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Abstract

Purpose—Evaluate how well three different patient-reported outcomes (PROs) measure 

individual change.

Methods—214 patients (from two sites) initiating first or new chemotherapy for any stage of 

breast or gastrointestinal cancer participated. The 13-item FACIT–Fatigue scale, a 7-item 

PROMIS® Fatigue Short-Form (PROMIS 7a), and the PROMIS® Fatigue computer adaptive test 

(CAT) were administered monthly online for six months. Reliability of measured change was 

defined, under a population mixed effects model, as the ratio of estimated systematic variance in 

rate-of-change to the estimated total variance of measured individual differences in rate-of-change. 

Precision of individual measured change, the standard error of measurement (SEM) of change, 

was given by the square root of the rate-of-change sampling variance. Linear and quadratic models 

were examined up to 3 and up to 6 months.

Results—A linear model for the reliability of measured change showed the following by 6 and 

by 3 months, respectively: PROMIS CAT (0.363 and 0.342); PROMIS SF (0.408 and 0.533); 

FACIT (0.459 and 0.473). Quadratic models offered no noteworthy improvement over linear 

models. Both reliability and precision results demonstrate the need to improve the measurement of 

intra-individual change.

Conclusions—These results illustrate the challenge of reliably measuring individual change in 

fatigue with a level of confidence required for intervention. Optimizing clinically useful 

measurement of intra-individual differences over time continues to pose a challenge for PROs.
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Introduction

Fatigue is a common cancer-related symptom and adverse event reported by individuals 

treated for cancer [1,2]. The importance of monitoring fatigue levels in cancer patients and 

survivors was recently emphasized in a new set of American Society of Clinical Oncology 

(ASCO) guidelines for screening, assessing, and managing fatigue [1]. The ASCO 

Guidelines indicated that most cancer patients experience some degree of fatigue during 

treatment and about 30% of patients have persistent fatigue. The value of routine, in-clinic 

assessment of multiple patient-reported outcomes (PROs), including screening for cancer-

related symptoms such as fatigue is of great interest [3-7]. Routine use of PROs in clinical 

settings potentially allows for 1) monitoring effects of treatment on individual patients as 

well as 2) assisting in disease management, both of which allow for the direct inclusion of 

patient experience into the care environment [7-9]. Fatigue screening approaches are 

recommended in the 2014 ASCO Guidelines as routine practice, beginning at diagnosis and 

moving to more comprehensive assessment techniques for patients whose fatigue reflects 

moderate to severe levels; at this level, more clinical and laboratory evaluation as well as 

more comprehensive patient-reported measures are recommended.

Nunnally's text, Psychometric Theory, [10] is recognized as a key source for instrument 

development; a reliability of 0.95 was recommended if decisions are to be made regarding a 

single test score (page 246). Either a reliability level of 0.95 or ≥ 0.90 has continued to be 

recognized by instrument developers for use of PRO scores at the individual level 

[4,11-13].The precision of PRO measures used in oncology clinical settings has been 

debated for a number of years [11,12,14-17]. Although fixed-length and CAT (variable 

length) measures developed using item response theory (IRT) have been described as more 

precise (per item) than commonly used PRO measures based on classical test theory criteria 

[8,9,18-20], few studies have been published supporting use of CAT measures (or any other 

measures) in terms of their reliable responsiveness to individual change. Lai et al. [19] have 

demonstrated such better precision of individual status with a CAT measure, but with respect 

to a single time point. The most commonly used measure of reliability has been coefficient 

alpha [21] but this measure uses item homogeneity to estimate systematic variation between 

individuals at static time points, not systematic differences in how individuals change 

[17,22]. Important psychometric criteria for measured change in fatigue and other PROs, 

such as the precision of estimates of individual change, have been described 

[10,12,14-17,22,23]. Stringent reliability and precision criteria are just as important for 

measurement of individual change, but rate-of-change has seldom been considered as a 

measurement.

Hahn et al. [15] compared measurement error for PRO (e.g., SF-36 scales) and clinical (e.g., 

systolic and diastolic blood pressure) measures of patient status and concluded that these 

two types of measures were comparable with respect to measurement criteria and that within 

both types of measures, one finds high, good, and low reliability. Many clinical status 

measures show considerable measurement error (e.g., tumor size measurements and systolic 

hypotension); yet these measures are used consistently in medical care and research. Hahn et 

al. suggested that given this widespread variation in measurement quality, use of both types 
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of measures can complement each other (i,e., both are important for arriving at an accurate 

description of patient status) [15]. Methods addressing measured change at the individual 

patient level, such as those described in this report, need to be applied to longitudinal 

assessments using clinical measures. Measurement of trajectories of change is challenging 

regardless of the property being measured. Both clinical and PRO measures should be 

subjected to more research regarding tracking and interpreting change for individual 

patients.

