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Abstract

The aim of this propensity-matched cohort study was to evaluate the impact of prenatal SSRI 

exposure and a history of maternal depression on neonatal brain volumes and white matter 

microstructure. SSRI-exposed neonates (n = 27) were matched to children of mothers with no 

history of depression or SSRI use (n=54). Additionally, neonates of mothers with a history of 

depression, but no prenatal SSRI exposure (n=41), were matched to children of mothers with no 

history of depression or SSRI use (n=82). Structural magnetic resonance imaging and diffusion 

weighted imaging scans were acquired with a 3T Siemens Allegra scanner. Global tissue volumes 

were characterized using an automatic, atlas-moderated expectation maximization segmentation 

tool. Local differences in gray matter volumes were examined using deformation-based 

morphometry. Quantitative tractography was performed using an adaptation of the UNC-Utah NA-

MIC DTI framework. SSRI-exposed neonates exhibited widespread changes in white matter 

microstructure compared to matched controls. Children exposed to a history of maternal 

depression but no SSRIs showed no significant differences in brain development compared to 

matched controls. No significant differences were found in global or regional tissue volumes. 

Additional research is needed to clarify whether SSRIs directly alter white matter development or 

whether this relationship is mediated by depressive symptoms during pregnancy.
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 1. Introduction

Approximately 18% of pregnant women in the U.S. suffer from depression (Waters et al., 

2014). Untreated antenatal depression is associated with intense emotional distress, low fetal 

growth, preterm birth, neonatal complications, and conduct problems and antisocial behavior 

in offspring (Waters et al., 2014; Yonkers et al., 2009). While there is no definitive answer 

regarding optimal treatment for antenatal depression, the American Psychiatric Association 

and the American College of Obstetricians and Gynecologists provide algorithms for 

multiple scenarios that result in the initiation or maintenance of pharmacotherapy. Overall, 

approximately 13% of pregnant women report antidepressant use (Cooper et al., 2007) with 

selective serotonin reuptake inhibitors (SSRIs) being the most commonly prescribed class. 

Despite widespread use of SSRIs during pregnancy, effects on the fetus are not fully 

understood and are a source of concern for many pregnant women.
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SSRIs are diffusible through the placenta and blood brain barrier and could potentially target 

the developing fetal brain (Velasquez et al., 2013). During this early period of 

neurodevelopment, serotonin from maternal, placental, and fetal sources is involved in 

neuronal proliferation, migration, and synaptogenesis (Whitaker-Azmitia, 2005). In rodents, 

exposure to SSRIs in the prenatal and/or early neonatal period disrupts dendritic 

organization and formation of thalamocortical afferents to the somatosensory cortex and 

results in aberrant axonal morphology, abnormal raphe circuitry, and altered cortical 

function (Lee, 2009; Liao and Lee, 2011; Simpson et al., 2011; Xu et al., 2004). These 

changes are accompanied by behavioral disturbances including decreased exploratory 

behavior and increased emotional reactivity, altered social behavior, and impaired motor 

performance (Borue et al., 2007; Glover et al., 2015; Xu et al., 2004).

Research on behavioral outcomes in humans exposed to SSRIs in utero has focused almost 

exclusively on measurements of cognitive development and IQ, where exposed children 

perform at typically developing levels (Nulman et al., 2012). However, motor development 

and control issues have been observed in a number of studies (Casper et al., 2003; Casper et 

al., 2011; Hanley et al., 2013; Pedersen et al., 2010; Rampono et al., 2009; Salisbury et al., 

2011; Smith et al., 2013). A possible link between prenatal antidepressant exposure and 

autism spectrum disorders/symptoms has proved particularly controversial with several large 

studies reporting significant associations (Boukhris et al., 2016; Croen et al., 2011) and other 

large studies failing to replicate (Harrington et al., 2014; Hviid et al., 2013). Neuroimaging 

studies are extremely limited. One study reported benign caudothalamic cysts in 6 of 40 at 

term infants exposed to SSRIs but no unexposed comparison group was evaluated (Laine et 

al., 2003). We recently reported that children exposed to SSRIs prenatally exhibit a striking 

increase in Chiari I malformations, a condition resulting from the underdevelopment of the 

posterior cranial fossa and overcrowding of the normally developing hindbrain (Knickmeyer 

