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Abstract

Non-alcoholic steatohepatitis (NASH) is an emerging public health problem without effective 

therapies. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into bioactive 

epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory and protective effects. 

However, the functional relevance of the CYP epoxyeicosanoid metabolism pathway in the 

pathogenesis of NASH remains poorly understood. Our studies demonstrate that both mice with 

methionine-choline deficient (MCD) diet-induced NASH and humans with biopsy-confirmed 

NASH exhibited significantly higher free EET concentrations compared to healthy controls. 

Targeted disruption of Ephx2 (the gene encoding for soluble epoxide hydrolase) in mice further 

increased EET levels and significantly attenuated MCD diet-induced hepatic steatosis, 

inflammation and injury, as well as high fat diet-induced adipose tissue inflammation, systemic 

glucose intolerance and hepatic steatosis. Collectively, these findings suggest that dysregulation of 

the CYP epoxyeicosanoid pathway is a key pathological consequence of NASH in vivo, and 

promoting the anti-inflammatory and protective effects of EETs warrants further investigation as a 

novel therapeutic strategy for NASH.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a rapidly growing public health concern that is 

prevalent in approximately 30% of the United States population and fueled by the diabetes 

and obesity epidemic (1, 2). Progression from hepatic steatosis to non-alcoholic 

steatohepatitis (NASH) occurs in approximately 10–20% of cases, and is characterized by 

progressive hepatic inflammation, injury, and fibrosis; however, the mechanisms that 

underlie the development and progression of this syndrome remain poorly understood (2). 

Furthermore, there are currently no treatments approved for the prevention or treatment of 

NASH (1, 2). In order to develop novel therapeutic strategies for NASH, an improved 

understanding of the key pathways that regulate its development and progression is needed.

Cytochrome P450 (CYP) enzymes are expressed abundantly in the liver where they are 

essential for the oxidative biotransformation of xenobiotics. In parallel to cyclooxygenases 

(COX) and lipoxygenases (LOX), certain CYP isoforms metabolize arachidonic acid to 

biologically active eicosanoids. Notably, CYP epoxygenase enzymes from the CYP2J and 

CYP2C subfamilies metabolize arachidonic acid to bioactive epoxyeicosatrienoic acids 

(EETs) (3). However, EETs are rapidly hydrolyzed by soluble epoxide hydrolase (sEH, 

EPHX2) to their corresponding dihydroxyeicosatrienoic acids (DHETs), which are generally 

less biologically active (4). CYP epoxygenase-derived EETs elicit cellular and organ 

protective effects in various preclinical models, including hypertension, ischemia-

reperfusion injury and chemotherapy-induced organ injury, via attenuating inflammation, 

apoptosis and fibrosis (4–6). More recently, it has been reported that promoting the effects of 

EETs elicits protective effects in obesity-associated metabolic disease and in the atherogenic 

diet model of NAFLD/NASH in preclinical models (7–12). In addition, altered circulating 

CYP-derived DHET concentrations have been observed in humans diagnosed with NAFLD/

NASH (13). However, the impact of NASH on EET concentrations in humans is unknown, 

and the functional relevance of the CYP epoxyeicosanoid metabolism pathway in the 

development and progression of NASH remains poorly understood.

Therefore, the objective of this study was to 1) evaluate whether EET levels are significantly 

altered following experimental induction of NASH in mice and in humans with biopsy-

confirmed NASH; and, 2) determine whether promoting the effects of CYP epoxygenase-

derived EETs attenuates the development and progression of NASH in mice.

MATERIALS AND METHODS

Reagents

Reagents were obtained from ThermoFisher Scientific (Waltham, MA) unless otherwise 

indicated.
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Animals

All experiments were performed in adult mice on a C57BL/6J background (age 8–20 

weeks). Wild-type (WT) C57BL/6J mice were purchased from Jackson Laboratory (Bar 

Harbor, ME). A colony of mice with targeted disruption of Ephx2 (Ephx2−/−) were 

backcrossed onto a C57BL/6J genetic background for more than 10 generations, as 

described (14, 15). All mice had free access to food and water and were housed with 

littermates (one to four mice per cage) in temperature and humidity controlled rooms using a 

12 hour light/dark cycle. All studies were completed in accordance with the Public Health 
Service Policy on Humane Care and Use of Laboratory Animals, and were approved by the 

Institutional Animal Care and Use Committee at the University of North Carolina-Chapel 

Hill (UNC) and the National Institute of Environmental Health Sciences.

Experimental Induction of NAFLD/NASH in Mice

The first series of experiments evaluated the impact of experimental induction of NASH on 

hepatic and circulating CYP-derived eicosanoid concentrations in WT mice. Male WT mice 

were fed a commercially available methionine-choline deficient (MCD) diet (D518810, 

Dyets Inc., Bethlehem, PA; n=14) or a composition-matched methionine-choline replete 

control diet (D518754; n=10) for 4 weeks. Dietary depletion of methionine and choline 

leads to hepatic steatosis and oxidative stress, and subsequent liver injury, inflammation and 

fibrosis, and is a widely used preclinical model of NASH (16, 17). The second series of 

experiments evaluated the effect of disrupting sEH-mediated EET hydrolysis on MCD diet 

induced hepatic steatosis, injury and inflammation in male and female Ephx2−/− (n=27 

[male: n=14, female: n=13]) and corresponding WT control (n=24 [male: n=8, female: 

n=16]) mice. A parallel group of WT mice were fed the control diet for reference (n=15 

[male: n=6, female: n=9]).