In this pilot study, we sought to compare three measures of change in fatigue: IRT-based 

PROMIS Fatigue CAT [8,9,24,25] and the 7-item PROMIS Fatigue 7a Short-Form, hereafter 

referred to as the PROMIS 7a [19]; and the FACIT-Fatigue [26,27], a classical test theory-

based, legacy measure of fatigue. This report compares the quality of change measurement 

for the three measures in a sample of patients undergoing chemotherapy treatment for cancer 

over a six month period.

Methods

Study design and sample

Two hundred fourteen patients with breast or gastrointestinal (GI) cancers were enrolled in 

this study through the Seattle Cancer Care Alliance (SCCA, Fred Hutchinson Cancer 

Research Center, Seattle, WA) and the Lombardi Comprehensive Cancer Center (LCCC, 

Georgetown University, Washington, DC). The study protocol was approved by Institutional 

Review Boards at both institutions for the following patient samples: women and men aged 

21 years and older; up to three weeks pre- or post-initiation (first day of cycle 1) of the 

current chemotherapy regimen (intravenous or oral agents [IV or PO]) for any stage breast, 

gastric, colon, rectal, small bowel, esophageal, liver, bile duct, and gall bladder cancers; 

prior chemotherapy treatment allowed; U. S. residence; ability to complete computer 

assessments in English (determined by research staff).

Study enrollment and data collection procedures

At both research sites, the Research Coordinator provided a laptop for enrolling patients; at 

LCCC, this laptop was made available upon request for future encounters with patients who 

did not have home internet access. At SCCA, patients without home internet access could 

complete the online fatigue assessments at the SCCA Patient and Family Resource Center. 

Regardless, all patients completed all assessments on-line through the PROMIS Assessment 

Center. Patients could be enrolled up to three weeks pre- or post-initiation (first day of cycle 

1) of the current chemotherapy regimen. The Research Coordinator consented and registered 

each patient on the PROMIS® Assessment Center website [28] [ http://www.nihpromis.org ; 

http://www.assessmentcenter.net/ ] and then trained the patient to complete the first 

PROMIS® assessments online. Timing of the five follow-up monthly assessments was based 

on the date of study registration. Monthly assessments could be completed during the last 

week of the month (multiple log-ins possible during this week). Assessment dates were not 

always synchronized with treatment administration due to treatment delays, which could not 

be identified in time to revise the Assessment Center scheduled assessments.
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Participant incentives—Patients were offered a $50 (total) incentive for their 

participation in the study at two time points: after completion of at least two of the first three 

monthly assessments; similarly, upon completion of at least two of assessments 4, 5, and 6.

Adherence monitoring—The Research Coordinator at each of the two clinical sites 

provided email or telephone reminders at the beginning of the week in which the monthly 

online assessment was available and before the end of online availability if the patient had 

not completed that assessment during the first part of the open period. The Research 

Coordinator also called patients twice during the first three months to identify any 

difficulties accessing or responding via the website.

Patient-reported fatigue and sociodemographic measures

The PROMIS Fatigue CAT [8,24,25,29] currently defaults to a minimum of 4 and a 

maximum of 12 items; this range typically ensures meeting the PROMIS standard error 

precision criterion. [19]. This was the Assessment Center criterion when this study was 

conducted. We did not compare other stopping rules for two reasons: 1) we wanted to use 

the precision criteria currently in use by Assessment Center since this was a model 

assessment approach for measuring PROs in the multi-research site setting; and 2) this 

project was a pilot study and did not have sufficient funding to compare stopping rules or 

evaluate the use of different sets of items from the Fatigue Item Bank. The CAT items were 

administered first, followed by the PROMIS 7a [30] [https://www.assessmentcenter.net/

documents/InstrumentLibrary.pdf] and the FACIT-Fatigue [26,31]. Once a month for six 

months, patients were administered the additional covariate measures: PROMIS® Sleep 

Disturbance 8-item Short Form [32]; one PROMIS® Global Fatigue item [30,33,34]; a 

patient-reported performance status single item [26,35,36]; two questions about patients’ 

physical activity [37,38]; and the global rating of change in fatigue item (assessments 2-6). 

Our pilot test of the Assessment Center's administration of items for this Clinical Study 

confirmed that after answering the PROMIS Fatigue CAT, patients did not receive any 

duplicate items when the PROMIS 7a and the FACIT Fatigue Scale were presented.

