as changes in tumor volume (mm3) per day. (B) Growth curves of MDST models. Average tumor
volume (mm3) ± SD (n = 2 to 3). (C) Average growth rates expressed as tumor volume change (DV) per day ± SD of MDST models at different passages (P). n = 2 to 3 grafts per
passage.
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(19) revealed that only fast-growing lines were sensitive to treatment, as
would be expected from a genotoxic agent (fig. S2).

These data demonstrate that MDSTs can be divided in two major
subgroups characterized by different growth rates, E-cadherin expres-
sion levels, histological appearance, and in vitro cellular characteristics.
A detailed histopathological examination of each MDST is presented
in section S1.

Transcriptomic and proteomic characterization of the
MDST models
To characterize the transcriptional landscapes of the MDSTs, we per-
formed RNA-seq analysis on a representative group of five SG-CDH1+

carcinomas, one FG-mixed squamous carcinoma, and three FGM
sarcomas.Unsupervised clustering analysis revealed that twosamples taken
at different passage generations from each MDST were always nearest
neighbors in the dendrogram except for two MDST sarcomas (LPA2-
T13 and LPA2-T43; the two pairs were, however, in the same subcluster),
indicating transcriptional stability with passage (Fig. 4A, left). The SG-
CDH1+ MDSTs were transcriptionally heterogeneous as they clustered
in five separate branches of the dendrogram (Fig. 4A, clusters 1 to 5). Con-
versely, all FGM MDSTs grouped in a single cluster, indicating greater
homogeneity (Fig. 4A, cluster 6).Multidimensional scaling (MDS) analysis
of the samedata set produced an analogous pattern, as point coordinates of
samples derived from the same tumorwere nearest neighbors on theMDS
map (Fig. 4A, right). The FGMsarcomaswere tightly clustered in the right
corner of the chart, whereas SG-CDH1+ carcinomas localized within a
larger space (Fig. 4A). The FG-mixed MDST pair clustered in a separate
region (Fig. 4A, purple circles 17 and 18), as they did in the dendrogramof
Fig. 4A (left, cluster 7). Samples collected from normal mammary glands
were positioned at the center of the carcinoma subgroup cluster (Fig. 4A,
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
right, white circles 1 and 2), suggesting similarity to the transcriptional
profile of the SG-CDH1+ carcinomas. A positive EMT score based on
the levels of Ctnnb1, Cdh1, Cldn7, mir200a, Snai1, Twist1, Tgfb1, and
Zeb1 that are related to EMT was a key feature of the FGM sarcoma
subgroup (Table 1 and table S1).

Molecular heterogeneity of the MDST models was not limited to
transcriptional profiles. Unsupervised hierarchical clustering of aver-
aged expression level of 170 proteins and phosphoproteins measured
by a reversed-phase protein array (RPPA) assigned seven SG-CDH1+

MDSTs to four distinct proteomic clusters (Fig. 4B, clusters 2 to 5), two
MMTV-cMYC transgenic MDSTs to a closely related but distinct
cluster (Fig. 4B, cluster 6), and all five FGM MDSTs to a single cluster
(cluster 1) primarily driven by a proteomic signature characterized by
low expression levels of b-catenin, claudin-7, and E-cadherin proteins
(Fig. 4B, signature 1), consistent with the biology of these cancers being
linked to EMT-related processes (table S1).

