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Abstract

Background—Identifying youth who may engage in future substance use could facilitate early 

identification of substance use disorder vulnerability. We aimed to identify biomarkers that 

predicted future substance use in psychiatrically un-well youth.

Methods—LASSO regression for variable selection was used to predict substance use 24.3 

months after neuroimaging assessment in 73 behaviorally and emotionally dysregulated youth 
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aged 13.9 (sd=2.0), 30 female, from three clinical sites in the Longitudinal Assessment of Manic 

Symptoms (LAMS) study. Predictor variables included neural activity during a reward task, 

cortical thickness, clinical, and demographic variables.

Results—Future substance use was associated with higher left middle prefrontal cortex activity, 

lower left ventral anterior insula activity, thicker caudal anterior cingulate cortex, higher 

depression and lower mania scores, not using antipsychotic medication, more parental stress, older 

age. This combination of variables explained 60.4% of the variance in future substance use, and 

accurately classified 83.6%.

Conclusions—These variables explained a large portion of the variance, were useful classifiers 

of future substance use, and showed the value of combining multiple domains to provide a 

comprehensive understanding of substance use development. This may be a step toward 

identifying neural measures that can identify future substance use disorder risk, and act as targets 

for therapeutic interventions.
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Introduction

Sensation seeking increases during adolescence (Kandel and Logan, 1984, Steinberg et al., 
2008) often at the expense of safer choices. Some risk-taking, for example, practicing 

difficult sporting maneuvers or applying to highly ranked schools or jobs, is beneficial to 

growth and survival. Other risks taken by youth, however, are associated with deleterious 

behaviors, such as substance use and substance use disorders. The propensity for risky 

behaviors, such as substance use, in youth may be related to reward circuitry development, 

specifically, reduced ventral striatal function and volume (Schneider et al., 2012); and a 

delay in the development of prefrontal cortical regions implicated in cognitive control 

alongside the emergence of increased dopaminergic activity in subcortical regions during 

puberty (Steinberg et al., 2008).

Reward circuitry comprises a widespread neural network, including ventral striatum, 

amygdala, and insula, and specific prefrontal cortical regions: ventrolateral prefrontal cortex 

(vlPFC;BA47), dorsal anterior cingulate (dACC; BA24/32), medial and middle prefrontal 

cortex (mPFCBA10). Reward circuitry related activity, along with sensation seeking 

personality traits and risk taking behaviors, characterized early onset drinking (Nees et al., 
2012). In addition, on a naturalistic risk taking task, activity in bilateral insula, parietal, 

orbitofrontal, and motor cortices, as well as left anterior cingulate cortex, together were able 

to discriminate between making a risky or safe choice on the next trial with 67% accuracy 

(Helfinstein et al., 2014). Additionally, in adolescence, cortical maturation often corresponds 

with substance use onset (Shaw et al., 2008). Animal studies reported differential changes in 

cortical thickness in adolescent animals exposed to substances (Vetreno et al., 2016), while 

adolescent marijuana users showed reduced cortical thicknesses relative to non-users 

(Lopez-Larson et al., 2011). The extent to which measures of reward circuitry function and 

structure in youth predict future substance use, however, remains to be determined. 
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Identifying in youth such predictors, alongside clinical and demographic predictors, would 

not only provide objective neural markers to identify risk of future substance use disorders, 

but would also provide targets to ultimately guide early intervention, treatment choice, and 

novel treatment developments.

Predicting clinical outcome from neuroimaging measures is a burgeoning field of research 

(Berkman and Falk, 2013). Measures of neural structure and function predicted response to 

psychotherapy, CBT, and psychotropic medications in adults and children with major 

depressive (MDD) and anxiety (AnxD) disorders (Forbes et al., 2010, Fu et al., 2013, Hum 

et al., 2013, Masten et al., 2011, McClure et al., 2007, Morgan et al., 2013, Pizzagalli, 2010, 

Shin et al., 2013). Additionally, in youth, future positive mood and energy dysregulation was 

predicted by a combination of reward circuitry functional connectivity, white matter 

structure and clinical scores, together explaining 28% of the variance in clinical outcome 