The MCD diet is limited by a lack of significant weight gain and glucose intolerance (16, 

17). Thus, a third series of experiments was completed to evaluate the effect of disrupting 

sEH-mediated EET hydrolysis on the development of obesity-associated hepatic steatosis. 

Male and female Ephx2−/− (n=41 [male: n=26, female: n=15]) and corresponding WT 

control (n=46 [male: n=33, female: n=13]) mice were fed a commercially available high-fat 

diet (HFD; D12492 [60% kcal fat], Research Diets Inc., New Brunswick, NJ) for 8 weeks. A 

parallel group of WT mice were fed a composition-matched low-fat diet (LFD; D12450B 

[10% kcal fat]) for reference (n=28 [male: n=16, female: n=12]).

Body weight was measured in each mouse weekly. Food consumption was measured weekly 

in each cage by weighing the food at the beginning and end of each week. At the termination 

of each experiment, blood was collected via cardiac puncture, plasma was separated by 

centrifugation, and liver and epididymal white adipose tissue (eWAT) were harvested. One 

part of each tissue was snap-frozen in liquid nitrogen and stored at −80°C. The remainder 

was either fixed in 4% paraformaldehyde and embedded in paraffin or embedded in Tissue-

Tek O.C.T. compound and snap-frozen in liquid nitrogen for subsequent histological 

analysis.
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Human NASH Case:Control Study

Human samples were obtained from a single-center, case:control study of male and female 

patients with biopsy-confirmed NASH (n=7) and corresponding healthy volunteer controls 

(n=15) (18, 19). The inclusion and exclusion criteria have been described in detail 

previously (18). Briefly, patients with biopsy-confirmed non-cirrhotic NASH (defined as a 

NAFLD activity score (NAS) >3) and a BMI ≤45 kg/m2 were recruited from the UNC 

hepatology clinic. In parallel, healthy volunteers with no history of hepatic or metabolic 

disease and a BMI ≤30 kg/m2 were recruited from the local community. Written informed 

consent was obtained from all participants. The study protocol was approved by the UNC 

Biomedical Institutional Review Board.

Study participants fasted overnight prior to initiation of the study visit at the UNC Clinical 

and Translational Research Center. A blood sample was collected from an indwelling 

catheter at baseline and every 30 min for 2 h after administration of a standardized meal 

containing 509 kcal (27.2 g protein, 23.9 g fat, 53.3 g carbohydrates), as described (18, 19). 

Serum was separated by centrifugation, aliquoted and stored at −80°C until analysis.

Quantification of Eicosanoid Concentrations

Free eicosanoid metabolite concentrations were quantified from mouse and human samples 

using a targeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) method 

with optimized sensitivity and specificity for EET quantification, as previously described 

(11, 12, 20). Briefly, plasma/serum (0.25 mL) and homogenized liver (20 mg) and eWAT (50 

mg) tissue were diluted in 0.1% acetic acid/5% methanol solution containing 0.009 mM 

butylated hydroxytoluene (BHT), and internal standards were added. The samples were 

processed by liquid-liquid extraction to isolate lipids, and then dried. Following 

reconstitution, free eicosanoid metabolites were quantified by LC/MS/MS, as described 

(11).

Data were acquired and concentrations were quantified with Analyst software (v1.5, Applied 

Biosystems) using metabolite and internal standard peaks for each sample. Tissue 

concentrations were normalized to tissue weight. In the human study, detectable metabolite 

concentrations that were <0.5x the lower limit of quantitation or >1.5x the upper limit of 

quantitation were imputed as such. Metabolites with more than 50% of the values outside of 

this range were not included in the analysis. Among the panel of 34 CYP-, COX- and LOX-

derived metabolites evaluated, 24 metabolites met the criteria for analysis (Table S2). 

Twenty-one of the 24 metabolites (88%) had <10% of their values outside of the quantitation 

range.

Due to significant correlations among the EET and DHET regioisomers (11, 12, 20), the 

sum of the EET regioisomers (sum EETs) and DHET regioisomers (sum DHETs) were 

calculated to minimize redundancy. The sum of the EET and DHET regioisomers (sum 

EETs+DHETs) and the ratio of 14,15-EET to 14,15-DHET (14,15-EET:14,15-DHET ratio) 

were calculated as biomarkers of CYP epoxygenase and sEH metabolic function, 

respectively. Concentrations of 20-hydroxyeicosatetraenoic acid (HETE) were quantified as 

a biomarker of CYP omega-hydroxylase metabolic function.
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Biochemical Analysis in Mice

Plasma alanine aminotransferase (ALT) levels were quantified using a Vitros 350 automated 

chemical analyzer (Ortho-Clinical Diagnostics, Rochester, NY). Triglyceride levels were 

quantified in homogenized liver tissue using the Biovision Triglyceride quantification Kit 

according to the manufacturer’s instructions (Biovision Incorporated, Milpitas, CA).

Quantitative RT-PCR in Mice

Liver and eWAT RNA were isolated and reverse transcribed to cDNA, as described (12, 21). 

Expression of hepatic Cyp2c44 (Mm0197184_m1), Cyp2c50 (Mm00663066_gH), Cyp2j5 
(Mm00487292_m1), Ephx2 (Mm01313813_m1), Lpl (Mm00434764_m1), Col1a1 
(Mm00801666_g1), Col3a1 (Mm01254476_m1), Srebp1 (Mm00550338_m1), Fasn 
(Mm00662319_m1) and Scd1 (Mm00772290_m1), and eWAT Ccl2 (Mm00441242_m1) 

were quantified using Taqman® Assays on Demand (Life Technologies, Foster City, CA), 

normalized to Gapdh (endogenous control, Mm99999915_g1) and expressed relative to the 

WT control group using the 2−ΔΔCt method (12, 21).