As compared to previously described transgenic murine models of
breast cancer, where eachmodel is relatively homogeneous (9), MDSTs
were highly heterogeneous (Fig. 4C and fig. S3), clusteringwithmultiple
breast cancer models (PyMT, Myc, normal-like, and p53null-luminal;
Fig. 4C). Both samples dissected from normal mammary tissue clustered
at the center of the normal-like group (Fig. 4C), substantiating the obser-
vation that the transcriptional landscapes of SG-CDH1+ carcinomas and
normal tissue are related (Fig. 4A, right, white circles 1 and 2). The FG-
mixed MDST clustered with a single model (squamous-like), whereas
FGM/sarcomaMDSTs grouped tightlywithin the claudin-low expression
class (Fig. 4C and fig. S3). Thus, the ATX-LPAR transgenic mice (11)
generate the most heterogeneous group of murine tumors yet observed,
encompassing multiple tumor subtypes, including luminal-like, meta-
plastic, and claudin-low–like tumors.
Table 1. Phenotypic and molecular characteristics of the MDST models. Growth rate is expressed as the average change in volume (mm3) per day ± SD (n =
8 to 14). Epithelial-mesenchymal transition (EMT) score is based on the levels of Ctnnb1, Cdh1, Cldn7, mir200a, Snai1, Twist1, Tgfb1, and Zeb (table S1). A detailed
histopathological examination of each MDST is presented in section S1. Statistical analysis of growth rate differences between MDSTs is reported in table S5. SG-
CDH1+, slow-growing, CDH1-positive (<55 mm3/day); FG-CDH1+, fast-growing, CDH1-positive (>55 mm3/day); FG-mixed, fast-growing, mixed; FGM, fast-growing/
mesenchymal; N/A, not applicable.
MDST
 Growth rate (mm3/day)
 Histology
 Subclass
 CDH1 status
 Inflammatory infiltration
 EMT score
LPA2-T33
 22.45 (±10.45), n = 12
 Adenocarcinoma
 SG-CDH1+
 Positive
 Mixed/moderated
 −10
ATXLPA2-T26
 22.84 (±14.82), n = 11
 High-grade adenocarcinoma
 SG-CDH1+
 Positive
 Mixed/moderated
 −3.3
LPA3-T13
 33.07 (±19.5), n = 8
 Adenocarcinoma
 SG-CDH1+
 Positive
 Mixed/moderated
 −13.76
LPA1-T22
 35.46 (±24.49), n = 9
 Adenocarcinoma
 SG-CDH1+
 Positive
 Mixed/moderated
 −6.6
ATXLPA1-T22
 49.09 (±16.85), n = 11
 High-grade adenocarcinoma
 SG-CDH1+
 Positive
 Mixed/moderated
 −7.5
LPA2-T16
 67.19 (±18.82), n = 10
 Adenocarcinoma
 FG-CDH1+
 Positive
 Mixed/moderated
 N/A
ATXLPA2-T16
 84.46 (±50.91), n = 13
 High-grade carcinoma
 FG-mixed
 Mixed
 Mixed/moderated
 −0.5
LPA1-T127
 55.93 (±23.35), n = 14
 High-grade sarcoma
 FGM
 Negative
 Mixed/moderated
 N/A
LPA1-T17
 89.35 (±28.82), n = 13
 High-grade sarcoma
 FGM
 Negative
 N/A
 N/A
LPA1-T12
 104.02 (±29.13), n = 8
 High-grade sarcoma
 FGM
 Negative
 Mixed/moderated
 +13
LPA2-T43
 144.12 (±78.17), n = 14
 High-grade sarcoma
 FGM
 Negative
 N/A
 +16.9
LPA2-T13
 168.35 (±98.56), n = 10
 High-grade sarcoma
 FGM
 Negative
 N/A
 +13.5
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Identification of molecular targets with direct relevance to
human breast cancer therapy
ThePAM50 intrinsic classifier is a set of 50 genes broadly used for breast
cancer prognostics and treatment selection purposes (20). Although
relative expression data of 47 PAM50 classifier genes in both MDST
models and patient samples did not fullymerge, we identified a num-
ber of similarities between murine models and human intrinsic sub-
types of breast cancer. Foxa1, a gene characteristically up-regulated
in human HER2-positive cancers, was overexpressed in ATXLPA1-
T22 MDST (Fig. 5A), a model with a Kras mutation (table S3). Addi-
tionally, Actr3b (a PAM50 gene typically overexpressed in basal breast
carcinomas) and Slc39a6 (a PAM50 gene distinctively up-regulated in
both luminal A and luminal B subtypes) were highly expressed in
multiple MDSTs (Fig. 5A).

Expression of the estrogen receptor was low in all MDSTs, as ob-
served in most murine models of breast cancer. However, two MDST
models, SG-CDH1+LPA2-T33 andFGMsarcomaLPA2-T43,were sen-
sitive to tamoxifen treatment (fig. S4).

Several potentially actionable genes, includingNotch2,Akt3,Cdkn2a,
Kras, Bcl2,Aurka, Erbb3, Igf2, Fgfr3, and Fgf14, were either up-regulated
or mutated in one or more MDSTs (Fig. 5B and tables S2 and S3), in-
dicating high intertumor molecular heterogeneity and enrichment in
molecular targets of interest. To search for genes commonly amplified,
mutated, or deleted in human breast invasive carcinomas, we interro-
gated The Cancer Genome Atlas (TCGA) database (21) and found that
multiple proteins frequently amplified in large cohorts of patients, in-
cluding PARP1, histone H3, cMYC, NOTCH1, PKCa, and P16INK4A
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
(Cdkn2A gene), were also differentially expressed or activated in MDST
carcinomas (frequency alteration range, 22.2 to 5.1%; n = 959 patients)
(Fig. 5C and table S2).PARP1, currently under investigation as a target in
BRCA1/2 mutant tumors, was amplified in 13.5% of patients (table S2)
and up-regulated in MDST carcinomas (Fig. 5C), with the exception of
ATXLPA2-T16, theMDSTmodel withmixedmesenchymal-squamous
epithelial differentiation (section S1). cMYC and histone H3 proteins,
whose respective genes (MYC and H3F3A) are amplified in 21.9 and
13.8% of breast cancer cases, respectively (table S2), were selectively
up-regulated in distinct MDSTs (Fig. 5C). Our results indicate that each
MDST is characterized by specific and stable molecular alterations, sev-
eral of which with direct relevance to human breast cancer patho-
physiology and therapy.