(Bertocci et al., 2016). The latter study in particular points to the feasibility of using a 

multimodal neuroimaging approach to identify markers of neural function that, in 

combination with clinical and demographic measures, can predict future behavioral 

outcomes in youth with psychiatric disorders. Large sample sizes, multimodal neuroimaging 

techniques, and statistical analyses that can evaluate large numbers of potential predictor 

variables are needed to fully examine the extent to which combinations of measures predict 

future outcomes in youth. LASSO (Least Absolute Shrinkage and Selection Operator) 

regression is one such statistical technique that has been adopted for use in genetic studies 

(Kohannim et al., 2012a, Kohannim et al., 2012b, Luo et al., 2015, Wang et al., 2015, 

Zemmour et al., 2015), and is gaining favor in clinical research (Bertocci et al., 2016, 

Christensen et al., 2014, Yan et al., 2015). This technique evaluates a large number of 

potential predictor variables, relative to the number of study participants, while minimizing 

model error and minimizing the risk of overfitting through cross validation.

The goal of the present study was to identify measures of reward circuitry function and 

cortical structural thickness that predicted future substance use in a large group of youth in 

the Longitudinal Assessment of Manic Symptoms (LAMS) study. LAMS is an ongoing 

multi-site study examining longitudinal relationships among the course of symptoms, 

outcomes, and neural mechanisms associated with different clinical trajectories in youth 

with symptoms characterized by behavioral and emotional dysregulation (Findling et al., 
2010, Horwitz et al., 2010). We hypothesized that in LAMS youth, future substance use 

would be predicted by increased prefrontal-cortical-striatal reward circuitry activity and 

reduced whole brain cortical thickness. We also aimed to determine the proportion of future 

substance use predicted by neuroimaging measures, and to test the discriminatory power of 

identified predictors.

Methods

Participants

One hundred and thirty youth, recruited from the LAMS1 cohort of 707 youth for whom 

parents were seeking psychiatric assessment and treatment participated in the neuroimaging 

component of LAMS2. All 130 youth from LAMS1 entered LAMS2 with a variety of 

symptoms and diagnoses. Inclusion criteria for the LAMS1 cohort were: no outpatient 
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treatment at a LAMS clinic in the last 12 months; 6-12 years of age; and without a sibling 

who was screened for LAMS1 (Findling et al., 2010). Families of eligible children 

completed the Parental General Behavior Inventory–10 Item Mania scale (PGBI-10M). 

Children who scored ≥12 on this scale, and an age-sex-matched group of those who scored 

<12, were invited to participate in LAMS1. The 130 youth in the LAMS2 neuroimaging 

component were selected to include approximately equal numbers of youth: 1.with high 

(≥12) versus low (<12) PGBI-10M scores; 2.who were older (≥13 years) versus younger 

(≤12 years); 3.who were male versus female (each site was age and sex matched for each 

PGBI-10M subgroup).

Exclusion criteria for participating in the LAMS2 neuroimaging component included 

systemic medical illnesses, neurological disorders, history of trauma with loss of 

consciousness, use of non-psychotropic central nervous system effecting medications, 

IQ<70 assessed by the Wechsler Abbreviated Scale of Intelligence (WASI), positive drug 

and/or alcohol screen on scan day, significant visual disturbance, inability to communicate in 

English, autistic spectrum disorders/developmental delays, pregnancy, claustrophobia, and 

metal in the body.

Parents/guardians and youth provided written informed consent and assent, respectively, 

after receiving a complete study description.

The final sample included 73 LAMS youth (Age:M=13.91, SD=2.00, Range=9.89-17.71; 30 

females; Table 1). 57 LAMS youth were excluded for behavioral data loss (n=5), excessive 

movement during neuroimaging acquisition (n=33), or cortical thickness processing 

problems (n=19; inability to read the pixelated data, mislabeled parcellations, non-

symmetric colors, or missing cortical regions). Included youth were older, had higher IQ, 

and higher SES relative to excluded youth (Table 1).

Reward Task

Reward-related neural activity measures were acquired using a well-validated card guessing 

task with a reward component (Bebko et al., 2014, Forbes et al., 2009); supplemental 

materials).