MicroRNA (miR)-122 is the most abundant miRNA in hepatocytes, and is released in 

response to hepatocellular injury; as a consequence, circulating miR-122 levels have 

emerged as a sensitive biomarker of liver injury in multiple preclinical models, including 

MCD diet-evoked NASH, and in humans (22, 23). Circulating miR-122 levels were 

quantified in the MCD diet experiments by real-time quantitative RT-PCR, as described, 

with minor modifications (24). Briefly, total RNA was extracted from heparinized plasma 

(25 μL) using the mirRNeasy serum/plasma kit (QIAGEN, Valencia, CA) according to the 

manufacturer’s instructions. A synthetic miRNA, Caenorhabditis elegans miR-39 (QIAGEN, 

1.6×108 copies) was added to each sample during the extraction procedure. Total RNA was 

incubated for 1 hour at 25°C with 1 unit of heparinase I from Flavobacterium heparinum 
(Sigma) to overcome heparin-induced enzymatic interference in PCR reactions, and then 

reverse transcribed using the Taqman® miRNA Reverse Transcription Kit (Life 

Technologies). Expression of miR-122 was quantified using a commercially-available 

miR-122 TaqMan® Advanced miRNA Assay (Life Technologies), normalized to cel-
miR-39, and expressed relative to the WT control group using the 2−ΔΔCt method (25).

ELISA in Mice

Liver tissue was homogenized and monocyte chemoattractant protein-1 (MCP-1 protein) 

levels were quantified in liver homogenates using the mouse CCL2/JE/MCP-1 Quantikine® 

ELISA kit (R&D Systems, Minneapolis, MN) after loading equal amounts of protein into 

each well, as described (12). Concentrations were normalized to mg of liver protein.

Histology in Mice

Embedded liver and eWAT tissue were sectioned using a serial interrupted technique (5 μm 

sections, 200 μm apart), as described (11, 12). Liver sections underwent hematoxylin and 

eosin (H&E) and Oil Red O staining, and eWAT sections underwent F4/80 

immunohistochemical staining (#MCA497, AbD Serotec, Raleigh, NC). Digital images 

were acquired with the ScanScope CS slide capture device (Aperio, Vista, CA) and analyzed 

using ImageScope Version 11.1 (Aperio).
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The extent of hepatic steatosis was evaluated by quantifying Oil Red O staining intensity on 

digital liver section images using NIH ImageJ software, as described (26). An average value 

across nine non-overlapping 10X fields (three fields/section x three sections/mouse) was 

calculated for each mouse. Data were expressed relative to the control diet referent group in 

each experiment. The extent of macrophage infiltration into eWAT was quantified by 

counting the number of crown-like structures per 10X field, as described (27). Crown-like 

structures were defined as a shrunken adipocyte surrounded by F4/80 stained macrophages. 

An average value across 15 non-overlapping fields (five fields/section x three sections/

mouse) was calculated for each mouse. A pilot experiment revealed no detectable crown-like 

structures in female mice fed a HFD for 8 weeks, which is consistent with prior reports in 

the literature (28); thus, crown-like structures were only quantified in male mice. All 

analyses were blinded to treatment group.

Glucose Tolerance Testing in Mice

Mice were fasted 6 hours, and then dosed with 20% D-glucose by intraperitoneal injection 

(2 mg/g body weight). Whole blood was collected via tail nick before and 20, 30, 60, 90 and 

120 min following dosing, and blood glucose concentrations were measured using the Accu-

Chek Aviva Plus Glucometer (Roche Diagnostics GmbH, Mannheim, Germany), as 

described (11). The area under the glucose concentration-time curve (glucose AUC0–120min) 

was calculated using the trapezoidal method.

Statistical Analysis

Data are presented as mean ± standard error of the mean (SEM) unless otherwise indicated. 

Data that were not normally distributed were log-transformed prior to statistical analysis. 

Statistical analysis was performed using SAS-JMP 10.0 or SAS 9.3 software (SAS Institute, 

Cary, NC), and P<0.05 was considered significant.

In the human study, population characteristics were compared across cases and controls 

using student’s t-test or Wilcoxon test for continuous variables and Fisher’s exact test for 

categorical variables, as appropriate. In order to capture average circulating metabolite 

exposure over the two hour blood sampling period, the area under the eicosanoid 

concentration-time curve (AUC0–120min) was calculated using the trapezoidal method. The 

sum EETs AUC was the primary endpoint. The sum DHETs, sum EETs+DHETs, and 14,15-

EET:DHET ratio AUC’s were secondary endpoints. Comparisons across cases and controls 

were completed using the student’s t-test. In addition, an exploratory metabolomic analysis 

(student’s t-test for each of the 24 individual metabolites followed by a false discovery rate 

[FDR] analysis) was performed with MetaboAnalyst v3.0, as described (20, 29).

In the mouse experiments, eicosanoid and phenotype comparisons across diet (MCD versus 

Control, HFD versus LFD) and genotype (Ephx2−/− versus WT) were completed using a 

generalized linear model (proc glm). In order to account for the potential effects of sex on 

the observed differences in each phenotype across experimental groups (30), the following 

variables were included in the model: sex, diet*sex interaction (impact of sex on the diet 

effect), and genotype*sex interaction (impact of sex on the genotype effect). Differences in 

the glucose tolerance test profile and body weight over time were evaluated using 
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generalized linear model repeated-measures ANOVA, and a post-hoc Scheffe’s test. 