This report also includes information for the following clinical status variables for patients 

from both research sites: cancer type, stage, and number of prior chemotherapy regimens. 

The Research Coordinators verified this information (medical records review or 

confirmation provided by clinical staff).

Statistical analyses for assessment of individual change

Precision and reliability of measured change—Measurement theory links an 

observed quantity to an unobserved or latent variable. For this report, we construe the 

observed measure as an individual's mean rate-of-change, or slope, on a PRO fatigue scale 

over six assessments. This pragmatic definition of rate-of-change generalizes the change 

score to multiple assessments, and conveys to clinicians and patients an approximate degree 

of improvement or worsening. In the reliability context, the average rate-of-change for one 

person (as calculated from a chart or an Excel regression line) is the observed variable, and 

the true rate-of-change in fatigue is the unobserved attribute. Imprecision of measured 

change is given by the standard error of the estimated rate-of-change parameter, the expected 
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deviation of the estimated attribute from the true attribute for one person, the typical amount 

by which the estimated rate-of-change is likely to be off from an individual's true rate-of-

change.

If the error variance in a single assessment  is known, the standard error for an individual 

i's rate-of-change score β1i can be directly calculated as the square root of the sampling 

variance  over the times of assessment Tk. If the 

variance V(β1) of the true rate-of-change in the population is further known, then the 

reliability of the measured rate-of-change can be directly calculated as 

, where the numerator reflects true variance in 

slope across members of the population, and the denominator is the total measured slope 

variance (comprising true plus sampling variability).

In practice, particularly in common clinical monitoring scenarios, the average individual 

rate-of-change is easily estimated but the two variance quantities are unknown. To obtain 

efficient estimates for each of the three PRO measures, we assume a standard linear latent 

growth mixed effects model, with each individual patient i characterized by random effect 

intercept β0i (starting point) and slope β1i (rate of change) terms over the six (t=0 to 5) time 

points of the study: . 

In the population model, the two systematic random effects have means B = (β0,β1)’ and 

unstructured bivariate normal covariance matrix ψ (containing variances for the intercept 

and slope and their covariance), while the unsystematic error is assumed normal and serially 

uncorrelated with constant variance . To enable a more interpretable comparison of the 

precisions, we analyzed standardized scores for the three fatigue measures; this has no effect 

on reliability, relative precision, or other relevant psychometric properties. The key 

hypothesis is evaluated by comparing the relative precision and reliability for the three 

measures as described above and summarized in Table 1 [22,39,40].

For individual monitoring, precision is more important than reliability, but concepts of 

reliability are more familiar. The two indices provide complementary information. Precision 

describes the uncertainty in the measurement (estimation) of an individual's change, while 

reliability also reflects the heterogeneity of the attribute in the (infinite theoretical) 

population. Reliability is a population concept, capturing how variably members of the 

population are systematically changing relative to the total variability (including error) of 

rate-of-change measurements. Our estimate of reliability uses the classical definitional 

formula, which applies to any measured trait, state, or rate attribute β: 

.

While we would prefer to emphasize the salience of precision in individual measurement, it 

is expedient for the purposes of this paper to present the more familiar reliability context as 

well. As noted above [10,12,14-17,22,23] and to our knowledge, PRO measures in use today 
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have not examined the reliability or precision of a measure for assessing rate of change in 

individual patient status.

The average (linear) rate-of-change is indispensably relevant as a summary of individual 

improvement or worsening. It is therefore our primary psychometric target. For simplicity, 

we provisionally assume that the linear trend captures the important systematic change in the 

six-month period. Although not our main focus, we also examine whether the fit of the 

measurement model can be improved by allowing polynomial time trends. Nonlinear trends 

are, however, much more difficult to interpret as summary attributes. As a pragmatic guide, 

we provide an estimate of the minimum number of assessments required for each of the 

measures to yield good measurement (conventionally and somewhat arbitrarily set at .90 for 

individual assessment; reliability depends on the intrinsic true variability, which varies 

across populations) of individual change in fatigue [12].

Results

Table 2 summarizes baseline characteristics for 214 patients who enrolled in this study at the 

two locations with the following percentage of covariate information: SCCA in Seattle 

(62%) and LCCC in Washington, DC (38%). Patient covariate data along with form 

submission rate data were available for 213 of the 214 patients. The mean age was 52 and 

most patients were female (69%). Table 3 lists baseline levels of major covariates collected 

for the study. Baseline fatigue levels for the single-item global item were mostly mild and 

moderate. These patients were physically active with 41% indicating that they walked more 

than an hour during a week; 66% walked at a moderate to fast speed. Sixty-nine percent 

reported good performance status (no symptoms or some symptoms that did not require bed 

rest). Form submission rates for both sites (Table 4) were 100% at baseline (Assessment #1), 

dropping to 67% by Assessment #6. By the 6th Assessment, form submission rates were 

higher for patients enrolled at the SCCA site (71%) vs. the LCCC site (59%). Table 5 shows 

the number of patients receiving treatment at each of the six assessment times at the SCCA. 