et al., 2014). The current study is the first to examine brain tissue volumes and white matter 

development of SSRI-exposed neonates. Based on the rodent literature and the motor 

deficits observed in human children exposed in utero to SSRIs, we hypothesized that 

prenatal SSRI exposure would impact diffusion parameters in corticothalamic and 

corticofugal white matter tracts originating/terminating in motor and somatosensory cortex, 

as well as gray matter volumes in these particular brain regions. To test the possibility that a 

history of maternal depression influences brain development in the absence of prenatal SSRI 

exposure we also examined a separate cohort of neonates whose mothers had a history of 

depression but were not treated with SSRIs during pregnancy.

 2. Methods

 2.1 Recruitment

Participants were drawn from three prospective longitudinal neuroimaging studies being 

carried out at UNC (Gilmore et al., 2010; Gilmore et al., 2012; Knickmeyer et al., 2014). 

Recruitment occurred through community physicians, relevant clinics at UNC, including the 

perinatal psychiatry clinic and general obstetrics clinics, and mass emails to the UNC 

community. Participants were recruited between November 2003 and December 2010.
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Exclusion criteria in mothers were major medical illness or substance abuse during 

pregnancy. Exclusion criteria for neonates were gestational age at birth less than 32 weeks, 

major postnatal complications, major congenital anomalies, and metal in the body. After 

complete description of the study to subjects’ parent(s), written informed consent was 

obtained. Study protocols were in compliance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) and the standards established by the Institutional 

Review Board of the UNC School of Medicine and the National Institutes of Health as well 

as Uniform Requirements for manuscripts submitted to Biomedical journals (http://

www.icmje.org/).

 2.2 Cohort 1 Participants (SSRI exposed)

This analysis included 27 SSRI-exposed (7 males; 21 singletons; 6 twins) and 54 matched 

control (20 males; 42 singletons; 12 twins) neonates. Diagnosis of a mood disorder and 

SSRI use in all three trimesters was confirmed through self-reports (oral interview) and 

review of medical records (primarily prenatal and labor & delivery). Nineteen mothers 

reported that they received a diagnosis of depression prior to study entry; medical records 

provided corroborating information in all cases. Twelve of these women reported active 

depression at entry and one additional woman reported active depression without a past 

history. Additionally, four women did not report active depression or a past diagnosis of 

depression at study entry, but review of medical records indicated such a diagnosis was 

made prior to or during pregnancy. Medical records were not sufficiently detailed to 

determine the exact date of diagnosis. The most common diagnoses were major depression 

and depressive disorder not elsewhere classified, one woman reported bipolar disorder, and 

seven were diagnosed with an anxiety disorder in addition to a mood disorder. Medical 

record review indicated fifteen mothers took SSRIs at the time of conception and six 

mothers began SSRI treatment during the first trimester. For three women, we could not 

determine whether treatment began before or after conception (data on SSRI type and 

dosage can be found in supplementary figure 1). Use of a psychiatric drug other than an 

SSRI was an exclusion criterion for the current analysis with the exception of trazodone 

(N=1 SSRI-exposed), low dose benzodiazepines (N=3 SSRI-exposed), and psychostimulants 

(N=1 SSRI-exposed). For data on non-SSRI medications during pregnancy see 

Supplementary Table 1.

Each exposed neonate was matched to two control neonates (offspring of pregnant women 

with no known history of mood disorders, anxiety, or antidepressant use) based on gender, 

gestational age at birth and MRI, maternal age, ethnicity, and education using propensity 

scores. Singletons were matched to singletons and twins to twins. See Table 1 for 

demographic information. Infants were considered positive for perinatal problems if there 

was a presence of a nuchal cord or if they experienced meconium aspiration, asphyxia or RH 

incompatibility. Infants were considered positive for postnatal problems if they experienced 

jaundice, seizures, sepsis, pneumonia, necrotizing enterocolitis, or respiratory distress 

syndrome.
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 2.2 Cohort 2 Participants (history of maternal depression)

