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Abstract

Rationale—Dopamine plays a critical role in striatal and cortical function, and depletion of the 

dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce 

dopamine and probe the role of dopamine in behavior. This method has been shown to alter 

addiction-related behaviors and cognitive functioning presumably by reducing dopamine 

transmission, but it is unclear what specific aspects of dopamine transmission are altered.

Objectives—We performed this study to confirm that administration of an amino acid mixture 

omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal 

cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] 

administration reduces phasic dopamine release in the NAc.

Methods—Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid 

mixture, or saline. High-performance liquid chromatography was used to determine the 

concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral 

striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic 

voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control 

amino acid solution.
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Results—Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and 

norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of 

dopamine transients, but not their amplitude, in freely-moving rats.

Conclusions—These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic 

dopamine transmission, providing insight into the mechanism by which this method modifies 

dopamine-dependent behaviors in human imaging studies.
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Introduction

The critical role of dopamine in striatal and cortical function has been emphasized in 

numerous studies. In human subjects, the tools available to probe dopamine function are 

limited. One method currently used to investigate dopamine’s role in human behaviors is 

acute phenylalanine/tyrosine depletion (Moja et al., 1996, Leyton et al., 2000b, Leyton et al., 

2004). With this method, subjects drink amino-acid (AA) mixtures either containing or 

lacking the catecholamine precursors tyrosine (Tyr) and phenylalanine (Phe). Ingestion of 

AA mixtures alters the level of individual AA species in systemic circulation and promotes 

protein synthesis by replenishing AA pools. Importantly, tryptophan and the branched-chain 

AAs (valine, leucine, and isoleucine) compete with Phe and Tyr for active transport across 

the blood-brain barrier. The Phe/Tyr deficient (Phe/Tyr[-]) mixture, as compared to the 

balanced control (BAL) mixture, results in lower Phe/Tyr levels relative to other AAs in 

circulation and, due to competition, reduced Phe/Tyr transport across the blood-brain barrier. 

Subsequently, the reduced availability of both catecholamine precursors would be expected 

to decrease catecholamine synthesis in the brain. That said, evidence to date indicates that 

Phe/Tyr[-] administration alters dopamine but not norepinephrine release (Sheehan et al., 

1996, McTavish et al., 1999a, McTavish et al., 1999b, Harmer et al., 2001, McTavish et al., 

2001).

In humans, Phe/Tyr[-] treatment reduces alcohol self-administration (Leyton et al., 2000a, 

Barrett et al., 2008), dampens mood and motivational state (Leyton et al., 2000b, Cawley et 

al., 2013), decreases cigarette smoking (Venugopalan et al., 2011), and can impair executive 

function and reinforcement learning (Kelm and Boettiger, 2013, 2015). Moreover, positron 

emission tomography (PET) has been used to determine that dopamine D2 receptor 

availability was greater following Phe/Tyr[-] both at baseline (Montgomery et al., 2003) and 

after an amphetamine challenge (Leyton et al., 2004), indicating that Phe/Tyr[-] 

administration reduced basal and stimulated extracellular dopamine as compared to 

ingestion of the BAL solution. However, PET imaging has limited spatial and temporal 

resolution, and to date PET imaging of the dopamine system in humans has been limited to 

radioligands that allow assessment only of striatal dopamine signaling. As such, neural 

localization of the various behavioral effects of Phe/Tyr[-] treatment in humans remains 

unclear.
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More precise tools, such as microdialysis and fast-scan cyclic voltammetry (FSCV), are 

available in animal models to directly measure extracellular dopamine concentrations within 

the context of both pharmacological manipulations and behavioral paradigms. Therefore, 

combining acute Phe/Tyr[-] with invasive neurochemical methods in animal models provides 

a unique opportunity to identify and more precisely localize the physiological and 

neurochemical consequences of Phe/Tyr[-] treatment, giving new insight to how this 

manipulation impacts brain function. To this end, several studies have documented 

consequences of Phe/Tyr[-] administration in rats. Intragastric administration of a Phe/Tyr[-] 

AA mixture decreases Tyr levels and the rate of Tyr hydroxylation in the central nervous 

system (Fernstrom and Fernstrom, 1995). Moreover, intraperitoneal Phe/Tyr[-] 

administration reduces Tyr tissue content and several indices of catecholamine function in 

both frontal cortex and striatum, including amphetamine-induced release of dopamine and 

desipramine-induced enhancement of dopamine and norepinephrine concentration (e.g., 

McTavish et al., 1999b, Bongiovanni et al., 2008). To date, the effects of Phe/Tyr[-] 

treatment on extracellular dopamine concentrations in the brain have been measured with 

microdialysis, a technique suited to monitor tonic changes in dopamine over several minutes 

to hours. However, dopamine release also occurs on a subsecond timescale; these 

fluctuations in dopamine release are termed dopamine transients and they reflect the brief 

efflux of neurotransmitter following dopamine neuron burst firing (Sombers et al., 2009). 