Neuroimaging Data Analysis

fMRI data were collected on a 1) 3T Siemens Verio MRI scanner at Case Western Reserve 

University, 2) 3T Philips Achieva X-series MRI scanner at Cincinnati Children's Hospital, 

and 3) 3T Siemens Trio MRI scanner at University of Pittsburgh. We preprocessed and 

analyzed fMRI data using Statistical Parametric Mapping software (SPM8 http://

www.fil.ion.ucl.ac.uk/spm). An axial 3D magnetization prepared rapid gradient echo 

(MPRAGE) sequence (192 axial slices 1 mm thick; flip angle=9°; field of view=256×192 

mm; TR=2300 msec; TE=3.93 msec; matrix=256×192) acquired T1-weighted volumetric 

anatomical images covering the whole brain. A reverse interleaved gradient echo planar 

imaging (EPI) sequence (38 axial slices 3.1 mm thick; flip angle=90°; field of view=205 

mm; TR=2000 msec; TE=28 msec; matrix=64×64) acquired T2-weighted BOLD images 

covering the whole cerebrum and most of the cerebellum. Preprocessing involved 

realignment, coregistration, segmentation, normalization into a standard stereotactic space 

Bertocci et al. Page 4

Psychol Med. Author manuscript; available in PMC 2017 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


(Montreal Neurologic Institute, MNI; http://www.bic.mni.mcgill.ca), and spatial smoothing 

using a Gaussian kernel (FWHM: 8mm). A two level random-effects procedure was used to 

conduct region of interest (ROI) analyses. At the first level we constructed whole brain 

statistical maps to evaluate the win>control and loss>control contrasts. Movement 

parameters obtained from the realignment stage of preprocessing served as covariates of no 

interest.

A single anatomically-defined, bilateral ROI mask containing reward-related regions 

(Caseras et al., 2013, Nusslock et al., 2012) from the WFU PickAtlas (Maldjian et al., 2003) 

was used to avoid conducting multiple statistical tests over individual ROIs: dACC 

(BA24/32), mPFC (BA10), OFC (BA11), VLPFC (BA47), amygdala, insula, and VS 

(bilateral spheres centered on ±9, 9,-8; radius=8mm based on meta-analyses (Di Martino et 
al., 2008, Postuma and Dagher, 2006)). Using a one-sample t-test, we extracted significant 

activity to win>control and loss>control (voxelwise p<.001, corrected with a 3D cluster 

forming threshold of p<.05 (http://afni.nimh.nih.gov/pub/dist/doc/program_help/

3dClustSim.html) over the entire ROI. Means of significant clusters were extracted using the 

MarsBaR (Brett et al., 2002) toolbox in SPM.

Additionally, we examined gray matter structure across the whole brain as in other 

neuroimaging studies examining relationships between cortical thickness and risky behavior 

(Lopez-Larson et al., 2011); supplemental materials). Structural thicknesses was calculated 

using the freely available Freesurfer (Fischl, 2012) software. An unbiased within-subject 

template space and image were created. Next, skull stripping, Talairach transformation and 

atlas registration were completed. Finally, generation of spherical surface maps and 

parcellations with common information from the within-subject template was performed. 

The quality of surface reconstruction and segmentation was visually assessed. Each structure 

was extracted and adjusted for individual mean whole-brain thickness.

Clinical Assessments

On or near scan day, parents/guardians completed the PGBI-10M to assess their child's 

behavioral and emotional dysregulation severity (Youngstrom et al., 2005, Youngstrom et 
al., 2008), and the Children's Affect Lability Scale (CALS) to assess their child's affective 

regulation (Gerson et al., 1996). On scan day, parents and LAMS youth completed the 

Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children Mania 

Rating Scale (KMRS) (Axelson et al., 2003) and Depression Rating Scale (KDRS) 

(Kaufman et al., 1997) to assess hypo/mania and depressive symptom severity, respectively. 

LAMS youth also completed the Screen for Child Anxiety Related Emotional Disorders 

(SCARED) on scan day to assess anxiety symptoms over the last 6 months (Birmaher et al., 
1997).