We identified 41 neonates (21 males, 16 singletons, 25 twins) of mothers who received a 

diagnosis of depression prior to or during pregnancy but did not receive antidepressants in 

any trimester. This cohort may potentially share with the SSRI-exposed cohort a generally 

higher risk of un-identified behaviors (e.g. unreported smoking, substance misuse, exposure 

to other teratogens) as well as genetic factors associated with depression. Twenty-five 

mothers reported that they received a diagnosis of depression prior to study entry; medical 

records provided corroborating information in all cases. Three of these women reported 

active depression at entry. The other seven women did not report active depression or a past 

diagnosis of depression at study entry, but review of medical records indicated such a 

diagnosis was made prior to or during pregnancy. Medical records were not sufficiently 

detailed to determine the exact date of diagnosis. The most common diagnoses were major 

depression and depressive disorder not elsewhere classified. Additionally, one woman 

reported a lifetime history of bipolar disorder, and two women reported a lifetime history of 

anxiety disorder in addition to a mood disorder. One mother was also diagnosed with ADHD 

in addition to having a lifetime history of depression.

All neonates of untreated mothers were matched with 2 control neonates (exactly as 

described in section 2.1) using propensity scores (39 males, 24 singletons, 58 twins). When 

propensity scores failed to identify an appropriate match, comparison children were hand 

selected (6 of 82). See Table 2 for demographic information. For data on medication 

exposure during pregnancy see Supplementary Table 2.

 2.3 MRI acquisition

MRI images were obtained using a Siemens Allegra head-only 3T scanner (Siemens 

Medical System, Inc., Earlangen, Germany) during natural sleep as in Gilmore et al., 2007. 

Neonatal scans were acquired at an average age of 27 days for SSRI exposed subjects and at 

24 days for their matched controls. Scans were acquired at an average age of 27 days for 

neonates of mothers with a history of depression (untreated during pregnancy) and their 

matched controls. Children were scanned as close to birth as possible while still providing 

adequate recovery time for the baby and the mother. Structural T1-weighted images were 

acquired in 5 individuals in the first cohort (3 SSRI-exposed and 2 unexposed) and 4 

individuals in the second cohort (1 neonate with an untreated mother and 3 controls) using a 

fast low angular shot sequence (FLASH, TR=15ms, TE=7ms, flip angle = 7°, spatial 

resolution = 1mm ×1 mm ×1 mm). Due to changes in protocol, T1-weighted images of 

remaining subjects in both cohorts were acquired using a 3D magnetization prepared rapid 

gradient echo sequence (MP-RAGE TR = 1820ms, TE = 4.38ms, flip angle = 7°, spatial 

resolution = 1mm × 1mm × 1mm). Proton density and T2 weighted images were acquired 

using a turbo-spin echo sequence (TSE, TR range = 5270ms-6200ms, TE1 range = 

20ms-21ms, TE2 range = 119ms-124ms, flip angle = 150°, spatial resolution = 1.25mm × 

1.25mm × 1.5 mm). We confirmed that differences in T1 and T2 acquisition protocols do not 

significantly impact tissue segmentation results in a sample of 561 unrelated neonates.

Diffusion tensor images were obtained using a single shot echo planar spin echo sequence 

following two protocols. Under the first protocol, 5 repetitions of 7 diffusion weighted 
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images (in total 35) were generated: 1 without diffusion gradient (b=0) and 6 with b = 1,000 

s/mm2 in unique directional diffusion gradients (TR = 5,200ms, TE = 73ms, slice thickness 

= 2 mm, in-plane resolution = 2mm x 2mm). Under the second protocol, a total of 49 images 

were acquired, 7 without diffusion gradients (b=0) and 42 with b=1,000 s/mm2 in unique 

directional diffusion gradients (TR= 7,680ms, TE= 82ms, slice thickness = 2mm, in-plane 

resolution = 2mm × 2mm). In the first cohort, 36 subjects (12 exposed, 24 unexposed) were 

scanned under the first protocol and 24 subjects (8 exposed, 16 unexposed) under the 

second. In the second cohort, 66 subjects (22 of untreated mothers, 44 control) were scanned 

under the first protocol and 24 subjects (8 of untreated mothers, 16 control) under the 

second. It is well known that different numbers of unique gradient directions can affect FA, 

MD, AD, and RD values and this is also true in our neonatal sample. For this reason, cases 

(SSRI exposed or untreated mothers with a history of depression) with 6 direction scans 

were always matched to controls with 6 direction scans and cases with 42 direction scans 

were always matched to controls with 42 direction scans. In addition, DTI direction (6 

versus 42) was included as a covariate in the FADTTS model.