Both tonic and phasic dopamine release are involved in behavioral control, but these two 

modes differentially activate D1 and D2 receptors. Low concentration, tonic dopamine is 

thought to provide “tone” to high-affinity D2 receptors, while high concentration dopamine 

transients are sufficient to activate low-affinity D1 receptors (Dreyer et al., 2010). Critically, 

no published studies to date have investigated the effect of Phe/Tyr[-] treatment on phasic 

dopamine transmission, which is ideally accomplished via FSCV (Robinson et al., 2008) due 

to its temporal and spatial resolution.

To address this gap in the literature, the present study used FSCV to determine the effects of 

Phe/Tyr[-] administration on phasic dopamine release in freely-moving rats. To our 

knowledge, spontaneous dopamine transients have not been reported with FSCV in the 

prefrontal cortex (PFC) and would not be electrochemically distinguished from 

norepinephrine (e.g., Shnitko and Robinson, 2014); thus, we targeted the nucleus accumbens 

(NAc), where dopamine transients have been well described. We hypothesized that acute 

Phe/Tyr depletion would diminish newly synthesized dopamine and thereby reduce the 

frequency and size of spontaneous dopamine transients in NAc of rats. To address our 

hypothesis, we administered an AA mixture that either contained (BAL) or omitted (Phe/

Tyr[-]) Phe and Tyr. We also confirmed that Tyr was depleted in the NAc to complement the 

FSCV experiment, as well as in the PFC, which is a region of interest in many human 

studies using acute Phe/Tyr depletion. Finally, we determined the tissue content of dopamine 

and norepinephrine in the NAc and the PFC in order to assess whether acute Phe/Tyr 

depletion significantly altered storage pools of catecholamine in these regions.

Shnitko et al. Page 3

Psychopharmacology (Berl). Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Animals

Adult, male Sprague Dawley rats (n=18, 277±17g in Experiment 1, and n=12, 330±11g in 

Experiment 2) were purchased from Harlan Laboratories (Frederick, MD) and pair-housed 

in a temperature- and humidity-controlled room on a 12-h light-dark schedule with food and 

water ad libitum. All procedures involving laboratory animals complied with the Guide for 

Care and Use of Laboratory Animals and were approved by the Institutional Animal Care 

and Use Committee of the University of North Carolina at Chapel Hill.

Amino Acid Solutions

The AA solutions were adapted from McTavish et al. (1999b) and prepared as follows. For 

the Phe/Tyr[-] mixture, the following AAs were added to 5 mL 1 N NaOH: 100 mg 

methionine, 200 mg threonine, 50 mg tryptophan, 350 mg lysine, 415.7 mg valine methyl 

ester HCL. This solution was stirred for 5 min, and then the following AAs were added: 

415.5 mg isoleucine methyl ester HCl and 623.2 mg leucine methyl ester HCl. The solution 

was brought to a final volume of 12.3 mL using distilled water, and the pH was adjusted to 

7.4 with 1N NaOH. For the balanced AA mixture (BAL), the depletion mixture was 

prepared as stated above and brought to a final volume of 6.5 mL. In a separate vial, 250 mg 

of tyrosine methyl ester HCl and 250 mg phenylalanine were added to 9 mL of distilled 

water and stirred for 5 min. The two solutions were combined and stirred for an additional 

10 min, and then the pH was adjusted to 7.4 with 1N NaOH. Solutions were made fresh 

daily and in two batches (one for each injection), immediately before the injection took 

place. After solvation, solutions were continuously mixed on a stir plate until time of 

injection. Isoleucine methyl ester HCL was purchased from Tokyo Chemical Industry Co. 

(Tokyo, Japan) and all other AAs were obtained from Sigma-Aldrich (St. Louis, Missouri). 

All rats were injected i.p. with a total volume 6.74 mL/kg to deliver 1 g/kg of AAs per 

injection.