Substance Use Measure

To assess substance use at scan day and post fMRI scan [mean follow-up days:741 (sd:

181.41)], questions concerning substance use from the KSADS (Kaufman et al., 1997), the 

Child and Adolescent Symptom Inventory (CASI) (Lavigne et al., 2009), and age 

appropriate versions of the Centers for Disease Control and Prevention's Youth Risk 
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Behavior Survey (YRBS) [Middle school:10-12 years of age; 2005 version; High school:

13-17 years of age; 2003 version; Adult:18-22 years of age; 2010 version] (www.cdc.gov/

yrbs) were used. A report of substance use (more than a few sips of alcohol and/or any illicit 

drug use) on any of these measures put the participant into the substance user group.

Data Analytic Plan

The outcome measure used in this analysis was yes/no lifetime substance use. Of the 73 

youth, 36 reported substance use 24 months post-scan. Clinical predictor variables on or 

near scan day included positive mood and energy dysregulation (PGBI-10M score), 

depressive symptoms, manic symptoms, anxious symptoms, and affective lability, diagnoses 

(ADHD, bipolar spectrum disorder, MDD, disruptive behavior disorder, and AnxD), 

medication status (taking versus not taking each psychotropic medication class: stimulant, 

non-stimulant ADHD, mood stabilizer, antipsychotic, and antidepressant medications). 

Demographic variables included age, IQ, and sex. Baseline measures of maternal education, 

parental life-stress (number of stressful events related to child's illness), and parental living 

arrangement (living with a new partner or alone) were also included as predictors (Kokkevi 

et al., 2007a, Kokkevi et al., 2007b). Neuroimaging predictor variables included the above 

BOLD measures to win>control and loss>control and the above whole brain gray matter 

cortical thickness variables. We additionally included scan site, and days between scan and 

follow up as predictor variables.

Given that our outcome variable was dichotomous and there were more predictor variables 

than observations, we used LASSO regression analysis with binomial family (logistic 

LASSO regression) for variable selection and reduction using the freely available GLMNET 

package in R (Friedman et al., 2014). LASSO is a modified form of least squares regression 

that penalizes complex models with a regularization parameter (λ) (Tibshirani, 1996). This 

penalization method shrinks coefficients toward zero, and eliminates unimportant terms 

entirely (Friedman et al., 2014, Friedman et al., 2010, Tibshirani, 1996) thus minimizing 

prediction error, reducing the chances of overfitting through cross validation (CV), and 

enforcing sparsity (Tibshirani, 1996).

GLMNET approximates the loglikelihood and then uses coordinate descent algorithm 

(Revolutionary Analytics, 2013, Wu and Lange, 2008) computed along a regularization path 

(an inner weighted least squares loop) to optimize the penalized loglikelihood. Coefficients 

are stabilized by coordinate descent (optimization of each parameter separately, holding all 

others fixed). Regularization adds constraints to a problem to avoid over-fitting. 

Regularization in GLMNET for a binomial regression is performed by producing the path of 

tuning parameter (λ) along the range of included variables, thus identifying the optimal λ 
(http://web.stanford.edu/∼hastie/glmnet/glmnet_alpha.html). GLMNET then uses CV to 

compute the mean CV error for each penalty term to guard against Type III errors (testing 

hypotheses suggested by the data). We used a k=10 fold CV approach.

A test statistic or p-value for LASSO that has a simple and exact asymptotic null distribution 

is still under development (Lockhart et al., 2014). We thus provide three other measures that 

are meaningful for data inference: 1) rate ratio (exponentiated coefficients) of the nonzero 

coefficients identified in the LASSO model; 2) Cox & Snell R-square for variance in future 
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substance use explained by the model; 3) classification table results (cutoff =.1) from a 

hierarchical logistic regression analysis in SPSS, using the eight predictor variables 

identified from the LASSO model.

Post hoc sensitivity analysis

Of the 36 LAMS youth who at 24 months post-scan reported substance use, 15 also reported 

using substances at or prior to the scan. To test the importance of the combination of 

predictor variables derived from the LASSO, we examined the classification table from the 

logistic regression analysis after removing the 15 youth with substance use at scan. 

Additionally, to identify the nonzero variables related to future substance use only, we 

performed a new LASSO analysis, removing these 15 youth and including all of the original 

p=108 predictor variables.

