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How proteins sense and navigate the cellular interior to find their
functional partners remains poorly understood. An intriguing
aspect of this search is that it relies on diffusive encounters with
the crowded cellular background, made up of protein surfaces that are
largely nonconserved. The question is then if/how this protein search
is amenable to selection and biological control. To shed light on this
issue, we examined the motions of three evolutionary divergent
proteins in the Escherichia coli cytoplasm by in-cell NMR. The results
show that the diffusive in-cell motions, after all, follow simplistic phys-
ical−chemical rules: The proteins reveal a common dependence on (i)
net charge density, (ii) surface hydrophobicity, and (iii) the electric
dipole moment. The bacterial protein is here biased to move relatively
freely in the bacterial interior, whereas the human counterparts more
easily stick. Even so, the in-cell motions respond predictably to surface
mutation, allowing us to tune and intermix the protein’s behavior at
will. The findings show how evolution can swiftly optimize the diffuse
background of protein encounter complexes by just single-point mu-
tations, and provide a rational framework for adjusting the cytoplas-
mic motions of individual proteins, e.g., for rescuing poor in-cell NMR
signals and for optimizing protein therapeutics.
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Despite considerable progress in mapping out how proteins
interact functionally through structure and evolved inter-

faces (1–3), there is yet little known about how proteins interact
nonspecifically upon random diffusive encounters (4–10). Al-
though these nonspecific “quinary” (11) interactions are typically
weak and short-lived, they are still expected to affect function
because of their sheer numbers: Under crowded cellular condi-
tions, they compete with specific binding (6–8), control diffusion
(12), and skew structural stability (5, 13–19). The question is
then to what extent this dynamic background of nonspecific in-
teractions is biologically controlled and optimized. Part of the
answer is hinted by the tendency of soluble proteins, nucleic
acids, and membranes to carry a repulsive net-negative charge
(20, 21). Such basal level of repulsion between the cellular
components is further indicated by a matching surplus of positive
counter ions like K+, Mg2+, Ca2+, and Zn2+, which greatly ex-
ceeds the concentration of negative dittos HCO3

−, Cl−, SO4
2−,

and PO4
2− (22). However, proteins expose also positive, polar,

and hydrophobic moieties that operate against the net-negative
charge repulsion by engaging in attractive interactions upon
diffusive encounters. The strength and duration of these attractive
interactions depend on the proteins’ detailed surface composition,
relative orientations, and ability to adapt complementary shapes.
Following Elcock’s estimate for the Escherichia coli cytoplasm,
each protein experiences at all times approximately five putative
interaction partners in its immediate cellular environment (8).
Sometimes, mutual fits enable strong functional binding (1, 2),
but, most often, the proteins just separate after a brief tête-à-tête
(3), in search of higher-affinity partners. A key detail is that the
effect of this quinary interplay on protein stability varies with
protein identity and type of host cell (5, 9, 13–19, 23–26). The
“crowding” effect is thus not limited to steric exclusion (27) but
has also a decisive dependence on sequence composition and the

details of the quinary interactions. In this study, we examine to
what extent these ubiquitous background interactions are bio-
logically tunable and can be accounted for (Fig. 1). The results
show that the quinary interactions are critically sensitive to surface
mutation and that proteins from divergent organisms respond very
differently to the E. coli cytoplasm: Although the bacterial protein
moves relatively freely in the bacterial interior, the human ho-
molog tends to stick. Even so, the proteins can readily be tuned to
any desired in-cell mobility by just a few structurally benign surface
mutations, following a universal dependence on their macroscopic
surface properties. As such, our findings present the physical−chemical
code for quinary interactions in the E. coli cytoplasm with numerous
implications for functional protein design and deciphering the
functional evolution of proteomes.

Experimental Protocol
Proteins. To assure that the proteins mainly report on the non-
specific in-cell encounters, possible specific interactions were
mitigated by removal of the active sites and binding sites (SI Ma-
terials and Methods). For bacterial TTHA1718 [Protein Data Bank
(PDB) 2ROE] (28) and human HAH1 (PDB 1TL4) (29), this
process involved mutational substitution of the metal-binding li-
gands, and, for SOD1, truncation of the active-site loops that also
ruptures the dimer interface (PDB 4BCZ) (30–32). The resulting
pseudo-wild-type proteins are denoted TTHAPWT, HAH1PWT, and
SOD1barrel, and are listed in Table S1 and Fig. S1 together with 127
analyzed surface mutations.

Experimental Strategy. The proteins (Table S1 and Fig. S1) were pro-
duced and analyzed in E. coli BL21(DE3)pLysS cells as follows
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(SI Materials andMethods). Overexpression was induced by 1-thio-β-D-
galactopyranoside (IPTG) in isotope-enriched medium and sustained
for 4 h, yielding intracellular concentrations of 1.6 ± 0.8 mM
N15-labeled protein (SI Materials and Methods and Fig. S1). The
culture was then nondisruptively centrifuged at 800 × g for 8 min to
obtain a pellet of intact, viable cells. One gram of this cell pellet was
carefully dissolved in 1 mL of M9 buffer, transferred to an NMR tube,
and subjected to in-cell spectral analysis, i.e., samplein cell. For control
of protein leakage, the samplein cell was extracted from the NMR tube
and centrifuged at 2,400 × g for 2 min to obtain a cell-free supernatant
of the intervening M9 buffer, i.e., samplesupernatant. The pelleted cells
were then resuspended to the original sample volume with M9 buffer,
lysed to set free the intracellular target protein, and centrifuged at
17,000 × g for 10 min to remove cell debris and larger macromolecular
species. This decrowded lysate, which represents a much more dilute
background than the cytoplasm (SI Controls, Fig. S1, and Table S2),
was finally used as a control for internalized protein, i.e., lysatesupernatant.
An advantage of this protocol is that the amount of labeled protein in
the NMR detection volume is kept the same in samplein cell and
lysatesupernatant, allowing estimates of dynamic changes upon cell rup-
ture from changes in peak heights alone (Results and SI Controls).