Experiment 1. Effect of Phe/Tyr[-] on tissue tyrosine and catecholamine content in 
forebrain tissue

Tissue dissection, homogenate deproteinization and derivatization—Rats were 

injected with either the Phe/Tyr[-], BAL, or an equivalent volume of saline both 2 hours 

before and 1 hour before unanesthetized decapitation (see Figure 1A for timeline). The 

brains were quickly extracted and frozen in isopentane cooled with dry ice. Frozen brains 

were sliced on a cryostat and tissue was collected by using 1 mm tissue punches (Miltex, 

York, PA). Punches targeted the PFC, specifically the medial prefrontal and orbitofrontal 

cortices, and the ventral striatum, specifically the NAc core and shell. Tissue samples were 

weighed and 500 μl of 0.1 N perchloric acid was added to each sample before 

homogenization using a sonicator probe. Samples were centrifuged at 13000 rpm for 15 min 

at 4°C. The supernatant was transferred to a separate tube and stored at −80°C or on dry ice 

until further processing.

After thawing, 100 μL of tissue homogenate or standard was added to 900 μL of 1M HClO4. 

Either 1000 μL or 1100 μL of 1M KOH was added to adjust the pH for catecholamine or Tyr 
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analysis, respectively. Following precipitation of KClO4, the solution was filtered through a 

0.2 μm nylon membrane. For catecholamine analysis, either 5 or 10 μL was manually 

injected into a high performance liquid chromatography (HPLC) system. For Tyr analysis, 

50 μL of prepared sample or standard was added to 50 μL of 0.1 M sodium tetraborate buffer 

(pH 10.4). Electroactive derivatives were formed by adding 2 μL of reagent and then 

incubating at room temperature for 10 minutes, and 15 μL of the reaction mixture were 

manually injected into a separate HPLC system. The derivatizing reagent was prepared daily 

using 11 mg of o-pthaldialdehyde, 250 μL of ethanol, 250 μL of 1 M sodium sulfite, and 4.5 

mL of 0.1 M sodium tetraborate buffer (pH 10.4), based on the methods of Smith and Sharp 

(1994).

Chromatography—For catecholamine analysis, reversed-phase HPLC system consisted 

of a Luna® 3 μm C18(2) 100 Å, 150 x 2 mm column (Phenomenex, Torrance, CA) and a 

SenCell2 flow cell with salt bridge reference electrode (Ag/AgCl) using an oxidizing 

potential of +450 mV (Antec Leyden, Netherlands). Degassed mobile phase (0.50 g 

octanesulfonic acid, 0.05 g decanesulfonic acid, 0.13 g ethylenediaminetetraacetic acid, 

11.08 g NaH2PO4, 100–150 mL methanol in 1 L deionized water; pH adjusted to 5.6 before 

addition of methanol) was delivered to the column at a flow rate of 0.28 ml/min using a 

LC110S pump (Antec Leyden). The column and electrochemical cell were housed in an 

INTRO controller (Antec Leyden) with oven temperature set to 45°C equipped with an 8125 

manual injector (Rheodyne, Cotati, CA). EZChrom Elite chromatography software (Agilent, 

Wilmington, DE) was used for analysis of the chromatograms.

For Tyr analysis, reversed-phase HPLC system consisted of a Luna® 3 μm C18(2) 100 Å, 

150 x 2 mm column (Phenomenex) and VT-03 electrochemical flow cell with salt bridge 

reference electrode (Ag/AgCl) using an oxidizing potential of +700 mV (Antec Leyden). 

Degassed mobile phase (0.186 g ethylenediaminetetraacetic acid, 15.60 g NaH2PO4, 170–

200 mL methanol in 1 L deionized water; pH adjusted to 4.5 before addition of methanol) 

was delivered to the column at a flow rate of 0.32 ml/min using a LC110 pump (Antec 

Leyden). A DECADE II controller (Antec Leyden) with oven temperature set to 45°C and 

7125 manual injector (Rheodyne) were used. Chromeleon chromatography software 

(Thermo Scientific, Sunnyvale, CA) was used for analysis of the chromatograms.

External standards were used to quantify analyte concentrations. Catecholamine stocks were 

prepared in 0.1 M H3PO4. Tyr stock was prepared in purified water (Milli-Q®, EMD 

Millipore, Billerica, MA). Reported values are derived from chromatograms in which the 

analyte peaks had signal-to-noise ratios above 3.