Correlations were evaluated using Pearson correlations where indicated.

RESULTS

Experimental induction of NASH in mice increases hepatic and circulating CYP derived 
epoxyeicosanoids

We first investigated the effect of MCD diet administration, which evoked histologic 

changes consistent with the development of NASH (Fig. S1A), on free CYP-derived 

eicosanoid concentrations in liver. The sum EET (Fig. 1A), sum DHET (Fig. 1B), and sum 

EET+DHET (Fig. 1C) concentrations in liver were significantly increased in mice with 

MCD diet-evoked NASH compared to controls. Similar effects were seen with each EET 

and DHET regioisomer (Table S1). Although the hepatic 14,15-EET:DHET ratio (Fig. 1D) 

and hepatic 20-HETE concentrations (Fig. 1E) also appeared to be higher in MCD diet-fed 

mice, these differences were not statistically significant. Furthermore, liver and plasma EET 

concentrations exhibited a significant positive correlation (r=0.732, P<0.001), and plasma 

EETs were significantly increased in MCD diet-fed mice compared to controls (Fig. 1F). 

Similar differences were observed with the EET regioisomers and the DHET metabolites in 

plasma (Table S1).

Hepatic expression of key Cyp2c and Cyp2j epoxygenases was significantly reduced in the 

MCD diet-fed mice compared to controls (Fig. S1B). Hepatic Ephx2 expression was also 

significantly suppressed in MCD diet-fed mice (Fig. S1C), and a significant inverse 

relationship between free hepatic EET concentrations and Ephx2 expression was observed 

(Fig. S1D; r=−0.557, P=0.005). Moreover, expression of lipoprotein lipase (LpL), a key 

enzyme that regulates the release of esterified CYP-derived eicosanoids from lipoprotein 

phospholipids (31), was significantly higher in MCD diet-fed mice (Fig. S1E) and Lpl 
mRNA levels exhibited a significant positive correlation with free hepatic EET 

concentrations (Fig. S1F; r=0.725, P<0.001).

Patients with biopsy-confirmed NASH exhibit higher circulating CYP-derived 
epoxyeicosanoids compared to healthy volunteer controls

We subsequently evaluated circulating eicosanoid metabolite concentrations in a population 

of patients with biopsy-confirmed NASH and corresponding healthy volunteer controls. The 

demographic and clinical characteristics of the study population are described in Table 1. 

Consistent with the MCD diet preclinical model, total circulating sum EETs (Fig. 2A), sum 

DHETs (Fig. 2B), and sum EETs+DHETs (Fig. 2C) were significantly higher in the NASH 

patients compared to the healthy volunteer controls. NASH patients exhibited higher 

circulating sum EET, sum DHET and sum EET+DHET concentrations compared to controls 

over the two-hour sampling period (Fig. S2). No significant difference, however, in the 

14,15-EET:DHET ratio was observed (Fig. 2D). Evaluating the panel of 24 CYP, LOX and 

COX-derived metabolites (Table S2) revealed that 14,15-EET and 20-HETE were the most 

substantially altered circulating metabolites across cases and controls, and the only 

metabolites with a P-value <0.05 and a FDR q-value <0.10.
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Disruption of sEH-mediated EET hydrolysis attenuates MCD diet-evoked NASH in male and 
female mice

Due to the observed increase in free EET levels in the presence of NASH, we sought to 

evaluate the functional contribution of CYP epoxygenase-derived EETs to the development 

and progression of NASH by administering the MCD diet to male and female Ephx2−/− 

mice. Consistent with the above experiments, free hepatic EETs and DHETs were higher in 

WT mice fed the MCD diet compared to controls (Fig. 3, Table S3). Sex did not modify the 

impact of the MCD diet on any metabolite in WT mice (Table S3). Consistent with 

disruption of sEH-mediated EET hydrolysis, MCD diet-fed Ephx2−/− mice exhibited 

significantly higher free EET levels, 14,15-EET:DHET ratios and 12,13-epoxyoctadecaenoic 

acid (EpOME): dihydroxyoctadecaenoic acid (DHOME) ratios, and significantly lower 

DHET levels in liver compared to MCD diet-fed WT controls (Fig. 3, Table S3). Hepatic 20-

HETE concentrations, however, did not significantly differ across Ephx2−/− and WT mice 

(Table S3).

Administration of the MCD diet resulted in significant hepatic steatosis, injury and 

inflammation (Fig. 4), as well as weight loss (Fig. S3A). The increases in hepatic steatosis 

(Fig. 4A, Fig. S3B), plasma miR-122 and ALT levels (biomarkers of hepatocellular injury; 

Fig. 4B and 4C), hepatic expression of MCP-1 (a key inflammatory chemokine that 

regulates macrophage infiltration; Fig. 4D), and hepatic collagen expression (early 

biomarkers of collagen deposition and fibrosis; Fig. 4E and 4F) evoked by the MCD diet 

were significantly attenuated in Ephx2−/− mice. No differences in body weight (Fig. S3A), 

food consumption (20.8 vs. 22.6 grams/week/mouse, P=0.381), or the expression of key 

mediators of lipogenesis (Fig. S3C–E), were observed across Ephx2−/− and WT mice, 

respectively. Sex did not modify the observed differences in any phenotype across Ephx2−/− 

and WT mice (as evidenced by genotype*sex interaction P>0.05 for all endpoints), 

indicating that the protective effects of Ephx2 disruption were similar in males and females.