Scan Site Signal Variability Reduction

We reduced signal variability between scan sites in two ways. First, we monitored signal-to-

noise (SNR) monthly to ensure scanner stability over time with a Biomedical Informatics 

Research Network (fBIRN) phantom at each scan site (http://www.birncommunity.org). 

Second, we used scan site as a covariate in the LASSO models.

Results

Neuroimaging Results

LAMS youth showed significant activation to the win>control contrast in bilateral dACC 

(BA32) (MNI: -3,20, 46 and 3,20,46), left middle prefrontal cortex (mPFC; BA10) (MNI: 

-39,47,1 and -39,50,16), and bilateral ventral anterior insula MNI : 33,23,-5 and -48,17,1); 

and to the loss>control contrast, in bilateral dACC (BA32) (MNI: -9,8,52; 3,20,46; and 

9,29,31) and ventral anterior insula (MNI: 30,20,-8 and -33,20,7) (voxelwise p<.001, 

clusterwise corrected p<.05, Table 2).

LASSO Results

Eight predictors together minimized mean squared error, enforced sparsity, (Friedman et al., 
2014) and optimized model fit (Figure 1 and supplement). These eight predictors and the 

direction of the relationships were as follows.

Substance use 24 months post-scan was predicted by greater left middle prefrontal cortical 

activity to win, lower left ventral anterior insula activity to loss, and thicker caudal anterior 

cingulate cortex. In addition, older youth, higher depression scores, lower mania (KMRS) 

scores, more parental stressful events and not being on an antipsychotic medication at scan 

predicted future substance use (Table 3).

The full model explained 60.4% of the variance in future substance use. Hierarchical logistic 

regression showed that left middle prefrontal cortical and left ventral anterior insula activity, 

together with left caudal anterior cingulate cortical thickness, explained 14.4% of future 

substance use variance over and above the clinical and demographic variables (45.7%; 

depression and mania scores, parental stress, age, and antipsychotic medication use). 
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Additionally, cutoff≤.1 from the logistic regression classification table correctly predicted 

36/36 of future substance users and misidentified 12/37 of non-users as future substance 

users, correctly identifying 61/73 participants (83.6%).

Post hoc sensitivity analysis

After removing the 15 youth who reported substance use at scan, the model remained 

significant and the Cox & Snell R-square effect size increased from 0.6 to 0.63. The 

classification table using the eight non-zero predictor variables identified above (cutoff<.1) 

correctly predicted 21/21 future substance users and misidentified 6/37 non-users as future 

substance users (Cox & Snell=.631).

Additionally, in a new LASSO regression analysis including only the 58 youth who were not 

using substances at scan time, nonzero predictors of substance use were similar to the main 

analysis. Nonzero predictors were depression score, antipsychotic medication, parental 

stress at baseline, left middle prefrontal cortical activity to win, and right insula thickness. 

Notably absent variables in this post hoc LASSO analysis that may be driven by substance 

use prior to scan but were predictive of eventual use (see post hoc classification results 

above) included left caudal anterior cingulate thickness, left ventral anterior insula activity to 

loss, and mania scores.

Discussion

Our goal was to assess the ability of neuroimaging measures of reward circuitry activity and 

cortical thickness to predict future substance use in psychiatrically-unwell youth. We used 

LASSO regression, along with cross-validation, an approach that penalizes complex models 

with a regularization parameter and identifies the parameter that minimizes error, rendering 

unimportant coefficients as zero. Our LASSO analysis showed that engaging in substance 

use 24.3 months post-scan was predicted by a combination of neural activity to win and loss, 

cortical structure, and clinical and demographic characteristics. These findings explained 

60.4% of the variance in substance use 24.3 months after neuroimaging assessment. 

Furthermore, neuroimaging measures incrementally predicted 14.7% of the variance, i.e., 

approximately a quarter of the explained variance, in this outcome measure. All eight 

predictor measures correctly classified 100% of youth who would use substances 24 months 

later, while misidentifying only 32% of non-users as future users. Including all identified 

nonzero variables in a logistic regression analysis, both with and without the 15 current 

users, successfully identified all future substance users 24 months post-scan.