Statistical analysis—One NAc sample was excluded from the Tyr analysis due to poor 

chromatography. Two samples from PFC were identified as outliers (z-score ± 3) and 

excluded from dopamine and norepinephrine analyses. Separate one-way ANOVA were 

conducted on dopamine, norepinephrine or Tyr content (pg/mg wet tissue) in NAc or PFC 

looking at the effect of treatment (3 levels: saline, BAL, Phe/Tyr[-]) using SPSS Statistics 

(version 21, IBM Corp., Armonk, NY). T-tests with Bonferroni corrections were used for 

post-hoc analyses. Only results with p<0.05 were considered significant. Data are presented 

as mean ± SEM, and group numbers are stated in figure captions.
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Experiment 2. Effect of Phe/Tyr[-] on spontaneous dopamine transients in the NAc

Surgery—Rats were surgically prepared for FSCV as previously described (Robinson et 

al., 2009, Shnitko and Robinson, 2015). In brief, rats were anesthetized with 2% isofluorane 

and placed in a stereotaxic frame on a heated pad. The skull was exposed and holes were 

drilled in the skull for placement of a stimulation electrode aimed at the ventral tegmental 

area (from bregma, AP: −5.2 mm, ML: +1.0 mm, DV −8.5 mm) and a guide cannula (BAS 

Bioanalytical Systems, Inc, West Lafayette, IN) aimed above the NAc (AP: 1.8 mm, ML: 

+1.5 mm). An Ag/AgCl reference electrode was placed in the left hemisphere, contralateral 

to the guide cannula. All elements were secured with stainless steel screws and dental 

acrylic. After surgery, rats were given ibuprofen and allowed 4–5 days to recover.

Fast-scan cyclic voltammetry—Spontaneous dopamine transients in the NAc of awake 

rats were measured using FSCV at carbon-fiber microelectrodes as previously described 

(Robinson et al., 2009, Shnitko and Robinson, 2015). Animals were habituated to the 

experimental chamber and the tether one day prior to recording. On the day of the 

experiment, a carbon-fiber electrode was lowered into the NAc via the guide cannula and a 

triangle waveform (−0.4 V to 1.3 V to −0.4 V at 400 V/s vs the Ag/AgCl reference 

electrode) was applied at 60 Hz for at least 20 minutes to condition the microelectrode 

(Hermans et al., 2008). Next, the same waveform application frequency was reduced to 10 

Hz to allow dopamine measurement every 100 ms. Electrical stimulation (60 Hz, 24 pulses 

and 124 μA) was delivered to the ventral tegmental area in order to evoke dopamine in the 

NAc as a positive control to ensure that the carbon-fiber microelectrode was in a site that 

supported dopamine release (Robinson et al., 2003). Once reliable evoked (signal-to-noise > 

20) and/or spontaneous (signal-to-noise > 5) dopamine release was obtained, the carbon 

fiber was secured in place and voltammetric recording began.

Experimental procedure—The experimental procedure is illustrated in Figure 1B. 

Initially, basal level measurements were collected for 20 min to observe spontaneous 

dopamine release events (i.e., dopamine transients). After baseline collection, rats received 

the first injection of Phe/Tyr[-] or BAL, followed by the second injection one hour later. 

Data collection continued for two hours after the second injection and the target window for 

analysis, based on previous studies (McTavish et al., 1999b), began one hour after the 

second injection. Thus, the experiment was conducted over 3 hours and 20 min. After the 

experiments, carbon-fiber electrodes were calibrated using known concentrations of 

dopamine (0.5 μM and 1.0 μM) in TRIS buffer (2.5 mM KCl, 2.4 mM CaCl2, 1.2 mM 

MgCl2, 2.0 mM Na2SO4, 1.2 mM NaH2PO4, 15 mM TRIS HCl, 126 mM NaCl, pH=7.4).

Histology—Animals were perfused through the heart with 0.9% saline and then 10% 

formaldehyde. The brains were removed and stored in a freezer at −80°C until sliced with a 

cryostat in 50−μm coronal sections. The slices were stained with thionin and examined 

under a microscope to determine the placements of the guide cannulae.

Data analysis—FSCV data were analyzed by using a template match to a known cyclic 

voltammogram of dopamine in TarHeel CV software (Department of Chemistry, University 

of North Carolina at Chapel Hill) as previously described (Robinson et al., 2003). 
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Voltammetric signals collected every 100 ms were presented as cyclic voltammograms 

where currents resulting from oxidation and reduction of electroactive compounds are 

plotted versus applied potential. Each cyclic voltammogram was compared with a known 

voltammogram of dopamine (or template) and the correlation between the experimental 

voltammogram and the template was assessed. Voltammetric signals with a correlation 

≥0.866 (r2 > 0.7) were considered dopaminergic. Next, the maximal amplitude of each 

transient was converted to [DA]max by using calibration factors. Only transients that were ≥5 

times the root mean square of the noise, as determined by the background scans for that 

transient, were counted as dopamine transients. The number of transients per minute and 

[DA]max of the signals were used as parameters of dopaminergic activity at baseline and 

after injection of AA mixtures.