Personalized approaches for breast cancer therapy
in MDST models
In terms of validating theMDSTs asmodels to explore targeted therapy
in breast cancer, we found that RAS/MAPK pathway activity status, as
assessed by RPPA, was highly predictive of response to trametinib, a spe-
cific andwell-characterizedMEK1/2 inhibitor (22), in four of fiveMDST
models with different MEK phosphorylation levels (fig. S5A). PARP1
levels have been suggested to predict response to “trapping” PARP inhibi-
tors (23); however, validation in heterogeneous tumor models is lacking.
We thus tested the sensitivity of theMDSTmodels to talazoparib, a potent
and selective trapping PARP1 inhibitor currently being evaluated in
TNBCswith defects on homologous recombination repair, and found that
the treatment blocked tumor growth, with efficacy being predicated by
Fig. 2. Expression of LPA and ATX transgenes in the MDST models. (A) Polymerase chain reaction (PCR) amplification of human LPAR1, LPAR2, and LPAR3 trans-
genic regions in DNA isolated at different passages from distinct MDSTs. MDST IDs and passages (P) are indicated at the top. Amplification bands from known trans-
gene-positive tissue samples are shown in column C (control). (B) Expression level of human LPAR1, LPAR2, LPAR3, and ENPP2 (ATX) transgenes in six different MDST
models by RNA sequencing (RNA-seq) (n = 2). The expression level of murine Gapdh is used as an endogenous standard. CPM, counts per million. (C) Western blot
analysis of transgenic Flag-M2 expression in samples from three MDST models at different passages (P). P0 represents the primary tumor. Extracellular signal–regulated
kinase 2 (ERK2) protein level was used as a loading control. (D) Schematic of MDST transplantation and the ATX inhibitor MSC2285264 delivery via osmotic pump. (E) Plasma
concentration level (ng/ml) of the ATX inhibitor MSC2285264 after 20 days of treatment. (F) Size of ATXLPA1-T22 MDST transplants (mm3) after 1 month of treatment with
vehicle or the ATX inhibitor MSC2285264.
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PARP1 protein levels in four of five MDSTs (fig. S5B). The overall prog-
nostic value of target status in MDST models was estimated via binomial
testing of observed response variables (predicted versus unexpected) in all
trials (talazoparib + trametinib) and found to be highly significant (80%
correct prediction in n = 10 trials, P < 0.0001; fig. S5C). This suggests that
the molecular features of these models are predictors of response to tar-
geted therapy and that the models could be used to identify biomarkers
of response to additional targeted therapies.

In vitro quantification of the DNA double-strand break marker
gH2AX in four different MDSTs showed that basal levels of DNA
damage are generally low but can be induced in vitro by talazoparib as
well as by irinotecan and cisplatin (fig. S6). To understand whether
PARP1 expression is more broadly associated with sensitivity to PARP
inhibitors, we also interrogated responses to olaparib (AZD-2281), a
second trapping PARP inhibitor, in 76 women’s cancer cell lines, in-
cluding breast, ovary, and endometrium. After stratifying cell lines into
sensitive, intermediate, and resistant groups based on the tertile of area
under the curve (AUC) values (fig. S7A), we found that PARP1 protein
levels of a subset of these cell lines measured by RPPA were associated
with olaparib sensitivity (fig. S7B). In addition, the response of a panel of
small cell lung cancer (SCLC) cell lines to olaparib revealed a strong
correlation between PARP1 expression and olaparib sensitivity (r =
−0.499, P = 0.049; fig. S7C). To further validate our results, we have in-
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
vestigated the correlation between PARP1 protein levels and sensitivity
to olaparib and talazoparib in TNBC cell lines and confirmed that the
PARP protein expression level is positively correlated to sensitivity to
PARP inhibitors (fig. S7, D and E). These results demonstrate that
MDSTs are effective models to study targeted therapy pharmaco-
dynamics and support the notion that PARP1 expression level is an ac-
tionable predictor of response to selective PARP1 inhibition.

PSP score
In oneMDSTmodel, PARP1 expression was not associated to sensitiv-
ity to PARP-targeted therapy. We thus developed a PSP score from in-
tegrated sensitivity data formultiple PARP inhibitors from the COSMIC
(Catalogue of Somatic Mutations in Cancer) database (24) using gene
expression levels from the Cancer Cell Line Encyclopedia (fig. S8A)
(25) to determinewhether it added to the ability of PARP levels to predict
response to therapy. PSP signature genes differentially expressed (P <
0.005; fold change > 1.2) between sensitive cell lines (average z score <
−1.0) andnonsensitive cell lines (average z score > 0) are listed in table S4.
The receiver operating characteristic (ROC) for the training set yielded
AUCs of 1.0 in the talazoparib training data and 0.89 in the training data
with rucaparib (AG-014699), an additional PARP inhibitor, whereas val-
idation of PSP score in a separate test set of breast cancer cell lines with
olaparib was 88% accurate (fig. S8A).

Comparison between PSP scores and sensitivity to targeted treat-
ment for each MDST revealed that PSP magnitude predicts sensitivity
to targeted treatment, as positive scores were associated to sensitivity
and negative scores to resistance in five of five independent MDSTs
(fig. S8B). Comparison between MDST sensitivity data and homolo-
gous recombination defect (HRD) signature scores previously defined
byHRD in various cancers (26) did not reveal association between ther-
apeutic response and defects on DNA repair (fig. S8C), suggesting that,
in this model, tumor inhibition by PARP1 blockade may not be depen-
dent on synthetic lethality with HRD. Analysis of patient samples from
the TCGAData Portal (21) revealed that 21.3% of breast cancer patients
have PSP scores above 0.1 indicative of potential sensitivity to PARP
inhibitors (42, 7, 10, and 32% of basal, HER2, luminal A, and luminal
B breast cancers, respectively) (fig. S8D). Furthermore, this classification
approach indicates that a large percentage of basal and luminal B cancers,
two aggressive intrinsic subtypes with limited therapeutic options (27, 28),
could potentially benefit from PARP inhibitors either alone or in combi-
nationwith other pharmacological agents. These data suggest thatMDSTs
are useful models for pharmacodynamic studies of targeted therapy and
that the PSP score is a potential predictor of response to PARP inhibition
that warrants assessment in human clinical studies.
DISCUSSION
Wehave characterizedMDSTs established froma series ofmurine tumors
that spontaneously developed from mammary glands of ATX-LPAR
transgenicmice (11). TheATX and LPAR transgenes remained detectable
in theMDSTeven aftermultiple regraftingbutwere not involved in cancer
growth, supporting the idea that LPA production by ATX or action
through any of the LPARs is not responsible for growth of the established
MDST. However, the presence of detectable LPAR and ATX levels in the
original tumor from the transgenic mice suggests that the transgenes may
promote the establishmentof aproinflammatorymilieu that contributes to
the late onset of tumor development in this model (14, 15, 29).