In humans, the middle prefrontal cortex has been shown to be activated both by cognitively 

demanding tasks, e.g., working memory, and reward, and may subserve the higher cognitive 

aspects of reward value processing and related, goal-directed behaviors (Pochon et al., 
2002). Our present finding of elevated left middle prefrontal cortical activity to reward in 

youth may thus reflect undue attention to, and higher order processing of, reward obtained 

during the task, which, in turn, may predispose to risk-taking behaviors, such as substance 

use. The left lateralization of our finding may reflect the role of the left hemisphere in 

approach related behaviors (Davidson, 1992, Davidson et al., 1990)(Figure 2).
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We showed that lower ventral anterior left insula activity to loss>control predicted more 

substance use in the future, although this was no longer the case after excluding the 15 youth 

who were using substances at scan. Subdivisions of the insula have been shown to have 

distinct patterns of functional connectivity (Deen et al., 2011). The ventral anterior insula is 

functionally connected to the anterior cingulate cortex and may have role in the processing 

of emotion (Deen et al., 2011). Our finding that lower left ventral anterior insula activity to 

loss predicted future substance use may thus suggest that reduced perception of emotion 

during loss may have a role in the development of risky behavior in youth. In support of this, 

in abstinent drug users, insula activity was reported during decision-making (Stewart et al., 
2014a, Stewart et al., 2014b), while attenuation of bilateral insula activity was shown to 

predict relapse after one year among abstinent methamphetamine dependent youth (Gowin 

et al., 2014). Furthermore, individuals with insula lesions placed higher bets and showed less 

sensitivity to odds compared with controls (Clark et al., 2008). In healthy individuals, 

however, greater insula activity was associated with the safer choice during performance of a 

risky stock market decision-making paradigm (Kuhnen and Knutson, 2005). The above 

findings, taken together with our finding that lower left ventral anterior insula activity to loss 

may have been associated with substance use at scan, may thus suggest that LAMS youth 

who engaged in substance use may have perceived less emotion and, as a result, may have 

been less sensitive to the risks involved, and consequent losses sustained, when making 

decisions during the card number guessing task.

We also showed that greater right insula thickness predicted future substance use in the 58 

youth who were not using substances at scan. Animal studies suggest normative thinning of 

subcortical and cingulate regions with age (Vetreno et al., 2016). Furthermore, the right 

insula is implicated in conscious awareness of interoception (Naqvi and Bechara, 2009). Our 

finding regarding right insula thickness may thus suggest that abnormal neurodevelopment 

of this region (ie., reduced pruning) may predispose to abnormally heightened awareness of 

interoceptive processes that, in turn, may have a deleterious impact on decision-making, but 

this needs further study.

Other studies have shown that neuroimaging measures may predict future substance use 

(Becker et al., 2015), although, in contrast to our findings, a previous report indicated that 

measures of neural activity may be less important predictors of risky behaviors than other 

factors in youth. This study reported that a factor consisting of insula, putamen, caudate 

nucleus, amygdala, cerebellar vermis, and prefrontal cortex activity, when combined with a 

personality factor and a genetic factor, was the least important factor in predicting drinking 

in adolescence (Heinrich et al., 2016). The fact that a significant proportion of the variance 

in future substance use was predicted by neuroimaging measures in our study, however, 

highlights a need for future studies to further examine the role of neuroimaging measures as 

predictors of risky behaviors in youth.

We additionally showed that greater cortical thickness in the caudal anterior cingulate cortex 

predicted future substance use, but not after excluding the 15 youth who used substances at 

scan. In young adults, left caudal anterior cingulate cortex was thicker in binge drinkers 

relative to light drinkers (Mashhoon et al., 2014). Additionally, normative cingulate cortical 

thinning was not observed in animals exposed to ethanol (Vetreno et al., 2016). Thus, similar 
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to the left insula activity to loss finding above, greater anterior cingulate cortical thickness 

may be a marker of current substance use. More studies are needed to better understand this 

structural finding.

Non-neuroimaging variables also predicted future substance use. Consistent with the 

literature, older participants (Grant and Dawson, 1997, Kandel and Logan, 1984) and youth 

with higher depression scores (Deykin et al., 1987, Grigsby et al., 2016) more often reported 

future substance use. Youth not prescribed an antipsychotic medication at time of 

neuroimaging assessment were also more likely to use substances in the future, likely 

reflecting the moderating effect of these medications on psychotic and risk-taking behaviors. 