The present study measured frequency and amplitude of dopamine transients, similar to 

previous studies (Robinson and Wightman, 2004, Robinson et al., 2011, Howard et al., 

2013). The effect of Phe/Tyr[-] on dopamine transient frequency was analyzed with two-way 

repeated-measures (RM) ANOVA of treatment (between-subject: BAL, Phe/Tyr[-]) by time 

(within-subject: baseline, three 20-min bins during the target window) using SigmaPlot 

(Systat Software, San Jose, CA). As the data were not normally distributed per the Shapiro-

Wilk Normality Test, they were transformed by rank before analysis so they fit the 

assumptions of the parametric test. Post-hoc comparisons were calculated by the Holm-

Sidak method. The effect of Phe/Tyr[-] on the distribution of amplitudes (or [DA]max) of 

dopamine transients was analyzed with a Rao-Scott Chi-Square test with treatment as a 

between-subject variable (BAL, Phe/Tyr[-])with multiple observations made within each rat. 

[DA]max values were divided into 5 amplitude ranges or bins. Only results with p<0.05 were 

considered significant. Data are presented as mean ± SEM, and group numbers are stated in 

figure captions.

Results

The injection regimen was based on McTavish et al. (1999b), in which the AA load was 

delivered in two i.p. injections, one hour apart. The critical comparison was between groups 

receiving Phe/Tyr[-] or the BAL control; however, for Experiment 1, we included an 

additional control group that received equivalent volumes of saline to determine any effects 

of AA load per se. The experimental procedure is illustrated in Figure 1. Tissue harvesting 

(Experiment 1) occurred one hour after the second injection. FSCV measurements 

(Experiment 2) spanned the pre-injection period through two hours after the second 

injection; however, only data from the pre-injection period (baseline) and 1–2 hours after the 

second injection were used for the analysis, as a previous microdialysis study found a 

significant effect of the Phe/Tyr[-] in the NAc of rats during the second hour after the second 

injection (McTavish et al. 1999).

Experiment 1. Effect of Phe/Tyr[-] on tissue tyrosine and catecholamine content in 
forebrain tissue

To confirm that Phe/Tyr[-] used in the current study resulted in Tyr depletion in tissue, we 

examined Tyr content with HPLC and electrochemical detection in tissue punches from NAc 
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and PFC, as shown in Figure 2A. We compared tissue in rats receiving Phe/Tyr[-] to those 

receiving BAL or saline injections. Administration of Phe/Tyr[-] reduced tissue levels of Tyr 

to < 20% of levels in BAL rats and < 30% of levels in Saline rats, as shown in Figure 3A. 

Specifically, one-way ANOVA yielded differences in Tyr tissue content among treatment 

groups in the NAc (F2,16=53.1; p<0.001) and PFC (F2,17=35.8; p<0.001). Post-hoc 

comparisons revealed that Tyr content in the depletion group was significantly reduced 

compared to both BAL and Saline groups in both forebrain regions (p<0.01). Additionally, 

Tyr content within the PFC was significantly higher in the BAL group compared to the 

Saline group (p<0.05).

To determine whether the reduction in Tyr led to reduced tissue content of dopamine or 

norepinephrine, separate aliquots of the same tissue samples were analyzed for 

catecholamine content. There were no significant differences in dopamine tissue content 

between groups in either NAc (F2, 17=0.25; ns) or PFC (F2, 16=0.71; ns) (Figure 3B). 

Similarly, no differences were observed in norepinephrine tissue content in PFC 

(F2, 16=1.29; ns). There was a trend toward group differences in NAc norepinephrine content 

(Figure 3C), but this did not reach statistical significance (F2, 17=3.21; p=0.07). Therefore, 

although Tyr was depleted in rat forebrain after administration of Phe/Tyr[-], this depletion 

did not result in significantly lower catecholamine levels in tissue.

Experiment 2. Effect of Phe/Tyr[-] on spontaneous dopamine transients in the NAc

We used FSCV to evaluate effects of Phe/Tyr[-] and BAL on naturally occurring dopamine 

transients in the NAc. Recording sites are depicted in Figure 2B. We found that Phe/Tyr[-] 

administration reduced the frequency of dopamine transients. An example from an 

individual rat is shown in Figure 4, where the voltammetric signal obtained in the first 8 

seconds of the baseline period is compared to the signal in the first 8 seconds of the target 

window (60–120 min after the second injection of Phe/Tyr[-]) in the same rat. The color 

plots display oxidative currents (when applied potential ramps from −0.4 to +1.3V) and 

reductive currents (when applied potential decreases from +1.3 to −0.4V) expressed in color, 

with applied potential on the y-axis and time on the x-axis. Above the color plot, current at 

the oxidative potential of dopamine (~0.65V vs Ag/AgCl reference electrode) is extracted 

and converted to concentration, with dopamine transients indicated by the asterisk and 

confirmed via the cyclic voltammogram. While dopamine transients were evident at 

baseline, they were largely absent after Phe/Tyr[-].