The number of patients receiving treatment at the SCCA dropped after the third assessment; 

this was due primarily to shorter courses of chemotherapy. However, 22 SCCA patients 

began radiation treatment after their chemotherapy regimen during the remaining three 

assessment periods and were treated throughout the 6-month assessment period. Eighty-nine 

of the 214 patients (42%) returned to answer monthly assessments after a missed 

assessment, a fairly common experience. Only nine patients at SCCA and ten patients at 

LCCC went off study permanently; reasons for drop-out included death (n=8), ill health 

(n=4), no further verbal contact (n=3), and other (n=4).

Table 6 shows the reliability and precision estimates for measured change in fatigue at the 

individual patient level for each of the three fatigue measures (n=214 patients): PROMIS 

Fatigue CAT, PROMIS 7a, and the FACIT- Fatigue. The sample size for these analyses 

include one additional patient (n = 214) not included in Tables 1-4. The reliabilities 

mentioned in the title of Table 6 reflect the ratio of estimated variance of systematic 

individual differences in rate-of-change (i.e., how people in the population are estimated to 

differ in their individual rates-of-change) to total variance of measured individual differences 

in rate-of-change. These analyses are based on standardized (z-score) scales for either 6 or 3 
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occasions. Column 2 (Population Variance) is an estimate of true rate-of-change variability 

from mixed effects population models with correlated slopes and intercepts. Column 3 

(Sampling Variance) is equivalent to the expected value of the squared discrepancy between 

unbiased maximum likelihood/ordinary least squares (ML/OLS) individual parameter 

estimates, assessed independently one person at a time, and the individual's true value. In the 

special case of linear trend, the sampling variance is the (pooled) measurement error 

variance divided by the sum of an individual's squared time deviations from the mean time 

point. Standard error of measurement results are shown in Column 4, which are square roots 

of respective sampling variances (e.g. √.031143 in Column 3 = the precision estimate of .176 

in column 4). Uncertainties of individual measurements (estimates) of intercept and slope 

depend on the number and pattern of assessments for each person. Inspection of preliminary 

results suggested that patients displayed the most true change variability in the first three 

months, with greater stability thereafter. To allow the most favorable case for reliability to 

emerge, we therefore also ran models restricted to the first three months. Table 6 assumes 

availability of the full number of assessments (either 3 or 6). In practice, fewer assessments 

than this would yield worse precision. See Table 6 notes for additional statistical 

explanations for columns 2-5.

None of the three assessments met conventional benchmarks for excellent reliability (i.e., ≥ 

0.90). Standard errors of measurement of change are also high, indicating large individual 

measurement uncertainty and poor precision of measured change at the individual patient 

level. As expected, each individual's rate-of-change was more precisely measured with six 

assessments than with three. Improved precision did not translate into enhanced scale 

reliability for change, since population rate-of-change variances also decreased with longer 

time spans; months 4-6 evidently introduced a clinical environment in which patients were 

somewhat more similar in how their fatigue changed. With the exception of CAT based on 

six time points, more complex polynomial time models did not notably improve the fit of the 

measurement model; thus, the linear fits of Table 6 are the best summaries of change 

measurement.

Discussion

The results of this study support previous concerns regarding use of PRO measures designed 

for group-level research to monitor change in individual patient status.[12,17,41]. The issues 

raised in these analyses are not necessarily specific to the instruments tested; in fact, we are 

not aware of any fatigue instruments that have demonstrated better performance in 

measuring intra-individual change. Nor are these issues necessarily specific to PRO data. We 

agree with Hahn et al. [15] regarding the need to question the measurement of change in 

clinical and other outcome variables, with respect to how measured change is trusted as 

reliable when making decisions about individual patient status (e.g., responder versus non-

responder).

An additional challenge for clinicians is that most guidelines for interpreting change (e.g., 

minimally important difference, or MID) in PRO measures are based on clinical trials 

involving large numbers of patients in different treatment groups; the cut point for change of 

interest is based on a comparison of averages obtained for each treatment group [42]. The 
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challenge facing clinicians is how to apply findings based on averages for groups of patients 

to the patient facing the clinician [14,17]. Hendrikx et al. [43] reported minimally important 

change cutoff values based on group-level data were not appropriate for monitoring change 

in individual patients due to misclassifications in such change; the authors also noted the 

failure to incorporate how patients value the change and the consequences of changing 

patient care based on these scores. This concern echoes what Donaldson noted in prior work 

[17].