 2.4 Segmentation and lobar parcellation

Segmentation of brain tissue into gray matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF) was performed using an atlas-based expectation-maximization segmentation 

algorithm with T1 and T2 weighted images as in (Gilmore et al., 2007). Intracranial volume 

(ICV) represents the sum of GM, WM, and CSF. Left and right hemispheres were 

subdivided along the anterior-posterior axis to generate prefrontal, frontal, parietal, and 

occipital regions by nonlinear warping of a neonate parcellation atlas template (Gilmore et 

al., 2007).

 2.5 Deformation based morphometry (DBM)

To identify local differences in gray matter volumes, DBM was performed using T2-

weighted images. Images were corrected for intensity inhomogeneity, skull stripped, and 

aligned using both rigid and affine registration methods. Intensity histogram matching was 

applied on the affinely aligned images and an unbiased large deformation nonrigid group-

wise registration method (Joshi et al., 2004) was used to produce the atlas and corresponding 

deformation fields.

 2.6 Diffusion tensor imaging (DTI) analysis

DTI analysis was performed using a neonate specific adaptation of the UNC-Utah NA-MIC 

DTI pipeline (Verde et al., 2014). First, automated quality control (QC) was performed using 

DTIPrep. This included controlling for correct image dimensions and gradient directions, 

detecting slice-wise intensity change and excessive motion artifacts, and correcting for 

motion and eddy current effects. Diffusion images with large motion artifacts and missing or 

corrupted sections were excluded from later analysis. Diffusion tensors were estimated using 

weighted least squares fitting. Additional expert-guided QC was performed using 3D Slicer. 

The most common reason for a subject to fail DTI quality control was poor image quality 

(rather than underlying neuroanatomical differences or abnormalities. In particular, because 

DTI image acquisition is highly sensitive to motion, many of the images that failed quality 

control were those with large amounts of head motion artifacts.
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Next, non-brain tissue was excluded as described in Verde et al. (2014). Resulting images 

were mapped into the space of a neonate DTI atlas consisting of the unbiased symmetric 

diffeomorphic transformed average of 144 neonatal DTI images. In total, 47 fiber tracts of 

interest are defined on this atlas (Figure 1 and Supplementary Appendix 1). Warped DTI 

images were visually compared with the atlas to confirm successful registration. Finally, 

atlas fibers were mapped into individual subject space and profiles of fractional anisotropy 

(FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were 

extracted using DTIAtlasFiberAnalyzer. For all individuals, FA, MD, AD, and RD metrics 

along each tract were plotted against the atlas for visual comparison. FA profiles with 

correlation values below 0.7 were considered poorly mapped into atlas space and excluded 

from analysis on a tract-by-tract basis (drop-out rates did not differ between SSRI exposed 

neonates, neonates with a history of maternal depression, and unexposed controls). Two 

tracts (temporoparietal segment of the left arcuate and hippocampal segment of the left 

cingulum) were not examined further as more than 25% of FA fiber profiles did not pass 

QC. For certain tracts, fiber profiles were not examined in terminal arc lengths due to high 

levels of noise.

 2.7 Statistical analysis

 2.7.1 Demographics and global/lobar brain volumes—Statistical analyses were 

performed using SAS statistical software, version 9.2. For demographic data, two-sided 

Fisher’s exact tests were used to evaluate group differences in categorical variables. Two-

sided nonparametric Wilcoxon tests were used for continuous variables. Subjects with 

missing data were excluded on a variable-by-variable basis.

Mixed effects models were used to test for group differences in global and lobar brain tissue 

volumes in order to adjust for non-independence within twin pairs. Postnatal age at MRI, 

gestational age at birth, gender, and ICV were included as covariates. All statistical 

hypothesis tests were two-tailed and conducted at a significance level of 0.003 (Bonferroni 

corrected for 16 brain volume phenotypes).

 2.7.2 DBM—Associations between local gray matter volumes and SSRI-exposure were 

examined by fitting a multiscale adaptive generalized estimation equation (MAGEE) model 

to the Jacobian determinant of the deformation matrix at individual voxels (Li et al., 2013). 

Postnatal age at MRI, gestational age at birth, gender, and ICV were included as covariates. 