Molecular and phenotypic features of eachMDST were surprisingly
stable. Although intratumoral heterogeneity may arise during tumor
Fig. 3. Intertumor phenotypic heterogeneity of the MDST models. (A) Box
plots of MDST growth rates. The average tumor volume changes (mm3) per
day ± SD of n = 8 to 14 distinct grafts are shown for each MDST. MDST models
are grouped according to their transgenic background. (B) CDH1 immuno-
histochemical staining of MDST. MDST IDs are indicated below each image. Repre-
sentative hematoxylin and eosin–stained sections of these tumors are shown in fig.
S1. (C) Phase-contrast images of cells isolated from stromal vascular fraction of
healthy mammary glands, two representative carcinomas (LPA1-T22 and ATXLPA1-
T22), and two representative sarcomas (LPA1-T12 and LPA2-T13).
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progression through an evolutionary process driven by genetic variabil-
ity across subclones (30), neither evolutionary pressure potentially asso-
ciated to sequential regrafting nor intrinsic regional heterogeneity of the
tissue appeared sufficient to drive detectable phenotypic changes in the
MDST. The stability observed in the MDSTs suggests that these synge-
neic models of orthotopic tumor transplantation in immunocompetent
hosts have the potential to provide effective experimental approaches for
investigating relationships between macroscopic behavior andmolecular
features of cancers with sensitivity to targeted therapies including
immuno-oncology agents.

A subgroup ofMDSTswas composed of fast-growing undifferentiated
sarcomas characterized by gene expression patterns suggestive of mesen-
chymaldifferentiation.Cells isolated fromthese tumors readilyproliferated
in low-serum medium, grew in a disorganized fashion, and had spindle-
shaped morphology typical of mesenchymal differentiation. One MDST
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
model was classified as an epithelial-mesenchymalmixed carcinosarcoma,
a type of metaplastic cancer rather uncommon in patients (31) likely orig-
inating from transdifferentiation processes taking place in mammary
glands.Althoughuncommon, the very pooroutcomeassociatedwith sar-
comas andmetaplastic tumors renders these potentially importantmodels.

In contrast to MDST FGM sarcomas, which showed similar pheno-
typic andmolecular features, a group ofMDST SG-CDH1+ carcinomas
displayed remarkable intertumor molecular diversity, closely reflecting
the heterogeneous nature of human breast cancers (1, 3, 4). Transcrip-
tional profiles of some carcinomas and normal mammary tissue were
highly related, suggesting eithermolecular dynamic similarity or enrich-
ment in stromal elements. Additionally, cells isolated from MDST
carcinomas were morphologically similar to mammary epithelial
cultures, as they organized in cobblestone-like monolayers and gener-
ally required high serum concentrations for optimal growth.
Fig. 4. Molecular profiling of MDSTs and comparison with GEMMs. (A) Hierarchical clustering of transcriptomic data from six carcinomas and three sarcomas (n = 2
samples collected from each MDST at different transplant generations). The list of MDST samples (1 to 18) (left) is mapped to a corresponding location on the MDS
diagram on the right (numbered circles). Leading logFC (fold change) value coordinates D1-D2 convey transcriptional profile relatedness. Circles 1 and 2 on the MDS
graph represent two samples dissected from healthy mammary glands of WT mice. (B) Two-way unsupervised hierarchical clustering heat map of the average log2
protein expression levels by RPPA (n = 6 to 20 samples collected from each MDST at different transplant generations). Horizontal color bars at the top indicate
proteomic clusters (1 to 7), subgroup classification, genotype (LPA1, LPA2, LPA3, bigenic, cMYC, and WT), and tissue type. MDST IDs are listed at the bottom. Signature
1 is composed of expression levels of PARP1, claudin-7, HER3, b-catenin, and E-cadherin proteins. (C) Intrinsic supervised clustering analysis applied to gene expression
levels in 405 mouse samples taken from 17 GEMMs. MDSTs are in dark red (arrows).
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As observed inmousemodels of breast cancer, estrogen receptor ex-
pression in the MDST was low, possibly because of interspecies differ-
ences in hormone pathophysiology, but two tumors, LPA2-T33 and
LPA2-T43, showed sensitivity to tamoxifen treatment, indicating that
these MDSTs can be used to identify alternative estrogen-related path-
ways regulated by tamoxifen. In addition to sharing a number of tran-
scriptional pattern similarities with human breast cancer subtypes from
the PAM50 classifier (20, 32, 33), we discovered that MDSTs carry a
number of tumor-specific molecular alterations in genes that are fre-
quently amplified in human breast cancers, such as PARP1, MYC,
and H3F3A. The variety and stability of molecular alterations found
in MDST models made it possible to test targeted inhibition in models
with distinct and clinically relevant molecular features.
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
Preclinical trials with either trametinib (a well-characterized MEK
inhibitor used for the treatment of metastatic BRAF mutated mela-
nomas) or talazoparib (a selective and potent inhibitor of PARP1 cur-
rently in phase 3 trials for BRCA-mutated metastatic breast cancer)
demonstrated that MDST sensitivity to treatment depends on the level
of expression or activation of the targeted molecule. These results not
only confirmed drug selectivity but also demonstrated the utility of
MDSTmodels in preclinical testing of targeted therapeutics. This sug-
gests that clinical trials based on “pathwayness” defined by the anal-
ysis of signaling pathways may prove to be powerful predictors of
patient response.