As a practical example, consider the possible use of the PROMIS Fatigue 7a over the course 

of six assessments. This scale and time range featured the best precision of measurement in 

Table 5. (In this example, the low reliability reflects in part the low population variability in 

true change over six assessments.) With a standard error of measurement of .160 (Column 4, 

Linear PROMIS SF, 6 Times), the 95% confidence intervals are roughly +/− .320 about 

individual rate-of-change estimates, which are in units of expected change in standard scores 

per assessment time. A patient estimated to have a rate-of-change of .20 would display a 

cumulative increase of 1.00 standard deviation units over the course of the six assessments, a 

seemingly large effect. Yet the confidence limits on the rate-of-change measurement span .

520 (.200 + .320) to −.120 (.200 − .320). Despite the large measured change estimate, given 

the wide confidence intervals around these estimates (and the fact that the interval includes 

zero), it would not be possible to confidently determine whether the patient was getting 

worse or better or staying the same. Individual assessments require excellent precision, with 

standard errors much smaller than the scores, the estimated attributes.

Despite the low reliabilities in this clinical application, adding additional times of 

assessment, more items/specific types of items, and different analysis methods may address 

the problems we observed. Others (Faes et al, Brandmaier et al) [44,45] have provided 

efficient frameworks for investigating specific reliability and precision scenarios within 

common mixed model contexts. Below we suggest potential solutions, all of which require 

more research.

1) The low reliabilities reflect low rate-of-change variability in the population as 

well as imprecise individual measurement. Precisions (and therefore reliabilities) 

of change measurements may be improved by adding additional assessments. To 

attain excellent measured change reliabilities of .90 in our study, we use the 

Table 6 formula for sampling variance to estimate that the PROMIS CAT would 

need 15 total assessments over the same time range, the PROMIS 7a would need 

14, and the FACIT would need 13, assuming the same underlying psychometrics 

(data not shown). Measurement can be further strengthened by sampling time 

points nearer the ends and the beginnings of longitudinal sequences (so that the 

sum of squared time deviations can be greater).

2) Adding additional items may or may not improve the reliability of change; this 

would depend on the items added. For example, true improvement in 

measurement of change may require the selection of items explicitly for their 

sensitivity to clinical change, as opposed to the typical psychometric 

development approach of maximizing individual differences at single time 

points. Item bank approaches such as those employed for PROMIS CAT and 
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Short Form measures provide an excellent method for identifying such items; 

item banks can also be expanded to include more items that capture change.

3) Empirical Bayes (EB) scoring [46] would yield slightly better reliabilities and 

reduced sampling variabilities, but EB scores are conditionally biased, depend 

on applying weights from a population study, and allow each patient's score to 

be partly determined by the scores of other patients. This is somewhat at odds 

with the simple goal that each patient's change score should reflect only the 

observed data for that patient. Moving to slightly more complex models, 

reliabilities of residual gain scores (regression as opposed to difference) will be 

slightly better than scoring based on pure change [47]. Many other scoring 

variations are possible within a multivariate framework.

Applying any of these recommendations has meaningful implications for the overall 

feasibility of data capture and use in clinical care situations. The data from this study 

suggest that regarding patient/clinician decision making, the confidence limits of individual 

change assessment are so wide that reliable determination of changes in status over time 

may not always be feasible. Adding assessments can improve precision, but only until they 

become prohibitive due to patient burden and retest effects. We suggest designing studies to 

identify or develop precise change measures and the number of assessments needed to yield 

adequate reliabilities given the true variability in the population. For homogeneous 

populations, reliable measurement, whether of traits or of change, may simply not be 

possible. If all chemotherapy patients could show essentially zero fatigue that remained flat 

over time, this would be an ideal result, having zero reliability of measurement but excellent 

precision.

The sample size of 214 is not large for psychometric investigations, but easily exceeds 

conventional rules of thumb [10]. The calculated results involve ratios of variances and are 

essentially unbiased. Precision is more of a concern, though not a major one. This sample 

size yields a standard error of the measurement error variance ranging from 5-10% in these 

scales, a margin too small to meaningfully alter the precision of estimation for the measured 

intercepts and slopes in Table 6. Reliability also involves uncertainty in estimated variances 

of the true slope and intercept attributes, but sampling uncertainty at this level can be 

subsumed under broader questions of how the reliability would change under populations 

having more or less attribute variation. Adding additional patients to such a study would not 

systematically affect our estimates of precision, but adding more numerous and widely 

spaced time points would improve precision. Psychometric study of change should include 

close consideration of the time design of the assessments.