Analysis was restricted to GM and a linear model for the jth subject of the i-th twin pair at 

the dth voxel was generated.

Cluster-based inference was used to identify significant group differences. Cluster-based 

inference is based on random field theory, a widely used multiple testing method for 

determining corrected significances while accounting for the high level of spatial 

dependencies between adjacent voxels (Worsley et al., 1996). Following the 

recommendation of (Silver et al., 2011), we used a high cluster-forming threshold (p< 0.001) 
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and cluster extent criterion of p < 0.05. Full Width at Half Maximum (FWHM) was set to 4. 

Anatomical locations of significant clusters were established using a 90-region neonate atlas 

(Gilmore et al., 2012).

 2.7.3 DTI—Functional analysis of diffusion tensor tract statistics (FADTTS) (Zhu et al., 

2011) was used to test for group differences in FA, MD, AD, and RD along 45 major white 

matter tracts. Postnatal age at MRI, gestational age at birth, gender, ICV, and DTI protocol 

(6 versus 42 directions) were included as covariates. FADTTS provides a global test statistic 

and local test statistics along the fiber tract. Local p-values within each tract are corrected 

for multiple comparisons with false discovery rate. Test statistics and local p-values were 

merged onto the corresponding fiber locations for visualization. To ensure results were not 

confounded by prematurity or genetic relatedness within subjects, we performed sensitivity 

analyses removing infants born under 34 gestational weeks and also removing related 

subjects for all outcomes. To check whether group differences were affected by DTI 

protocol, we examined the overlap between tract regions showing a significant effect of 

SSRI exposure and those showing a significant effect of DTI direction and performed 

additional sensitivity analyses without DTI protocol as a covariate.

 3. Results

 3.1 Participants

Demographic and obstetric characteristics did not differ between SSRI-exposed and matched 

control neonates (Table 1) or between neonates whose mothers had a history of depression 

and matched controls (Table 2). Mothers using SSRIs had more first-degree relatives with 

mood disorders suggesting high genetic vulnerability to depression. Similar results were 

found for untreated mothers with a history of depression also suggesting higher genetic 

vulnerability to depression compared to control mothers.

In cohort 1, SSRI-exposed neonates differed from matched control neonates in prenatal 

exposure to corticosteroids, thyroid medications, and benzodiazepines (Supplementary Table 

1). In cohort 2, neonates of mothers with a history of depression differed from matched 

controls in prenatal exposure to antibiotics, antifungals, and sleep aids (Supplementary Table 

2).

 3.2 Brain volumes

For cohort 1, no significant group differences were observed in global GM, WM, CSF, or for 

GM and WM in prefrontal, frontal, parietal, and occipital divisions (Table 3). DBM analysis 

did not reveal any regional GM differences between SSRI-exposed and matched control 

neonates. The pattern of results was highly similar in sensitivity analyses excluding neonates 

born before 34 gestational weeks and related subjects (Supplementary Tables 3 and 4), 

although in the DBM analysis, a new cluster of reduced GM volume was observed in the 

right thalamus of SSRI-exposed neonates when we excluded children born before 34 weeks 

(Supplementary Figure 2.

For cohort 2, no significant differences (after Bonferroni correction) were observed in global 

or regional brain volumes between neonates whose mothers had a history of depression and 
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matched controls (Table 4). Global volume results remained similar when controlling for 

neonates born before 34 gestational weeks and for related subjects (Supplementary Tables 5 

and 6). In the DBM analysis, while no clusters were significant when adjusting the 

gestational age at birth cutoff to 34 weeks, one cluster (in the right calcarine and lingual 

region) was found to be significantly smaller when removing related subjects 

(Supplementary Figure 3).

 3.3 White matter microstructure

 3.3.1 SSRI-exposure—Global test statistics revealed widespread differences between 

SSRI-exposed versus matched control neonates (uncorrected p-values presented in Table 5, 

findings surviving Bonferroni correction for 45 tracts (p < 0.001) shaded in gray). Strongest 

associations were observed for MD and RD in corticofugal and corticothalamic projection 

tracts. To better understand these associations, local statistics were computed along each 

tract. In general, FA values were decreased while MD, RD, and AD values were increased in 

SSRI-exposed compared to matched controls. The overall pattern of results remained similar 

when removing neonates born prior to 34 gestational weeks, when removing neonates with 

genetic relatedness (see Supplementary Table 7), or when removing DTI direction as a 

covariate (see Supplementary Table 8). Regions of localized significance along the length of 

white matter fibers are plotted and visualized in 3D (Figure 2, 3, and Supplementary Figure 

4).