We next compared the number of transients during the baseline period to the three 20-min 

bins of the target window (60–120 min after the second injection), as shown in Figure 5A. 

Basal rates of dopamine transients were 1.9 ± 0.4 per minute in the BAL group and 2.5 ± 0.7 

in the Phe/Tyr[-] group. Phe/Tyr[-] decreased the number dopamine transients by 50–75% 

from baseline levels, as well as compared to the BAL group. A two-way RM ANOVA 

revealed main effects of group (F3,30=5.0, p<0.05) and time (F3,30=7.2, p<0.001) and a 

significant group by time interaction (F3,30=4.3, p<0.05). Post-hoc comparisons found fewer 

dopamine transients in the Phe/Tyr[-] group during each 20-min bin of the target window 

compared to baseline in the same rats (all t>4.2, all p<0.001) as well as compared to BAL 

rats during the target window (all t>2.3, all p<0.05).

Shnitko et al. Page 8

Psychopharmacology (Berl). Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We hypothesized that Phe/Tyr[-] would also reduce the amplitude of phasic dopamine 

events. To assess this, we evaluated the distribution of transient amplitudes within the 60-

min target window by plotting the proportion of transients ranging from < 10nM to > 40 nM 

[DA]max (e.g., Robinson and Wightman, 2004, Robinson et al., 2011). Overall, Phe/Tyr[-] 

did not alter the distribution of [DA]max as compared to BAL (Figure 5B). A Rao-Scott Chi-

Square test did not yield a significant difference in amplitude between the BAL and Phe/

Tyr[-] groups (Rao-Scott λ2
4,44=2.53, p>0.05). Thus, while Phe/Tyr[-] effectively 

diminished the frequency of phasic dopamine release events, the amplitude of those 

transients was not diminished.

Discussion

Dietary Tyr depletion is a method to temporarily dampen dopamine function in humans and 

is increasingly used in clinical and basic science. While PET studies have suggested that 

extracellular dopamine concentrations are generally reduced (Montgomery et al., 2003, 

Leyton et al., 2004), the consequences of Tyr depletion on phasic dopamine release events 

are unknown. While the recording of dopamine transients using FSCV in the human brain is 

currently under development (Kishida et al., 2011), the use of FSCV in rodents is decades 

ahead and available for immediate use. The present study used a rat model to determine the 

impact of acute tyrosine depletion via Phe/Tyr[-] on spontaneous dopamine transients. We 

confirmed that Phe/Tyr[-] effectively depleted Tyr in dopamine terminal regions. We also 

measured phasic dopamine fluctuations in the NAc core in real time with FSCV. We found 

that Phe/Tyr[-] reduced the frequency of dopamine transients by 50–75%, while rates of 

transients in BAL rats were unchanged. This reduction is similar to reductions in 

spontaneous dopamine transients observed after dopamine lesion due to methamphetamine 

toxicity (Howard et al., 2013). However, whereas the dopamine lesion also reduced the 

amplitude of dopamine transients (Howard et al., 2013), the temporary Phe/Tyr[-] used here 

did not reduce [DA]max of the remaining dopamine transients relative to BAL controls. 

Overall, these data show that Tyr depletion via a Phe/Tyr deficient AA load reduces 

spontaneous, phasic dopamine release and, by extension, may impact behaviors that require 

phasic signaling, such as reward learning.

The present study employed FSCV–which has the chemical, spatial and temporal resolution 

to distinguish individual dopamine release events – to monitor dopamine transients in the 

NAc core, as phasic dopamine in this brain region is well described. An accumulating 

amount of literature has characterized phasic dopamine transients as neural correlates of 

reward-associated learning, including salient sensory processing, such as predictive cues and 

prediction error (for review, see Robinson et al., 2008, Willuhn et al., 2010, Schultz, 2016). 