Why did we fail to observe good to excellent reliability? We must first carefully distinguish 

the measured attributes in the reliability models. Conventional reliability studies investigate 

how consistently measurements can distinguish inter-individual differences in an 

unchanging trait or otherwise stable attribute. They assume no underlying change, or that 

everyone changes uniformly. We focused instead on the rate of change as the fundamental 

attribute to distinguish individuals. Conventional models that assume no change are clearly 

inconsistent with better measurement of how patients may be changing, and how reliably 
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and precisely we can measure this change. As previously noted [12,41], measurement of 

change can be much less reliable than static measurement.

Our study informs researchers that current PRO measures may lack the precision required to 

inform decisions about change in individual status, particularly with respect to medical 

decision making. We do not believe this finding is specific to the fatigue instruments used 

here to illustrate the problem. Any number of fatigue measures could have been used in this 

comparison and may well have come to the same conclusion. Indeed, we do not believe this 

issue is specific to PRO, as it may very well be the case in other clinical outcomes used to 

measure and monitor individual change. We suggest this be a subject of study more 

generally, as the field moves into increased tracking of individual change in research and 

clinical applications. Several decades ago, Cronbach and Furby [41] questioned whether we 

should be measuring change at all (particularly with respect to change or difference scores)! 

Current statistical methods now permit rigorous psychometric study of change, so our 

response to Cronbach and Furby's question is enthusiastically affirmative. Meeting rigorous 

psychometric criteria for change measurement, however, remains as challenging today as it 

was decades ago.
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Table 1

Individual change attributes as distributed in the population and measured in a sample

Population Data Model Population (Prior) Distributions Scoring = Estimation of β1i

Description of time 
trajectory for all 
hypothetical members 
of infinite population

Summary characteristics of the hypothetical infinite population (i.e., 
population parameters) that render observed data likeliest

Narrow scope of estimation: Measured time slope and uncertainty 
for person i in the sample

Yij = β0i + β1itij + εij

β0i, β1i ∼ MVN β0, β1 ,
V β0 sym

C β0β1 V β1
εit ∼ N 0, σε

2 β1i = ∑ j = 1
Ti ti j − ti Yi j − Yi ∑ j = 1

Ti ti j − ti
2

(measured time slope for person i)

Conditional sampling variance (and standard error) of rate 
measurement

β1i ∼ N β1i, V β1i ∣ β1i  (unbiased)

σ
β1i

= V β1i ∣ β1i
1 2 = σe

2 ∑ j = 1
Ti ti j − ti

2 1 2

Reliability of measured (estimated) rate-of-change

Rxx′ β1 = V β1 V β1 + V β1i ∣ β1i
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Table 2

Patient Characteristics (N=213
*
)

Age at Diagnosis: Mean (Standard Deviation) 52.40 (10.80)

N (%)

Gender: Female 147 (69)

        Male 66 (31)

Race:

    White 162 (76.1)

    Black or African American 17 (8.0)

    Asian 16 (7.5)

    American Indian/Alaska Native 2 (0.9)

    Native Hawaiian/Pacific Islander 0 (0)

    More than one race 9 (4.2)

    Not Provided (missing) 7 (3.3)

Ethnicity:

    Hispanic or Latino 10 (4.7)

    Not Hispanic or Latino 202 (94.8)

    Not Provided (missing) 1 (0.5)

Education:

    Less than high school 2 (0.9)

    High school graduate or GED 13 (6.1)

    Some college or technical/vocational school 58 (27.2)

    College graduate 59 (27.7)

    Some graduate school 15 (7.0)

    Graduate degree 66 (31.0)

Marital Status:

    Married or living with someone 148 (69.5)

    Divorced 32 (15.0)

    Separated 3 (1.4)

    Widowed 3 (1.4)

    Single (never married) 23 (10.8)

    Not Provided (missing) 4 (1.9)

Employment Status:

    Working full time 95 (44.6)

    Working part time 18 (8.50

    Full-time homemaker or family caregiver 15 (7.0)

    Retired 39 (18.3)

    Unemployed 13 (6.1)

    Student 3 (1.4)
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    Other 12 (5.6)

    More than one answered 17 (8.0)

    Not Provided (missing) 1 (0.5)

# People Living Near You/Can Count On for Help:

    0 7 (3.3)

    1 14 (6.6)

    2 33 (15.6)

    3 to 5 65 (30.5)

    6 to 9 29 (13.6)

    10 or more 64 (30.0)