Disruption of sEH-mediated EET hydrolysis attenuates HFD-evoked metabolic syndrome 
and NAFLD in male and female mice

Since the MCD diet is limited by a lack of weight gain, adipose tissue inflammation and 

glucose intolerance, which are key pathological drivers of the metabolic syndrome and 

NAFLD in humans (16, 17), we also evaluated the functional contribution of CYP 

epoxygenase-derived EETs to the development of NAFLD by administering a HFD to male 

and female Ephx2−/− mice. Consistent with disruption of sEH-mediated EET hydrolysis, 

HFD-fed Ephx2−/− mice exhibited significantly higher 14,15-EET:DHET ratios in eWAT 

compared to HFD-fed WT mice (8.13±1.45 [n=12] vs. 3.05±0.62 [n=11], respectively, 

P<0.05).

Administration of the HFD for 8 weeks resulted in significant weight gain, adipose tissue 

inflammation, glucose intolerance and hepatic steatosis (Fig. 5, 6, and S4). The HFD-evoked 

increase in hepatic steatosis was significantly attenuated in Ephx2−/− mice (Fig. 5, Fig. 

S4D). Although no significant difference in weight gain was observed across Ephx2−/− and 

WT mice (Fig. 6A), Ephx2−/− mice exhibited a significantly attenuated induction of 

systemic glucose intolerance (Fig. 6B–D) and MCP-1 expression in eWAT (Fig. S4A) 
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compared to WT mice. Sex did not modify the observed differences in hepatic steatosis, 

glucose intolerance and eWAT MCP-1 expression (genotype*sex interaction P>0.05 for all 

endpoints), indicating that the protective effects of Ephx2 disruption were similar in males 

and females. Although eWAT crown-like structures were not detected in female mice, 

consistent with prior reports (28), the HFD-evoked increase in eWAT macrophage 

infiltration in male WT mice was significantly attenuated in male Ephx2−/− mice (Fig. S4B 

and S4C).

DISCUSSION

Nonalcoholic steatohepatitis is a rapidly growing public health concern characterized by 

progressive hepatic inflammation, injury, and fibrosis; however, the key pathways that 

regulate its development and progression remain poorly understood and no approved 

treatments are available (1, 2). Promoting the effects of CYP epoxygenase-derived EETs has 

emerged as an anti-inflammatory and protective therapeutic strategy for cardiometabolic 

disease (4–6). Despite the well-established pathologic role of hepatic inflammation in NASH 

and the abundance of CYP enzyme expression in the liver, the functional contribution of the 

CYP epoxyeicosanoid metabolism pathway to the pathogenesis of NASH has remained 

largely unexplored. Through integration of preclinical and human studies, this investigation 

is the first to demonstrate that 1) experimental induction of NASH in mice with the MCD 

diet increases free hepatic and circulating EET concentrations; 2) humans with biopsy-

confirmed NASH similarly exhibit higher circulating free EET concentrations compared to 

healthy controls; and, 3) targeted disruption of Ephx2 further increases free EET levels and 

significantly attenuates MCD diet-evoked hepatic steatosis, inflammation and injury in mice. 

Collectively, these findings suggest that dysregulation of the CYP epoxyeicosanoid pathway 

is a key pathological consequence of NASH, the observed increase in free EET 

concentrations may be a compensatory effect triggered to slow the progression of NASH in 
vivo, and promoting the effects of EETs is a novel therapeutic strategy for NASH that 

warrants further investigation.

It is well-established that inflammatory stimuli suppress hepatic CYP-mediated xenobiotic 

metabolism through cytokine-mediated transcriptional downregulation of CYP expression 

(32). In addition, we have reported that hepatic CYP epoxygenase expression and EET 

biosynthesis is suppressed in mice in an LPS model of acute inflammation, a high-fat diet 

model of insulin resistance, and the atherogenic diet model of NAFLD (12, 21, 33). 

Consistent with these prior studies, experimental induction of NASH with the MCD diet 

significantly suppressed hepatic expression of key Cyp2c and Cyp2j epoxygenases. In 

contrast, the MCD diet significantly increased free hepatic and circulating EET and DHET 

concentrations in mice. Consistent with these preclinical data, human patients with biopsy-

confirmed NASH also exhibited significantly higher circulating free EET and DHET levels 

compared to healthy controls. Further investigation revealed that hepatic Ephx2 expression 

was suppressed in MCD diet-fed mice, and a significant inverse relationship between free 

hepatic EET concentrations and Ephx2 expression was observed. Although the 14,15-

EET:DHET ratio, a biomarker of reduced sEH metabolic function, appeared to be higher in 

MCD diet-fed mice and in human NASH patients, these differences were not statistically 

significant. Thus, a NASH-evoked suppression of sEH expression and EET hydrolysis did 
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not fully account for the observed increase in EET levels. It is important to note that free 

eicosanoid concentrations were quantified in the current study. It is well-established that 

cellular EETs are esterified to membrane phospholipids and >90% of circulating EETs are 

esterified to lipoprotein phospholipids in humans and rodents (31, 34). Expression of LpL, 

an enzyme that plays a key role in release of esterified CYP-derived eicosanoids from 

lipoprotein phospholipids (31), was significantly higher in mice fed the MCD diet. This was 

consistent with a prior report, which also demonstrated that direct activation of LpL 

abrogates the progression of NASH (35). In the current investigation, Lpl mRNA levels 

exhibited a significant positive correlation with free hepatic EET concentrations. Taken 

together, these findings demonstrate that the CYP epoxyeicosanoid metabolism pathway is 

significantly dysregulated in the presence of NASH, and suggest that an increased release of 

esterified EETs may contribute, at least in part, to the observed increase in free hepatic and 

circulating EET concentrations.