Regarding projection fibers, all corticofugal and corticothalamic tracts showed regions of 

increased MD and RD in SSRI-exposed as compared to matched controls, with the 

exception of the right motor and parietal corticothalamic tracts which only showed increased 

MD. Increases in AD were observed in fewer tracts, namely the left prefrontal, left parietal 

and right motor corticofugal tracts and the left motor, left prefrontal, and right premotor 

corticothalamic tracts. Significant differences were observed in regions passing through the 

cortex, internal capsule, thalamus, and brain stem. The optic tracts showed a pattern of 

increased MD and RD in the right and decreased FA and AD in the left segment. Regions of 

lower FA were also observed in the projection fibers of SSRI-exposed neonates, albeit less 

consistently. No significant group differences were observed along the left or right medial 

lemniscus.

Regarding commissural fibers, higher MD was observed in a small region of the temporal 

segment (tapetum) of the CC. Otherwise, no differences were observed along the 

orbitofrontal, motor, prefrontal (genu), premotor, parietal or occipital (splenium) segments.

Regarding association fibers, regions of increased MD and RD were observed in the 

uncinate fasciculus of SSRI-exposed neonates. Several other tracts connecting frontal and 

temporal cortex showed focal areas of increased diffisivity including increased AD and MD 

in the left fornix and increased MD and RD in the right temporoparietal segment of the 

arcuate fasciculus (AF). Higher MD and RD values were also observed along the right 

inferior fronto-occipital fasciculus while higher AD was observed along the left. Within the 

cingulum, decreased FA was observed in the left cingulate gyrus segment and higher MD 

and RD values were observed along the right cingulate gyrus segment. Higher RD values 

were also observed along the hippocampal segment of the cingulum. Finally, higher RD 
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values were observed in a small region of the right frontoparietal segment of the AF and 

decreased FA values were observed in the right inferior longitudinal fasciculus (ILF). No 

significant differences were observed along the left and right frontotemporal segment and 

the left frontoparietal segment of the AF, the left and right superior longitudinal fasciculi, the 

right fornix, or the left ILF.

 3.3.2 Neonates of mothers with a history of depression—Global test statistics 

revealed no differences between neonates of mothers diagnosed with depression but 

untreated during pregnancy and their matched controls (uncorrected p-values presented in 

Table 6, no findings surviving Bonferroni correction). The overall pattern of results 

remained nonsignificant when removing neonates born prior to 34 gestational weeks and 

when removing neonates with genetic relatedness (see Supplementary Table 9).

 3.3.3 Effects of DTI direction—Examination of local test statistics revealed some 

overlap between tract regions showing a significant effect of SSRI exposure and those 

showing a significant effect of DTI direction (results for the corticofugal and corticothalamic 

tracts are shown in Supplementary Figures 5 and 6), confirming the importance of matching 

SSRI exposed subjects with control subjects based on DTI direction. There are also 

numerous regions where there is a significant effect of SSRI exposure and no effect of DTI 

direction.

 4. Discussion

We report results from the first quantitative neuroimaging study of brain development 

following prenatal SSRI exposure. While no group differences in global or regional brain 

volumes were found, SSRI-exposed neonates exhibited lower FA and increased MD, RD, 

and AD across multiple fiber bundles. Differences were most pronounced for MD and RD in 

the corticothalamic and corticofugal tracts. In contrast, children of mothers who received a 

diagnosis of depression prior to or during pregnancy but did not use SSRIs exhibited no 

differences in white microstructure compared to their matched controls. The data support 

one of two interpretations: SSRIs alter white matter development, or other factors which 

differentiate women treated with SSRIs from untreated women with a history of depression 

impact white matter development. Factors that may be of particular importance are genetic 

risk for depression and severity of depressive symptoms during pregnancy.