Thus, the finding that Phe/Tyr[-] reduces phasic dopamine release may be important in the 

interpretation of human-subject studies using Phe/Tyr depletion. For example, the finding 

that Phe/Tyr[-] impairs learning from both reward and punishment in late adolescents/

emerging adults, but not adults (Kelm and Boettiger, 2015), suggests changes in dopamine 

transients across the adolescent-adult transition, a possibility supported by data from 

adolescent and adult rats (Robinson et al., 2011). The direct association between dopamine 

transients that are time-locked to specific discrete cues or rewards in trained rats (e.g., Day 

et al., 2007) and the “background” of dopamine transients over a broader timeframe as 
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measured here is not clear, as most studies do not include both measurements. However, we 

have previously reported that the frequency and amplitude of dopamine transients increases 

upon presentation of salient stimuli (Robinson et al., 2002, Robinson and Wightman, 2004, 

Robinson et al., 2011), which is consistent with the idea that when reward learning is likely 

to occur, phasic dopamine transmission is enhanced. Conversely, it is also plausible that 

when phasic dopamine is decreased, as herein or with more permanent disruptions of 

dopamine (Howard et al., 2011, Howard et al., 2013), it may explain effects on cognition 

reported in the corresponding human literature (e.g., Volkow et al., 2001, Kelm and 

Boettiger, 2013, 2015).

Previous studies have used microdialysis to assess Phe/Tyr[-] effects on tonic dopamine 

transmission in rat models. Interestingly, initial studies reported that Phe/Tyr[-] 

administration failed to reduce basal concentrations of extracellular dopamine in prefrontal 

cortex and dorsal striatum (McTavish et al., 1999b, Jaskiw and Bongiovanni, 2004, Jaskiw et 

al., 2005, Jaskiw et al., 2006, Bongiovanni et al., 2008). However, later studies reported a 

decrease in tonic dopamine in the dorsal striatum 30–60 min (Brodnik et al., 2013) or 100–

120 min (Le Masurier et al., 2006) after the second Phe/Tyr[-] injection, with no 

concomitant changes in basal dopamine in the prefrontal cortex (Brodnik et al., 2013). A 

lack of Phe/Tyr[-] effect on basal dopamine levels is not unexpected when one considers that 

dopamine terminals maintain extracellular dopamine levels through a balance between 

release and uptake mechanisms, and are known to robustly maintain dopamine tone even 

after sizable dopamine lesions (Garris et al., 1997). However, when dopamine concentrations 

were augmented by amphetamine (McTavish et al., 1999b, Le Masurier et al., 2006), 

catecholamine uptake blockers (Bongiovanni et al., 2008), antipsychotics (Jaskiw and 

Bongiovanni, 2004, Jaskiw et al., 2005, Jaskiw et al., 2006) or electrical stimulation of the 

medial forebrain bundle (Le Masurier et al., 2013), Phe/Tyr[-] administration reduced 

subsequent dopamine concentrations compared to controls. While these microdialysis 

studies show that blocking uptake or enhancing release reveals the vulnerability of tonic 

dopamine levels to Phe/Tyr[-], microdialysis does not have the sensitivity to determine 

whether phasic dopamine events are altered by Phe/Tyr[-] (Borland et al., 2005), as 

microdialysis samples are collected over several minutes and millimeters of tissue.

We confirmed that the Phe/Tyr[-] injection regimen depleted Tyr in the brain by analyzing 

tissue content in tissue punches from the PFC and NAc. In both brain regions, at 60 min 

after the second injection, Tyr was depleted to less than 20% of BAL levels in the Phe/Tyr[-] 

group. In contrast, dopamine and norepinephrine tissue content was not significantly altered 

at this time point, consistent with prior data (McTavish et al., 1999b). This finding is not 

surprising, considering that Tyr depletion would preferentially deplete vesicles with newly 

synthesized dopamine and norepinephrine while approximately 80% of catecholamines are 

thought to be stored in reserve pools (Alabi and Tsien, 2012). We observed that Phe/Tyr[-] 

slightly lowered norepinephrine content in the NAc (although this decline did not reach 

statistical significance), in contrast to prior research suggesting that norepinephrine release is 

less sensitive to disruptions in synthesis via inhibition of Tyr hydroxylase or Phe/Tyr[-] than 

dopamine release (Sanghera et al., 1979, McTavish et al., 1999a, Park et al., 2011). These 

findings have been interpreted as evidence that the readily releasable pool of norepinephrine 

is less dependent on newly synthesized norepinephrine and less distinct from other storage 
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pools (McMillen et al., 1980), and it should be noted that no reduction in norepinephrine 

was observed in PFC tissue after Phe/Tyr[-] in the present study. However, dopamine is 

several-fold more abundant in the NAc than norepinephrine, and one speculation is that 

noradrenergic terminals rely on dopamine uptake through the norepinephrine transporter to 

replenish norepinephrine in vesicles; thus, the reduction in released dopamine may have 

been reflected in reduced norepinephrine tissue content. However, this observation should be 

repeated before it is concluded that there are regional differences in the effects of Phe/Tyr[-] 

on catecholamine tissue content.