Previous lipidomic analyses in humans have demonstrated that NAFLD/NASH is associated 

with dysregulated fatty acid metabolism (36, 37); however, the relationship between the 

presence of NASH and altered CYP-derived eicosanoids has remained largely unexplored. 

Due in part to the technical complexity of quantifying EETs, which are not measured on 

traditional metabolomic or eicosanoid analytical platforms, major gaps in knowledge 

surrounding the biologic and therapeutic importance of EETs in human disease exist. A 

recent investigation demonstrated that circulating DHET concentrations were significantly 

higher in NASH patients compared to controls (13). Our analysis corroborated these findings 

in mice and humans, and demonstrated for the first time that free circulating EETs, but not 

EET:DHET ratios, are also significantly elevated in patients with NASH. During the two-

hour postprandial period, circulating EET levels and the 14,15-EET:DHET ratio appeared to 

increase and DHET levels appeared to decrease (Figure S2). The observed increase in the 

14,15-EET:DHET ratio over time in both NASH patients and healthy controls suggests that 

sEH metabolic function may be suppressed during the post-prandial period. To our 

knowledge, the effect of acute feeding on circulating CYP-derived EETs and DHETs has 

never been investigated in preclinical models or in humans. Future studies appear warranted 

to validate and elucidate these effects.

Our exploratory analysis of 24 oxylipin metabolites revealed that 14,15-EET and 20-HETE 

were the most substantially altered metabolites in patients with NASH. Interestingly, 

Loomba et al. also reported that a stable metabolite of 20-HETE (20-COOH AA) was 

significantly higher in NASH patients compared to controls (13). In our experiments, even 

though hepatic 20-HETE concentrations were not significantly altered in MCD-diet fed 

mice, circulating 20-HETE levels were significantly higher in MCD-diet fed WT mice 

compared to controls (Table S1; 1.5±0.2 vs. 0.65±0.06 ng/mL, respectively, P=0.001). Given 

the well-documented pro-inflammatory and pro-injury effects of 20-HETE in the 

cardiovascular and renal systems (38), future studies that evaluate the functional contribution 

of 20-HETE to the development and progression of NASH are warranted.

Although this study was the first to quantify EET and 20-HETE concentrations in human 

NASH patients, our analysis has limitations that must be acknowledged. First, this study was 

limited by its small sample size. Thus, completing sex-stratified analyses and adjusting for 
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multiple covariates was not feasible. Second, although sum EET levels were designated as 

our primary endpoint, multiple secondary comparisons were completed and there is a 

possibility of false-positive associations. We calculated an FDR q-value for each 

comparison; however, these data should be interpreted with caution. Third, numerous 

potentially important eicosanoids were either below the limit of quantitation or not evaluated 

by the employed LC/MS/MS method. Thus, future studies in larger populations are needed 

to validate these preliminary findings, adjust for multiple covariates, and more rigorously 

evaluate the association between EETs and the presence of NASH relative to metabolites 

derived from parallel pathways.

It is well-established that CYP-derived EETs have potent anti-inflammatory effects by 

attenuating NF-κB signaling, as well as pro-survival and anti-apoptotic effects by multiple 

mechanisms (4–6, 15, 39). As a consequence, promoting the effects of EETs yields vascular, 

myocardial, renal and cerebral protective effects in various preclinical models, including 

hypertension, ischemia-reperfusion injury and chemotherapy-induced organ injury via 

attenuation of inflammation, apoptosis and fibrosis (40–44). More recently, inhibition of 

sEH-mediated EET hydrolysis has been shown to abrogate obesity-associated hepatic 

inflammation and steatosis, atherogenic diet evoked hepatic inflammation and injury, and 

carbon tetrachloride induced hepatic inflammation and fibrosis (8, 12, 45). Although these 

accumulating data suggest that EETs and sEH are key regulators of multiple biological 

processes central to the pathogenesis of NAFLD/NASH, the functional role of the CYP 

epoxyeicosanoid metabolism pathway in the development and progression of NASH has not 

been rigorously studied. Using the well-established MCD diet model of NASH (16, 17), we 

demonstrated that mice with targeted disruption of Ephx2 exhibited increased hepatic EET 

levels and significantly attenuated hepatic steatosis, pro-inflammatory chemokine 

expression, injury, and collagen activation. These data were consistent with the anti-

inflammatory and protective effects of EETs in other models. In contrast, the expression of 

key mediators in the lipogenesis signaling pathway were similar in Ephx2−/− and WT mice. 

Taken together, these findings demonstrate that sEH is an important regulator of NASH-

associated hepatic inflammation and injury, and suggest that the anti-inflammatory and 

cellular protective effects of EETs, and not marked alterations in lipogenesis, mediated the 

observed protective effects in Ephx2−/− mice. These data also suggest that the observed 

increase in free EET concentrations in the presence of NASH may be a compensatory effect 

triggered to slow the progression of NASH. Future studies are needed to establish the direct 

hepato-protective effects of EETs, delineate the underlying mechanisms, and further 

evaluate therapeutic utility of increasing EET levels in NASH.