PARP inhibitors are effective in cells with HRDs through synthetic
lethality (16). Tumor inhibition by PARP1 blockade did not appear to
Fig. 5. Identification of molecular targets with direct relevance to human breast cancer therapy. (A) Similarities between murine models and human intrinsic
subtypes of breast cancer. Expression pattern comparison of three murine homologs of PAM50 classifier genes in five molecular subtypes of breast cancer [basal, Her2+,
luminal A (LumA), luminal B (LumB), and normal-like] (n = 232) and nine distinct MDSTs (n = 2 samples collected from each MDST at different transplant generations).
The empirical threshold for marker up-regulation is shown (blue line). RU, relative units. (B) The average expression level of select genes of interest in MDSTs is
presented as the average CPM ± SD of n = 2 samples collected from each MDST at different transplant generations. (C) Expression levels for proteins of interest that
are differentially expressed or activated in MDSTs. Each bar represents the average normalized linear intensity value ± SD of 6 to 20 samples collected from each MDST
at different transplant generations.
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occur by way of synthetic lethality in the MDST models, because tala-
zoparib treatment was relatively ineffective in a number of MDST
models with defects in homologous recombination defined by an HRD
signature. However, PARP1 levels in the MDST were strong predictors
of response to talazoparib. Similarly, PARP1 protein expression also pre-
dicted sensitivity to PARP inhibitors inTNBCand SCLChuman cell lines,
a result consistentwith the notion that lowPARP1 expression is associated
to PARP inhibitor resistance (34) and that talazoparib treatment decreases
PARP1 levels in SCLC cells (35), a cell type previously shown to be sensi-
tive to PARP inhibition (36).

PARP1 expression showedpredictive power inmultipleMDSTmodels
but did not predict the response to talazoparib inMDST LPA2-T33, a tu-
mor thatwas resistant to treatment despite having elevated PARP1protein
levels and defective homologous recombination. The only parameter that
accounted for this unexpected lack of sensitivity was the PSP score, which
was low in this MDST regardless of the level of PARP1 protein and HRD
score. The prevalence of the PSP signature, particularly in basal and lumi-
nal B breast cancers, suggests that subgroups of breast cancer patientsmay
benefit fromPARP inhibitor–based treatments, especially the oneswithout
viable therapeutic options.

A subset of PARP inhibitors is believed to work by blocking enzy-
matic activity of PARP and by trapping PARP at DNA double-strand
breaks (18). Our data suggest that talazoparib may be most effective
when PARP1 is functionally connected to permissive signaling net-
works associated to the PSP signature. ThePSP scorewas obtained from
sensitivity data for olaparib and rucaparib, two inhibitors that show
lower PARP trapping activity as compared to talazoparib. However,
the ability to predict the activity of talazoparib suggests that the PSP
scoremight be generalized to all PARP inhibitors. Analysis of key genes
differentially expressed between sensitive and nonsensitive cell lines in-
dicated that the largest cellular compartment represented in the PSP
signature was nuclear protein genes, includingYEATS4 (a transcription
factor involved in the regulation of drug resistance) and the DNAmis-
match repair geneMSH3.

In conclusion, we have shown that the availability of MDSTs with a
heterogeneous spectrum of molecular alterations that propagate in syn-
geneic mice represents a reliable preclinical tool for studies of targeted
therapies. By integrating data from these models, in vitro studies, and
gene expression–basedmodeling, we propose the PSP score as a potential
selection criterion for sensitivity to PARP1-targeting therapy.
MATERIALS AND METHODS
Animals
Syngeneic grafts used in these studies were established from transgenic
mice on an FVB/N inbred background with homozygous insertions of
LPAR1, LPAR2, LPAR3, or ENPP2 (ATX) human transgenes under the
control of an MMTV-KCR promoter, as previously described (11).
Animals had free access to standard rodent diet (PicoLab Rodent Diet
20, catalog no. 5053) and water and were group-housed in rooms with
temperature and light/dark cycle length parameters controlled according
to guidelines established by theNational Institutes ofHealth/Department
ofHealth andHuman Services (Guide for the Care andUse of Laboratory
Animals). All experiments involving animals were approved by the Insti-
tutional Animal Care and Use Committee.