Regarding genetic risk, the percentage of children whose mothers reported a family history 

of MDD/BPD was higher in the history of depression cohort compared to the SSRI exposed 

cohort, but widespread changes in DTI parameters were only observed in the SSRI exposed 

cohort. In addition, a DTI study of healthy adolescents with familial high-risk for depression 

revealed reduced FA in the left cingulum, the splenium of the CC, and superior longitudinal, 

uncinate, and inferior fronto-occipital fasciculi (Huang et al., 2011), a pattern of results 

which does not match the pattern observed in our SSRI-exposed sample. This suggests that 

altered DTI parameters in the SSRI exposed cohort are not simply the result of heightened 

genetic risk for depression. Genes predisposing to depression may impact postnatal white 

development (e.g. myelination and axonal pruning) leading to the pattern of changes 

observed in the Huang et al. study, but these differences are not evident in neonates.
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Regarding severity of depressive symptoms, the parent studies did not collect direct 

measures of symptom severity during pregnancy. In addition, medical records did not 

provide sufficient information to determine how many mothers reporting non-active 

depression at study entry developed symptoms after the initial interview. Since SSRI 

treatment during pregnancy does not guarantee remission of depression (Hanley and 

Oberlander, 2014), we cannot distinguish between the possibility that SSRIs directly impact 

white matter development and the possibility that this relationship is mediated by severity of 

depressive symptoms during pregnancy. We note that maternal depressive symptoms during 

pregnancy are associated with cortical thinning in preschool and school-age children 

(Sandman et al., 2015) and higher postnatal maternal depressive symptoms are associated 

with lower white matter diffusivity in frontal regions in children age 2–5 (Boukhris et al., 

2016).

Regarding mechanisms, active depressive symptoms during pregnancy could impact white 

matter development via poor nutrition and neuroendocrine alterations, including disruption 

of the maternal and infant HPA axis (Waters et al., 2014). Macronutrients and vitamins such 

as iron and choline are key contributors to myelin composition and production. 

Neuroendocrine factors, including cortisol, modulate oligodendrocyte differentiation and 

myelogenesis (Howell et al., 2013; Monk et al., 2013). Cortisol levels in infancy are also 

associated with altered white matter microstructure in adolescent monkeys exposed to early 

life stress (Howell et al., 2013).

Regarding the possibility of a direct, causal relationship between SSRI exposure and altered 

white matter development, the increases in MD and RD we observed in the parietal 

corticothalamic tracts are in keeping with the rodent literature which indicates that prenatal 

SSRI exposure disrupts formation of thalamocortical afferents to the somatosensory cortex 

(Borue et al., 2007). However, white matter abnormalities were not limited to 

corticothalamic tracts in the present study. This is not entirely surprising as the serotonin 

transporter (5HTT) is expressed broadly during development (Narboux-Neme et al., 2008). 

Furthermore, in vitro studies suggest that elevated extracellular 5-HT levels adversely affect 

the survival and development of oligodendrocytes (Fan et al., 2015) while early life exposure 

to SSRIs produces ultrastructural abnormalities of white matter oligodendrocytes and myelin 

sheaths in corpus callosum (Simpson et al., 2011) and downregulation of myelination-

related genes in the hippocampus of adult rats,(Kroeze et al., 2015), suggesting SSRIs alter 

key myelination processes in diverse brain regions.

We do note that women who elect to stay on medication during pregnancy often constitute a 

more severely affected group of women than those that discontinue use during pregnancy. 

As our first cohort took SSRIs in all 3 trimesters, it is possible their offspring experienced a 

‘triple hit’ consisting of exposure to pharmacotherapy, exposure to maternal depression, and 

high genetic vulnerability to depression. Results may not generalize to offspring of women 

with shorter duration of SSRI exposure. In addition, the current sample size is not sufficient 

to assess how the changes we observed vary based on medication dose or differences in the 

type of SSRI prescribed.
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Interpreting changes in DTI parameters is complex. White matter development can be 

divided into 3 stages thought to be reflected by distinct changes in FA, MD, RD, and AD. 

During stage 1, fibers are organized into fascicles, often increasing FA without impacting 

MD (Yoshida et al., 2013). During stage 2, there is proliferation and maturation of glial cells 

that is generally captured by changes in MD. During stage 3, which largely occurs 

postnatally, there is premyelination and myelination, largely indexed by RD (Feldman et al., 

2010). Increased MD observed in SSRI-exposed neonates suggests disrupted glial 

proliferation and maturation. Increases in RD likely reflect disrupted premyelination and 

perhaps myelination in early maturing areas such as the brainstem. Complementary studies 

using mcDESPOT, CHARMED or NODDI (Deoni et al., 2012; Kunz et al., 2014) would 

allow a better understanding of this cellular microstructure. In addition, follow-up studies 

are necessary to determine whether observed differences reflect a maturational delay or 

persistent alterations with functional consequences.