    Not Provided (missing) 1 (0.5)

Research Site Location:

    Seattle Cancer Care Alliance 132 (62.0)

    Lombardi Comprehensive Cancer Center 81 (38.0)

Cancer Type:

    Breast 89 (41.8)

    Colon 79 (37.1)

    Rectal 17 (8.0)

    Colorectal 1 (0.5)

    Small Bowel 2 (0.9)

    Gastric 7 (3.3)

    Esophageal 7 (3.3)

    Liver 5 (2.3)

    Bile Duct 4 (1.9)

    Gall Bladder 2 (0.9)

Cancer Stage:

    I 15 (7.0)

    II 47 (22.1)

    III 47 (22.1)

    IV 103 (48.4)

    Not Provided (missing) 1 (0.5)

# Prior Chemo Regimens:

    0 101 (47.4)

    1 30 (14.1)

    2 or more 23 (10.8)

    Not Provided (missing) 59 (27.7)

*
Clinical data were not available for one patient.
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Table 3

Baseline Covariate Status (n=213
*
)

N (%)

    Global Rating of Fatigue

        None 30 (14.1)

        Mild 85 (39.9)

        Moderate 73 (34.3)

        Severe 22 (10.3)

        Very severe 2 (0.9)

        Not Provided (missing) 1 (0.5)

Physical Activity

    Minutes/week walking

        Never takes walks 21 (9.9)

        About 15 minutes 16 (7.5)

        About 30 minutes 40 (18.8)

        About 45 minutes 25 (11.7)

        About 60 minutes 22 (10.3)

        Longer than one hour 87 (40.8)

        Not Provided (missing) 2 (0.9)

    Usual walking speed

        Never takes walks 13 (6.1)

        Very slowly 8 (3.8)

        Slowly 36 (16.9)

        Moderately 111 (52.1)

        Fast 29 (13.6)

        Very fast 14 (6.6)

        Not Provided (missing) 2 (0.9)

    Patient-Rated Performance Status

        Normal activity without symptoms 56 (26.3)

        Some symptoms, but not required bed rest during waking day 93 (43.7)

        Require bed rest for less than 50% of waking day 47 (22.1)

        Require bed rest for more than 50% of waking day 14 (6.6)

        Unable to get out of bed 0 (0)

        Not Provided (missing) 3 (1.4)

*
Covariate data were not available for one patient
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Table 4

Internet Assessment Submission Rates

Assessment groups (N) All LCCC SCCA

Assessment 1 Completed 213 81 132

Assessment 1 missed 0 0 0

Assessment 1 Off study 0 0 0

Assessment 2 Completed 154 60 94

Assessment 2 missed 49 16 33

Assessment 2 Off study 10 5 5

Assessment 3 Completed 145 53 92

Assessment 3 missed 53 21 32

Assessment 3 Off study 15 7 8

Assessment 4 Completed 136 47 89

Assessment 4 missed 59 25 34

Assessment 4 Off study 18 9 9

Assessment 5 Completed 135 46 89

Assessment 5 missed 59 25 34

Assessment 5 Off study 19 10 9

Assessment 6 Completed 129 42 87

Assessment 6 missed 65 29 36

Assessment 6 Off study 19 10 9

Assessment 1 Submission Rate 100 100 100

Assessment 2 Submission Rate 75.86 78.947 74.02

Assessment 3 Submission Rate 73.23 71.622 74.19

Assessment 4 Submission Rate 69.74 65.278 72.36

Assessment 5 Submission Rate 69.59 64.789 72.36

Assessment 6 Submission Rate 66.49 59.155 70.73

Submission Rate = Completed / Eligible to complete (completed + missed); LCCC = Lombardi Comprehensive Cancer Center; SCCA = Seattle 
Cancer Care Alliance. Submission rate data were available only for patients who completed the full set of measures; one patient did not complete 
the covariate data.
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Table 5

Number of SCCA Patients Receiving Chemotherapy or Chemotherapy + Radiation at Each Assessment Time 

Point

# PT on TX 
A1

# PT on TX 
A2

# PT on TX 
A3

# PT on TX 
A4

# PT on TX 
A5

# PT on TX 
A6

# PT off 
study

Chemo + RT 132 117 97 82 68 53 9

# PT lost at each A 15 20 15 14 15

PT = Patient; TX = Treatment ; Chemo = Chemotherapy [All types: Infusion and oral chemo; Chemo + RT (22 SCCA patients began RT post-
chemo); Infusion + oral + RT]; RT= Radiation Therapy; A = Assessment
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Table 6