Intriguingly, youth with lower mania scores were also more likely to report future substance 

use. This may reflect the fact that youth with lower mania scores were less likely to be 

taking antipsychotic medication (p=.006), and thus did not benefit from the moderating 

effect of antipsychotic medications behaviors. While we do not suggest that youth be 

prescribed antipsychotic medication as a measure to reduce risk of future substance use, our 

findings do suggest that common patterns of neural activity may be associated with 

psychotic symptoms and substance use. This warrants further study. Finally, increased 

parental stress due to child's illness, predicted future substance use in youth. This accords 

with research showing that parental psychological distress is associated with emotional and 

conduct problems in children (Amrock and Weitzman, 2014, Reeb et al., 2015). Our findings 

thus add to present understanding of the role that parental stress and related behaviors may 

have on child behavior long-term, and suggest that these factors may be used to identify 

those high risk families most in need of intervention.

Limitations of the present study included the inability to assess the contribution of pubertal 

development and other psychosocial factors that show associations with substance use, such 

as sibling and peer substance use and parental monitoring (Kokkevi et al., 2007a, Kokkevi et 
al., 2007b), as they were not measured at scan time. Although the age of greatest risk for 

substance use was not yet reached by some youth in our sample, a larger portion of the 

LAMS sample report substance use than is expected from the general population (Abuse, 

2014). As the children in the LAMS sample are, and have been, behaviorally and 

emotionally dysregulated for at least five years and for as many as ten years, and are at risk 

for a myriad of psychiatric disorders, it is, perhaps not unexpected that they engage in 

substance use at a higher rate than we see in healthy children. Finally, this analysis was 

designed post hoc and we therefore were not able to control for substance use at the initial 

scan visit. Additionally we suspect that some of the misidentification as a substance user 

may, in fact, be due to the subjective account of substance use by participants. Although the 

statistical methods utilized here (LASSO with cross-validation) do well at identifying 

predictors, the estimates may shrink, and error rates for classification of users may be higher, 

in new, independent samples.

We believe this is the first study to use functional and structural neuroimaging measures to 

predict future substance use in youth. Specifically, we show that approximately a quarter of 

the explained variance in future substance use was predicted by neuroimaging measures, 

especially measures of reward circuitry function. Furthermore, the high discriminative 

ability to identify future substance use in youth highlights the utility of using a combination 
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of neuroimaging, clinical and demographic measures to help identify those youth most at 

risk of future substance use. This is an important step toward identifying neurobiological 

measures characterizing youth at risk of substance use, and provides promising neural 

targets for the development of novel future therapeutic interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. LASSO plots generated in GLMNET
A. Plot of variable fit. Each curve corresponds to an independent variable in the full model 

prior to optimization. Curves indicate the path of each variable coefficient as λ varies. B. 

Plot of non-zero variable fit after cross validation. Representation of the 10-fold cross 

validation performed in GLMNET using LASSO which evaluates the error associated with 

each lambda. Lambda.min corresponds to the λ which minimizes mean squared error. 

Lambda.1se corresponds to the λ that is one standard error from the lambda.min. Solid 

black line corresponds to the optimal lambda selected due to significantly improved model 

fit over the Lambda.min and Lamba.1se based on chi square residual deviance comparisons 

( supplemental).
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Figure 2. Comparisons of neural measures of substance users and non-users 24.3 months post-
scan and representation of the region on an average brain image
A. Reward-related left mPFC and left ventral anterior insula activity. B. Left caudal anterior 

cingulate thickness between the two groups (representative image). Thickness variables were 

adjusted for individual mean cortical thickness. Bars represent the standard error.
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Table 3

Nonzero coefficients generated from GLMNET using a LASSO regression with binomial family model. 

Exponentiated coefficient is the rate ratio change in the dependent variable (future substance use) 

corresponding to one unit change in the predictor variable.

Variable LASSO derived Exponentiated coefficient

Antipsychotic medication .35

Age 1.20

Depression scale 1.07

Left middle prefrontal cortex to win>control 1.75

Parental stress at baseline 1.05

Mania scale .98

Left ventral anterior insula activity to loss>control 0.83

Left caudal anterior cingulate thickness 1.39
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