Some caveats to this study should be acknowledged. First, there is a lack of behavioral data 

in the present study, as FSCV experiments were conducted in rats during their light cycle 

and they tended to sleep throughout the recording; thus, we cannot necessarily conclude that 

Tyr depletion will have the same effect on dopamine transmission in the NAc during a 

behavioral task. Indeed, reports from humans drinking an AA beverage suggest that nausea 

can occur (e.g., Leyton et al., 2000a) and it is unknown whether similar effects might occur 

in rats. Secondly, the enhancement in Tyr tissue content after BAL compared to saline, 

which reached significance in the PFC, suggests that the AA load of this mixture was high 

enough to increase tyrosine levels in the brain. A recent report tested a Phe/Tyr[-] mixture of 

fewer AAs than used herein that was only slightly less effective than the full complement 

(Le Masurier et al., 2013). While that study did not employ a control AA mixture, it 

suggests that using somewhat lower AA loads in future studies may be prudent.

Thus, the present data demonstrate that Tyr depletion reduces spontaneous, phasic dopamine 

transmission in the NAc, a brain region in which dopamine transients are strongly associated 

with reward learning and reward-associated cues. This study illuminates a mechanism by 

which Phe/Tyr[-] impacts dopamine transmission – that is, by reducing the probability of 

phasic dopamine release events – which may contribute, at least in part, to behavioral 

changes induced by Phe/Tyr[-] in people.
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Figure 1. 
Experimental timeline for Experiment 1 (panel A) and Experiment 2 (panel B). Baseline 

levels of dopamine transients were assessed for 20 min before amino acid administration in 

Experiment 2. The Phe/Tyr[-] or control solutions were administered in two injections, one 

hour apart, based on McTavish et al. (1999b). One hour after the second injection, tissue was 

collected for Experiment 1 and the target window to assess changes in dopamine transients 

from baseline began.
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Figure 2. 
A: Representative schematic depicting the location of tissue punches taken from the medial 

prefrontal cortex and orbitofrontal cortex (left) and ventral striatum (right) in Experiment 1. 

B: Location of carbon fiber electrode placements in the NAc for Experiment 2 estimated 

from the histological analysis, with open circles representing recordings from the BAL 

group and filled circles those from the Phe/Tyr[-] group.
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Figure 3. 
Phenylalanine and tyrosine depletion mixture reduced tyrosine but not catecholamine 

content in NAc and PFC. (A) Tyrosine tissue content was reduced after Phe/Tyr[-]. Rat 

numbers are as follows: NAc BAL = 5, NAc saline = 5, NAc Phe/Tyr[-] = 7, PFC BAL = 6, 

PFC saline = 5, PFC Phe/Tyr[-] = 7. * p < 0.05, ** p<0.01, *** p < 0.001. Neither dopamine 

(B) nor norepinephrine (C) tissue content was significantly altered by Phe/Tyr[-]. Rat 

numbers are as follows: NAc BAL = 6, NAc saline = 5, NAc Phe/Tyr[-] = 7, PFC BAL = 6, 

PFC saline = 5, PFC Phe/Tyr[-] = 6.
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Figure 4. 
Examples of dopamine transients in a Phe/Tyr[-]-treated rat as measured with FSCV taken 

from the in the first 8 seconds of the baseline period (left) and the first 8 second of the target 

window (right). The color plot shows changes in current (color) at different applied 

potentials (y-axis) over time (x-axis). (For more explanation of color plots, see Michael et 

al., 1998). Current at the oxidation potential of dopamine, indicated by the white dashed 

line, was extracted and converted to concentration via in vitro calibration of the electrode, 

and the resulting trace is above the color plot. Changes in current confirmed to be due to 

dopamine oxidation (per the cyclic voltammogram) are indicated with asterisks. The inset 

shows one of the dopaminergic cyclic voltammograms.
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Figure 5. 
Administration of Phe/Tyr[-] reduced the number but not amplitude of dopamine release 

events in the NAc. (A) The frequency of dopamine transients during the three 20-min bins of 

the target window relative to the 20-min baseline (pre-injection) period. Phe/Tyr[-] reduced 

the number of transients detected by more than 50%, while no significant change was 

observed in the BAL group. * Different from baseline, p< 0.001; # different from BAL, p< 

0.05. (B) The proportion of transients during the target window at various concentrations 

was compared between groups, and Phe/Tyr[-] did not significantly alter amplitude 

([DA]max) of transients. Data are n = 6/group.
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