Estimated Reliabilities of Measured Change
a
 in Three Fatigue Measures

N = 214 Population Variance
c

Sampling Variance
d Standard error of 

Measurement
d Reliability of Measurement

e

LINEAR CAT, 6 TIMES

Intercept T0=0 .414636 .285474 .534 .592

(Intercept T0=2.5) (.410391) (.090826) (.301) (.819)

Linear Slope .017738 .031143 .176 .363

Within Person .544996 |i,t .738238 |i,t

Single assessmentf .455 |t

QUADRATIC CAT, 6 TIMES

Intercept T0=0 .494551 .387915 .623 .560

Linear Slope|T0=0
b .103431 .343221 .586 .232

Quadratic .004427 .012649 .112 .259

Within Person .472245 |i,t .687 |i,t

Single assessment .528 |t

LINEAR CAT, 3 TIMES

Intercept T0=0 .651514 .33248 .577 .659

Linear Slope .103597 .19949 .447 .342

Within Person .38972 |i,t .624 |i,t

Single assessment .610 |t

LINEAR PROMIS SF, 6 
TIMES

Intercept T0=0 .533152 .235924 .486 .693

Linear Slope .017712 .025737 .160 .408

Within Person .450401 |i,t .671 |i,t

Single assessment .550 |t

LINEAR PROMIS SF, 3 
TIMES

Intercept T0=0 .830349 .219962 .469 .791

Linear Slope .150426 .131977 .363 .533

Within Person .263954|i,t .490 |i,t

Single assessment .736 |t

LINEAR FACIT, 6 TIMES

Intercept T0=0 .511570 .254444 .504 .668

Linear Slope .023577 .027758 .167 .459

Within Person .485757|i,t .697 |i,t

Single assessment .514 |t

LINEAR FACIT, 3 TIMES
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N = 214 Population Variance
c

Sampling Variance
d Standard error of 

Measurement
d Reliability of Measurement

e

Intercept T0=0 .693272 .252123 .502 .733

Linear Slope .136008 .151274 .389 .473

Within Person .302547|i,t .550 |i,t

Single assessment .697 |t

Standard errors and reliabilities for Intercept depend on the time for which T=0. Even though intercept is defined to occur at one (possibly 
hypothetical) time point, its estimation uses information from all time points. Taken above as T=0 baseline, Intercept is interpreted as initial status. 
As T→ Mean (Time), the Intercept behaves more like the mean score across times, which can be highly reliable, though irrelevant for change. An 
example is provided for the linear CAT model with 6 assessment points. Setting T=2.5, near the middle of the time range, yields highly reliable 
Intercept measurement, but properties of the slope are unaffected.

a
Ratio of estimated variance of systematic individual differences in rate-of-change to total variance of measured individual differences in rate-of-

change using model-based pooled estimates of within-person error. To make descriptive comparisons across scales easier, the analyses are based on 
standardized (z-score) scales over all time points available (either 6 or 3 occasions). This linear transformation has no effect on reliability 
calculations.

b
Instantaneous rate-of-change at T=0 baseline.

c
ML (maximum likelihood) estimate of true variability from mixed effects population models with correlated slopes and intercepts.

d
Equivalent to expected value of squared discrepancy between unbiased ML/OLS (ordinary least squared) individual parameter estimate, assessed 

independently one person at a time, and individual's true value. Sampling variance given collectively by diag(Λ′Φ−1Λ)−1, where Φ is the within-
person sampling (measurement) error, an estimated population parameter, and Λ contains the constant, linear, and quadratic time contrasts. 
Standard errors are square roots of respective sampling variances. Uncertainties of individual measurements (estimates) of intercept and slope 
depend on number and pattern of assessments for each person. The table assumes availability of the full number of assessments (either 3 or 6). 
Standard errors increase, and reliabilities decrease, with fewer assessments. The square root of the within-person residual error is the model-based 
estimate of the scale's standard error of measurement at any given time point. For example, under the linear 6-assessment model the CAT has an 
estimated scale standard error of .742 in standardized units. This defines the typical error of measurement error expected in one assessment of one 
individual. The 95% confidence intervals for the single assessment would be approximately +/− (2*.742) = +/− 1.484 standardized units.

e
Reliabilities defined classically as ratios of true population variance (Ψ) to measured variance. The measured variance is the sum of true variance 

and the sampling variance. The reliability is then ρbb′ = ψb / (ψb + diagb(λb′Φ−1λb)−1), where b is the intercept or slope (or quadratic 

coefficient).

f
With standardized measures, the model-based estimate of the reliability of a single assessment is one minus the residual or within-person error, 

equivalent to one minus the squared standard error of measurement of the scale. The term t refers to a single assessment at any single time.
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