MDST transplantation procedure
Four- to 8-week-old wild-type recipient mice syngeneic to the FVB/N
background were anesthetized by isoflurane inhalation (2 to 4%). The
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
abdominal area was shaved and cleaned with Betadine disinfectant, and
a 0.5-cm incision was made on the distal side of the fourth mammary
gland just above the subcutaneous adipose tissue. The subcutaneous
mammary fat pad was then gently exposed using sterile fine-point for-
ceps to create a pocket where tumor fragments can be nested. Primary
mammary gland tumors were dissected from12- to 24-month-oldmul-
tiparousATX-LPAR transgenicmice (11), carefully cleared of all stromal/
fat and necrotic tissues, and cut into several small fragments of approx-
imately 2 mm in length to be immediately seeded. Incision in the trans-
plantation site was closed with wound clips, and tumor growth was
monitored weekly. Twelve different transplantable tumor graft lines were
established from this procedure and termedMDSTs (Table 1). Screening
for the presence of the transgene using PCR and measurement of trans-
gene expression using Western blot were performed as previously de-
scribed (11). At the end of each experiment, portions of MDST were
frozen in freezing medium composed of 90% fetal bovine serum (FBS)
and 10% dimethyl sulfoxide (DMSO) and stored in liquid nitrogen for
future use. Each MDST was sequentially passaged and resampled from
multiple regions at different passage generations to build a repository of
transgenic grafts for molecular analysis.

Histological analysis
Samples ofMDST tumors were processed histologically and arrayed on
a tissuemicroarray. Sections (4 mmthick) from each tumorwere stained
with hematoxylin and eosin or the primary antibody for E-cadherin
(1:200; Cell Signaling Technology, #4065) and blindly examined by a
trained pathologist. Localization and expression of proteins were eval-
uated by immunohistochemistry, as described previously (37).

Tumor cell isolation and in vitro experiments
Primary tumor and stromal vascular cells were isolated under sterile
conditions from theMDST and normalmammary gland tissue, respec-
tively. Generally, one tumor (1.5 cm in diameter) or 10 subcutaneous
mammary gland pads from 5-week-old female mice were enough to
establish cultures of viable cells. Particular care was taken to ensure that
only compact areas of homogeneous neoplastic mass were collected,
leaving out surrounding normal tissues, blood, and necrotic tissue. Tis-
sues were finely minced in 150 ml of medium composed of RPMI, 0.2%
(w/v) collagenase type II (Worthington, catalog no. 4176), and 1.5%
crude serum albumin (Bovine Fraction V) and then digested in a large
volume of the same medium (12 to 20 ml) at 37°C for 30 min under
gentile rocking. Digested tissues were filtered twice through a 250-mm
nylon filter (USFilters, BN-410-250) and spun for 10min at 700g. Pelleted
cellswerewashed once inwarmgrowthmediumandplated. Growthme-
dium was replaced with fresh medium daily until dead cells and debris
were not visible and cells began to grow. The percentage of FBS in the
RPMI medium was 1% for sarcomas and 10% for carcinomas and stro-
mal vascular fraction cell cultures. In vitro sensitivity to genotoxic treat-
ment was assessed using the cell viability indicator PrestoBlue reagent
(Molecular Probes). gH2AX foci formation assay was performed as
follows: MDSTs were cultured and treated with 2.5 mM irinotecan, cis-
platin, or talazoparib (BMN-673) for 24 hours. Before fixation, soluble
proteins were extracted using cytoskeleton buffer [Pipes (pH 6.8), 100 mM
NaCl, 300 mM sucrose, 3 mMMgCl2, 1 mM EGTA, and 0.5% Triton
X-100] for 5min on ice. Cells were thenwashed in phosphate-buffered
saline (PBS), permeabilized, and incubated with mouse anti-gH2AX
(1:2000; Millipore, clone JBW301) followed by anti-mouse Alexa Fluor
488 (Invitrogen).Coverslipswere sealedusingVECTASHIELDwithDAPI
(4′,6-diamidino-2-phenylindole) to counterstain the nuclei. Images were
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collected using a Nikon Eclipse TI inverted microscope at ×40 magni-
fication. All images were quantified using custom-writtenMATLAB al-
gorithms. Briefly, nuclei were segmented by Otsu’s method, and any
overlapping nuclei (defined by high total area and low solidity) were
segmented by a watershed transform. Individual gH2AX foci were seg-
mented using a band-pass filter. The intensity of foci was integrated for
each nucleus and normalized to the total nuclear area.

RPPA and TCGA analysis
Protein expression data were collected by RPPA technology (38), and
spot signal intensity was processed by the R package SuperCurve (39),
which generates the relative log2 expression value for each protein. The
log2 expression data were then corrected by median-centering protein
expression across the samples and then across antibodies. After data
correction, a two-way unsupervised hierarchical clustering heat map
was generated using the Next-Generation Clustered Heat Map (NG-
CHM) tool (http://bioinformatics.mdanderson.org/main/NG-CHM:
Overview).