Although the MCD diet is a well-established preclinical model that evokes hepatic 

inflammatory and histopathologic effects similar to human NASH, this model is limited by a 

lack of weight gain, adipose tissue inflammation and glucose intolerance, which are key 

pathological features of the metabolic syndrome and drivers of NAFLD/NASH in humans 

(1, 16, 17). Our experiments in a HFD model demonstrated that disruption of sEH-mediated 

EET hydrolysis also mitigates obesity-associated adipose tissue inflammation, systemic 

glucose intolerance and the early development of hepatic steatosis in vivo, without changes 

in weight gain. Given the integral role of MCP-1 expression and subsequent macrophage 

infiltration into adipose tissue to the obesity-associated development of glucose intolerance 
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and type 2 diabetes, which are key pathologic drivers of NAFLD (28, 46–48), the anti-

inflammatory effects of EETs in adipose tissue appear to be a key component of their 

metabolic protective effects in the early stages of NAFLD. In addition, accumulating 

evidence has demonstrated that EETs evoke a myriad of protective effects in preclinical 

models of obesity, such that sEH inhibitors and EET analogs attenuate adipogenesis, 

pancreatic islet dysfunction, endoplasmic reticulum stress in liver and adipose tissue, and 

insulin resistance (7–12). Although previously published studies were completed almost 

exclusively in male mice, the protective effects of Ephx2 disruption were similar in males 

and females in our experiments. Collectively, these data further demonstrate the potential 

therapeutic utility of promoting the effects of EETs in obesity-associated metabolic disease. 

It is important to note, however, that HFD administration for much longer durations (>6 

months) is necessary to evoke hepatic inflammatory and histopathologic effects consistent 

with NASH (16, 17). Thus, future studies evaluating the effects of Ephx2 disruption and 

novel therapies that promote the effects of EETs, including sEH inhibitors and stable EET 

analogs, are needed to more fully elucidate the functional contribution of CYP-derived EETs 

to the development and progression of obesity-associated NASH.

Despite increasing prevalence and substantial liver- and cardiovascular-related morbidity and 

mortality, no treatment has been approved by the FDA for NASH (1, 2). Thus, identifying 

and characterizing new therapeutic targets is critical. The ideal intervention for NASH 

would: a) elicit direct anti-inflammatory and protective effects in the liver to slow NASH 

progression and the development of end-stage liver disease, b) attenuate obesity-driven 

adipose inflammation and insulin resistance to slow the development and progression of 

hepatic steatosis (the most common underlying etiology of NASH), and, c) elicit systemic 

and vascular anti-inflammatory effects to prevent cardiovascular disease (the leading cause 

of death in NASH patients) (2). The anti-inflammatory and cardiovascular protective effects 

of EETs are well-established (4–6, 49). Importantly, sEH inhibitors are in preclinical and 

clinical development for chronic inflammatory conditions (50, 51). Given the metabolic and 

hepatic protective effects in preclinical models of obesity and NAFLD/NASH described 

herein, promoting the effects of EETs has enormous potential as a novel therapeutic strategy 

for NAFLD/NASH and warrants further investigation.

CONCLUSIONS

In summary, we have demonstrated that the CYP epoxyeicosanoid metabolism pathway is 

significantly dysregulated in the presence of NASH, such that free EET concentrations are 

significantly higher following experimental induction of NASH in mice and in patients with 

biopsy-confirmed NASH. In addition, genetic disruption of sEH further increased EET 

levels and attenuated MCD-diet induced hepatic steatosis, inflammation and injury in mice. 

Genetic disruption of sEH also mitigated obesity-associated adipose tissue inflammation, 

systemic glucose tolerance, and the early development of hepatic steatosis. Collectively, 

these findings suggest that dysregulation of the CYP epoxyeicosanoid metabolism pathway 

is a key pathological consequence of NAFLD/NASH in vivo, and promoting the anti-

inflammatory and protective effects of EETs offers considerable promise as a therapeutic 

strategy for NAFLD/NASH.
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Highlights

• The functional relevance of the CYP epoxyeicosanoid pathway in 

NASH was evaluated

• Experimental induction of NASH increased hepatic and circulating 

EET levels in mice

• Humans with biopsy-confirmed NASH had higher EET levels versus 

healthy volunteers

• Disruption of sEH-mediated EET hydrolysis attenuated the progression 

of NASH in mice

• These data suggest the therapeutic effects of EETs in NASH warrant 

further study
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Figure 1. Hepatic and circulating CYP-derived eicosanoid concentrations in wild-type mice 
following experimental induction of NASH
Male mice fed the MCD diet exhibited significantly higher free hepatic (A) sum EETs, (B) 

sum DHETs, and (C) sum EETs+DHETs concentrations compared to mice fed a 

methionine-choline replete control diet (Control: n=10, MCD: n=14). In contrast, no 

significant differences in hepatic (D) 14,15-EET:DHET ratio or (E) 20-HETE concentrations 

were observed. (F) Sum EETs concentrations in plasma were also significantly higher in 

mice fed the MCD diet (Control: n=8, MCD: n=13). Data are presented as mean ± SEM, and 

are plotted on a log scale. *P<0.05 versus control.
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Figure 2. Circulating CYP epoxygenase-derived eicosanoids in a human population of patients 
with biopsy-confirmed NASH and healthy volunteer controls
Free serum eicosanoid concentrations were quantified at baseline (fasting) and at 0.5, 1.0, 

1.5 and 2.0 hours following administration of a standardized meal. In order to quantify the 

average circulating metabolite exposure over the two hour blood sampling period, the area 

under the concentration-versus-time curve (AUC0–120min) was calculated for each metabolite 

and compared across NASH cases (n=7) and healthy volunteer controls (n=15). The (A) sum 

EETs, (B) sum DHETs, and (C) sum EETs+DHETs AUC were significantly higher in 

NASH patients versus healthy volunteer controls. (D) No significant difference in the 14,15-