In conclusion, neonatal offspring of depressed mothers treated with SSRIs during pregnancy 

exhibit widespread changes in white matter microstructure, but no differences in brain 

volumes compared to unexposed offspring of women with no history of mood disorder. 

Offspring of untreated depressed mothers show no differences in gray matter volumes or 

white matter microstructure compared to matched controls. Strengths of the current study 

include detailed exposure data reflecting both maternal report and medical record review, 

comprehensive analysis of brain structure and connectivity, and use of propensity matching 

to minimize differences between exposed and unexposed infants. Limitations include small 

sample size, heterogeneity of SSRIs and dosage, and incomplete measures of symptom 

severity. The widespread white matter abnormalities observed in SSRI-exposed children 

likely reflect a complex interplay of factors including SSRIs, maternal depression, and 

genetic risk. Future research should focus on disentangling these possibilities.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 13% of pregnant women report antidepressant use.

• Effects of antidepressants on the fetal brain are not fully understood.

• We used MRI to study brain structure in neonates exposed to SSRIs during 

pregnancy.

• Neonates exposed to SSRIs in pregnancy exhibit minimal differences in 

brain volumes.

• They exhibit widespread changes in white matter microstructure.
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Figure 1. 
Sagittal view. 11 projection pathways (bilateral, left hemisphere segments not shown). CF-

PFC, corticofugal prefrontal cortex; CF-PMC, corticofugal premotor cortex; CF-MC, 

corticofugal motor cortex; CF-PC, corticofugal parietal cortex; CT-PFC, corticothalamic 

prefrontal cortex; CT-PMC, corticothalamic premotor cortex; CT-MC, corticothalamic motor 

cortex; CT-PC, corticothalamic parietal cortex; OT, optic tract; ML, medial lemniscus. 7 

callosal pathways. CC-OFC, corpus callosum: orbitofrontal cortex (rostrum); CC-PFC, 

corpus callosum: prefrontal cortex (genu); CC-PMC, corpus callosum: premotor cortex; CC-

MC, corpus callosum: motor cortex; CC-PC, corpus callosum: parietal cortex; CC-OC, 

corpus callosum: occipital cortex (splenium); CC-TC, corpus callosum: temporal cortex 

(tapetum). 9 association pathways (bilateral, right hemisphere segments not shown). UNC, 

uncinate; AF-fp, Arcuate frontoparietal segment; AF-ft, Arcuate frontotemporal segment; 

AF-tp, Arcuate temporoparietal segment; SLF, superior longitudinal fasciculus; CCG, 

cingulum cingulate gyrus segment; CH, cingulum: hippocampal segment; IFOF, inferior 

fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; Fx, fornix
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Figure 2. 
Local differences in anisotropy and diffusivity along the corticofugal tracts. Beta plots show 

diffusion parameter values along the arc length of each fiber. Positive beta values correspond 

to higher diffusion or anisotropy in SSRI-exposed neonates and negative beta values 

correspond to lower diffusion or anisotropy in SSRI-exposed neonates. Colored circles 

indicate regions of significance post FDR correction. Significant points are also visualized 

on the fiber itself for each parameter. Magenta indicates significant positive beta values. 

Yellow indicates significant negative beta values. Black regions were not analyzed due to 

increased subject variability.
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Figure 3. 
Local differences in anisotropy and diffusivity along the corticothalamic tracts. Beta plots 

show diffusion parameter values along the arc length of each fiber. Positive beta values 

correspond to higher diffusion or anisotropy in SSRI-exposed neonates and negative beta 

values correspond to lower diffusion or anisotropy in SSRI-exposed neonates. Colored 

circles indicate regions of significance post FDR correction. Significant points are also 

visualized on the fiber itself for each parameter. Magenta indicates significant positive beta 

values. Yellow indicates significant negative beta values. Black regions were not analyzed 

due to increased subject variability.
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