Targeted treatment trials
Targeted agents trametinib (GSK1120212) and talazoparib were ob-
tained through the Stand Up to Cancer (SU2C) pharmacy free request
agreement (Stand Up to Cancer Dream Team Translational Research
Grant no. SU2C-AACR-DT0209). Trametinib and talazoparib were
dissolved in a solution composed of 0.5%hydroxypropylmethylcellulose
(Sigma), 0.2% Tween 80, and 2% DMSO in distilled water and ad-
ministered daily via oral gavage at concentrations of 3 and 0.33 mg/kg
per day, respectively. Treatment was initiated after transplants
reached palpable size. In a second set of trials, the growth of MDSTs
was monitored during a 4-week treatment with MSC2285264, a po-
tent and selective ATX inhibitor provided by Merck KGaA. The
compound was dissolved at a concentration of 300 mg/ml in a solu-
tion composed of 15% ethanol, 30% polyethylene glycol 400, 50%
DMSO, and 5% PBS (pH 7.4) and delivered via ALZET osmotic
pumps (model 2004; filling volume, 200 ml; pump rate, 0.25 ml/hour).
Tumor fragments were transplanted into recipient mice 4 days after
osmotic pump implantation (Fig. 2D).

RNA-seq and DNA sequencing whole-exome data analysis
RNA-seq paired-end reads of 18 samples collected from nine MDST
models (2 samples per model) and 2 normal murine mammary gland
samples were mapped to the mouse reference genome (NCBIM37)
using TopHat2 (v2.0.10) (40). The mouse annotation file (Ensembl
NCBIM37 release 66) was used to guide spliced alignment of known
transcripts. Only uniquely mapped reads were kept for further analysis.
We used the count-based methods edgeR (41) and DESeq (42) to ana-
lyze differentially expressed genes. The protocol by Anders et al. (43)
was used to run the analysis, whereas HTSeq count (44) was used to
count each transcript. A standard CPM, representing mapped read
counts normalized by the number of sequenced fragments multiplied
by 1 million, was calculated for each gene. Genes with CPM ≤ 1 were
filtered out, and hierarchical clustering of mouse tumor samples was
computed on the basis of expressed genes (CPM > 3). Euclidean dis-
tance calculation and a tree cut at 0.55 were applied to the dendrogram
to reflect the relationship among the samples. To generate a thorough
depiction of sample relationships, each sample was mapped into a two-
dimensional MDS plot on the basis of log2 fold change (logFC) differ-
ences between sample pairs independently computed from the same
expression data set. Human transgene analysis (Fig. 2B) was performed
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
by generating a reference with the transcripts of the transgenes LPAR1,
LPAR2, LPAR3, and ENPP2 (ATX), to which all sequenced RNA-seq
data were mapped. Whole-exome DNA sequencing data from one
mammary gland and samples from six MDSTs were mapped to the
mouse reference genome (NCBIM37) using BWA-MEM (45). PCR re-
plicates were removed using the SAMTools rmdup command, whereas
all raw variants were called using SAMTools mpileup and bcftools (46).
First, to identify somatic events, raw variants from each sample were
annotated using an in-house tool. Next, variants from each tumor sam-
ple were filtered against the variant list of the mammary gland sample,
and the remaining variants from each sample were further filtered
against the mouse dbSNP database (mm9 version SNP132). Last, only
variants with a minimum depth of 20, a maximum depth of 500, and a
mapping quality over 30 were considered as somatic events. Only non-
synonymous substitutions and indels were retained.

EMT scoring
EMT scores shown in table S1 were calculated for each MDST by add-
ing relative expression values ofCtnbb1 (b-catenin),Cdh1 (E-cadherin),
Cldn7 (claudin-7),Mir200a, Snai1, Twist1, Tgfb1, and Zeb1 genes. Neg-
ative signswere assigned toCtnbb1,Cdh1,Cldn7, andMir200a, whereas
positive signs were assigned to Snai1, Twist1, Tgfb1, and Zeb1 expres-
sion values according to the functional or correlative relationship that
the gene has with EMT-related processes.

Clustering analysis of GEMMs
RNA-seq data of 18 samples collected from nine MDST models (n = 2
perMDST) and 2 normal murine mammary gland tissue samples were
aligned to the National Center for Biotechnology Information (NCBI)
build37 (hg19) human reference genome using TopHat2 v2.0.10 (47).
The abundance of genes was quantified by Cufflinks v2.1.1 (48). A mu-
rine tumor data set of 385 DNA microarrays was downloaded from
GSE42640 (9), which represents 27 GEMMs. Supervised clustering
was applied to 405mouse samples on the basis of the expression of mu-
rine intrinsic genes. The data were imputed and normalized, as de-
scribed by Pfefferle et al. (9). Of these, 20 microarrays from the
original ATX-LPAR murine model (11) previously incorporated in
the Pfefferle et al. mega set and the 18 RNA-seq lanes corresponding
toMDST samples were used as anchors for interbatch adjustment. Each
tumor was standardized to have the normal distribution [N (0, 1)]
across 8731 genes found in both data sets. For each gene, an adjustment
factor was computed to account for the differentmedian expression lev-
el in the anchor samples of the two data sets andwas then applied to the
complete set. Intrinsic gene analysis was conducted in the merged data
set using a list of 1841 intrinsic genes from Pfefferle et al. (9), of which
1655 genes were found. The hierarchical clustering was performed
using centroid linkage in Gene Cluster 3.0 (49) and was viewed with
Java TreeView 1.1.6r4 (50).