EET:DHET AUC was observed. Data are presented as mean ± SEM. *P<0.05 versus healthy 

volunteers.
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Figure 3. Hepatic CYP-derived eicosanoid concentrations in Ephx2−/− mice following 
experimental induction of NASH
(A) Sum EET levels and (B) the 14–15-EET:DHET ratio in liver were quantified in male 

and female wild-type (WT) and Ephx2−/− mice. Compared to WT mice fed a control diet for 

4 weeks (WT-Control, n=11), WT mice fed the MCD diet (WT-MCD, n=15) exhibited 

significantly higher hepatic sum EET levels, whereas no significant difference in the 14,15-

EET:DHET ratio was observed. Ephx2−/− mice fed the MCD diet (KO-MCD, n=12) 

exhibited significantly higher EETs and 14,15-EET:DHET ratio compared to WT-MCD. 

Data are presented as mean ± SEM, and are plotted on a log-linear scale. *P<0.05 versus 

WT-MCD.
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Figure 4. Phenotypic characteristics of NASH in Ephx2−/− mice following experimental 
induction of NASH
Male and female mice were fed a methionine-choline deficient (MCD) or methionine-

choline replete control diet for 4 weeks to induce NASH. The MCD diet-evoked increases in 

(A) histologic evidence of hepatic steatosis (measured by Oil Red O staining in serial 

interrupted liver sections; representative images are provided in Figure S3B) and (B) plasma 

miR-122 levels in wild-type (WT) mice were significantly attenuated in Ephx2−/− (KO) mice 

(WT-Control: n=8; WT-MCD: n=14–17; KO-MCD: n=16–19). The MCD diet-evoked 

increases in (C) plasma ALT levels, (D) hepatic MCP-1 levels, and hepatic mRNA levels of 

(E) collagen type I (Col1a1) and (F) collagen type III (Col3a1) also were attenuated in 

Ephx2−/− mice (WT-Control: n=14–15; WT-MCD: n=24; KO-MCD: n=25–27). Data are 

presented as mean ± SEM. *P<0.05 versus WT-MCD.
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Figure 5. Hepatic steatosis in Ephx2−/− mice following experimental induction of obesity
Male and female mice were fed a high-fat diet (HFD) for 8 weeks to induce obesity and 

hepatic steatosis. (A) The HFD-evoked increase in liver triglyceride levels in wild-type 

(WT) mice was significantly attenuated in Ephx2−/− (KO) mice (WT-LFD: n=8; WT-HFD: 

n=22; KO-HFD: n=23). (B) Histologic evidence of hepatic steatosis, which was measured 

by Oil Red O staining in serial interrupted liver sections (representative images are provided 

in Figure S4D), was also attenuated in Ephx2−/− mice (WT-LFD: n=10; WT-HFD: n=11; 

KO-HFD: n=12). Data are presented as mean ± SEM. *P<0.05 versus WT-HFD.
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Figure 6. Glucose intolerance in Ephx2−/− mice following experimental induction of obesity
Male and female mice were fed a high-fat diet (HFD) for 8 weeks to induce obesity and 

glucose intolerance. (A) Body weight was measured weekly and expressed as a percent 

change from baseline, and (B) fasting blood glucose levels were measured at 4 and 8 weeks 

(WT-LFD: n=28; WT-HFD: n=44–46; KO-HFD: n=41). At (C) 4 weeks (WT-LFD: n=22; 

WT-HFD: n=32; KO-HFD: n=32) and (D) 8 weeks (WT-LFD: n=16; WT-HFD: n=23; KO-

HFD: n=23), blood glucose concentrations were quantified over 120 minutes following an 

intraperitoneal glucose tolerance test (GTT). The corresponding glucose AUC0–120min was 

then calculated. The repeated measures ANOVA P-values are provided where applicable. 

*P<0.05 versus WT-HFD.
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Table 1

Study population characteristicsa

Characteristic Healthy volunteers (n=15) NASH Patients (n=7) P-valueb

Demographics

 Age (years) 43.1 ± 12.5 48.1 ± 10.4 0.333

 Male 7 (46.7%) 3 (42.9%) 1.000

 African American 2 (13.3%) 0 (0.0%) 1.000

 BMI (kg/m2) 25.3 ± 2.7 32.2 ± 5.2 0.011

Serum Chemistry (fasting)

 ALT (u/L) 28 [23–41] 55 [46–100] 0.001

 Total Cholesterol (mg/dL) 182 [162–234] 220 [157–228] 0.972

 Triglycerides (mg/dL) 81 [46–154] 247 [190–286] <0.001

 Glucose (mg/dL) 84 [82–94] 125 [104–138] <0.001

 Insulin (μIU/mL) 7.5 [5.8–9.4] 29.5 [16.2–54.3] <0.001

Liver Histology

 Total NASc - 5 [4–6]

 Steatosis - 2 [1–3]

 Ballooning - 2 [0–2]

 Inflammation - 1 [0–2]

 Fibrosis - 1 [0–3]

Data presented as mean ± standard deviation, median [interquartile range], or count (%)

ALT, alanine aminotransferase; BMI, body mass index; HDL, high density lipoprotein; NAS, NAFLD Activity Score

a
These data have been previously reported (19)

b
Student’s t-test or Wilcoxon test was performed for continuous variables and Fisher’s exact test was performed for categorical variables, as 

appropriate.

c
NAS is a validated histological scoring system that includes four distinct domains. The total (sum) score and the score for each domain are 

provided for the NASH patients (liver biopsies were not completed in healthy volunteers).
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