PAM50 subtyping analysis
Clustering analysis of PAM50 intrinsic genes was performed in the
merged set of 405 mouse samples using the 50-gene human breast
subtype classifier PAM50 (32). Forty-seven of 50 homologs of human
genes were detected in the mouse samples using the Mouse Genome
Database (51). The hierarchical clustering and visualization were per-
formed with the same approach used for the mouse intrinsic gene anal-
ysis. For across-species comparison, we analyzed the expression patterns
of the 232 human breast samples that were used as PAM50 prototype
samples from the training set (32).
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Cell line sensitivity study
Olaparib (AZD2281) used in the vitro experiments in fig. S7D was ob-
tained fromAstraZeneca. Drug sensitivity data of olaparib and veliparib
(ABT-888) for 76 women’s cancer cell lines from breast, ovary, and
endometrium were downloaded from the Broad Institute’s Cancer
Therapeutics Response Portal v2 (www.broadinstitute.org/ctrp.v2/).
Cells were stratified into sensitive, intermediate, and resistant groups
based on the tertile of AUC values. PARP1 protein levels of a subset
of these cell lines weremeasured byRPPA, expressed as log-transformed
linear normalized values (see “RPPA and TCGA analysis”), and asso-
ciated with drug sensitivity using Student’s t test. For olaparib sensitivity
studies in SCLC, cells were treated with olaparib (0 to 10 mM), and pro-
liferation was measured by CellTiter-Glo assay (Promega Corporation)
after 10 days. PARPexpressionwas quantified in lung cancer cell lines by
RPPA, as described previously (36). PARP expression and olaparib
median inhibitory concentration (IC50) data were compared as contin-
uous variables by Pearson correlation.

For analysis of talazoparib (Selleck) and olaparib (AstraZeneca)
sensitivity of TNBC cell lines, drugs were serially diluted threefold
(seven dilutions in DMSO) and stored in deep-well “master plates” at
−20°C. Cancer cell lines involved in this assay were verified by short
tandem repeats (Cancer Center Support Grant Characterized Cell Line
Core in MD Anderson Cancer Center). The mutation status of each
cell line was characterized by the T200 platform deep targeted sequenc-
ing performed in the Institute for Personalized Cancer Therapy (MD
Anderson Cancer Center). Cell lines were seeded in 96-well plate at
2500 cells/100 ml per well and maintained in their optimal growth me-
dium (5% FBS) for 24 hours. Following a serum deprivation step (over-
night incubation in 2% FBS medium), serially diluted drug stocks were
added and cells were incubated for 7 days. Triplicates were performed
for each concentration, and 0.1% DMSO was used as control. Cell vi-
ability was determined at the end point by CellTiter-Blue Cell Viability
Assay (Promega Corporation; 5 ml of the reagent per well). Cellular sen-
sitivity was defined by 50% growth inhibition (GI50) concentration cal-
culated according to the cell viability curve.

Expression of PARP1 protein was determined in TNBC cell lines by
RPPAanalysis [retrieved from theMDAndersonCell LinesProject (http://
ibl.mdanderson.org/mclp/#/)]. To determine the correlation of PARP1
protein levels with sensitivity to PARP inhibitors, the GI50 values for both
talazoparib and olaparib were log10-transformed and then converted to
z scores. PARP inhibitor sensitivity was determined as the average z score
for both compounds and was used to determine the Pearson correlation
coefficient with the PARP1 protein expression levels.

Homologous recombination defect signature score
To predict if tumors had defects in homologous recombination repair
pathways, we used a previously published gene expression signature
that has been shown to predict HRDs in breast, renal, lung, ovarian,
and prostate cancers (26). Of the 230 genes in this original signature,
180 had murine orthologs in the MDST’s RNA-seq data set. Gene ex-
pression levels for these 180 genes were then used to determine a cor-
relation coefficient with HRD score (52).

PSP score
To generate a predictor of PARP sensitivity on the basis of gene expres-
sion levels, olaparib and rucaparib (AG014699) IC50 values for a variety
of cell lines were obtained from the COSMIC database (24). These
values were converted to z scores and then averaged to produce an over-
all measure of PARP sensitivity. Next, corresponding gene expression
Federico et al., Sci. Adv. 2017;3 : e1600957 19 April 2017
levels were obtained from the Cancer Cell Line Encyclopedia (25) for
genes with expression levels evaluated during RNA-seq experiments.
After reserving a subset of 16 breast cancer cell lines for testing, a grid
search algorithm was used to identify optimal P value and fold change
cutoffs between sensitive cell lines (average z score < −1.0) and non-
sensitive cell lines (average z score > 0) by maximizing the average area
under the ROCcurve for the olaparib and rucaparib sensitivity data sets.
Verification of this gene expression signature in the 16 reserved breast
cancer cell lines resulted in an 88% accuracy rate. This signature was
then correlatedwith theRNA-seq results to determinePARP sensitivity.
For analysis of patient breast cancer samples, level 3 gene expression
data were obtained for the 511 breast cancer patients from the TCGA
Data Portal (4, 21). These expression data were used to classify patients
into intrinsic subtypes using the PAM50 model (32).

Statistics
Unpaired two-tailed Student’s t test and Kruskal-Wallis test by ranks
withDunn’s correctionwere used to determine the significance of group
differences. Values were considered significantly different at P < 0.05.
The goodness of fit between observed and predicted incidence of two
categorical variables was tested by binomial test and accepted as signif-
icant at P ≤ 0.01.
SUPPLEMENTARY MATERIALS
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