Results
Bacterial and Human Homologs Respond Differently to the E. coli
Cytoplasm. For reference, we acquired first the in-cell NMR
spectra of the pseudo-wild-type variants of bacterial TTHA
(TTHAPWT), human HAH1 (HAH1PWT), and the human SOD1
barrel (SOD1barrel) (Fig. 1). Analysis shows that E. coli cells
expressing bacterial TTHAPWT (samplein cell) display a highly
dispersed Heteronuclear Multiple Quantum Coherence (HMQC)
spectrum with well-resolved cross-peaks, characteristic for a rap-
idly tumbling and fully folded structure (Fig. 2). Subsequent tests
of leakage (samplesupernatant) reveal typically very low amounts of
labeled material in the intervening medium (SI Controls, Table S1,
and Fig. S2), indicating that the signal indeed stems from protein
in the cytoplasm (Fig. 2). Finally, the supernatant of the lysed cells
(lysatesupernatant) yields a spectrum analogous to that in samplein cell,
but with a slight sharpening of the HMQC cross-peaks (Fig. 2).

The lysatesupernatant spectrum is further indistinguishable from that
obtained in pure buffer, showing that the low levels of endogenous
E. coli proteins remaining in the lysate supernatant (∼10 mg/mL;
SI Controls and Fig. S1) have negligible impact on the analysis:
lysatesupernatant mimics a pure-buffer control. Taken together, these
results show that the E. coli cytoplasm has limited, but yet mea-
surable, impact on the dynamic behavior of bacterial TTHAPWT and
that these restrictions ease upon cell lysis. With the human analog
HAH1PWT, however, the situation is distinctly different. The in-cell
spectrum of this protein is broadened out to the extent that it
completely disappears, using the same data contour level settings
as for TTHAPWT. What remain visible in samplein cell are only the
distinct cross-peaks of the background of labeled metabolites that
always accumulate during overexpression in labeled growth medium
(Fig. 2). The cause of such global line broadening for a globular
protein is normally decreased rotational mobility (33–35). Conspic-
uously, the folded HAH1PWT spectrum subsequently restores to high
resolution upon cell lysis in lysatesupernatant, indicating that the protein
is just reversibly restricted by the cytoplasm and readily sets free upon
cell lysis (Fig. 2). We observe the very same behavior for the human
SOD1barrel (Fig. 2): Although the protein is previously found to move
freely in human cells (5, 31), it seems to stick in the E. coli cytoplasm.

In-Cell NMR Spectra Can Be Made to Appear and Vanish by Single-
Point Mutations. The question is then, what allows TTHAPWT to
tumble relatively freely in the E. coli interior whereas HAH1PWT

and SOD1barrel seem to get stuck? Because the effect unlikely
arises from specific binding to biological partners but rather from
diffuse quinary interactions with the molecular background (5,
9), we start by investigating the role of protein charge (21). As
illustrated in Fig. 3, the electrostatic potentials of the TTHAPWT,
HAH1PWT, and SOD1barrel surfaces are quite different. First out
was the mutation HAH1K57E, which replaces the positive surface
charge K57 of the human protein with the negative counterpart
E57 of the bacterial TTHAPWT. The mutation has negligible impact
on protein folding and stability (SI Controls and Fig. S2), but it
increases the formal net charge of HAH1 by −2. As a result, the in-
cell cross-peaks of HAH1 sharpen up radically and reveal a high-
resolution HMQC spectrum of the folded state, analogous to that
of TTHAPWT (Fig. 2). Cytoplasmic localization was verified by the
samplesupernatant, which revealed no trace of leakage (Table S1).
Whatever dynamic restrictions are experienced by the pseudo-wild-
type protein in the E. coli cytoplasm appear to be largely counter-
acted by the point mutation K57E. Similarly, the mutation R100E
induces distinct cross-peak sharpening of SOD1barrel, albeit that the
spectral restoration is not as prominent as observed for HAH1K57E

(Fig. 2). Boosting protein’s net-negative charge seems thus to be an
efficient means to increase cytoplasmic mobility and rescue poor in-
cell spectra. As proof of principle, we finally designed a protein to
stick to the E. coli interior by decreasing the formal net charge of
TTHAPWT with the construct TTHAE58K. The result is a nearly
complete loss of the in-cell NMR signal (Table S1 and Fig. 2).

Strategy for Quantification of In-Cell Mobility. To establish whether
the ordered response to net charge alterations indeed relates to
unspecific electrostatic repulsion, or stems from serendipitous
obstruction of functional binding sites, we set out to quantify the
effect. Under the present conditions, the NMR line width (Δ ν1=2)
scales with the protein correlation time (τc), which, in turn, is
mainly determined by three components,

τ−1c = τ−1r + τ−1l + τ−1exch, [1]

where τr is the rotational correlation time, τl is the local dynamics
correlation time, and τexch is the correlation time of any putative
chemical exchange. Because the protein variants in this study are
fully folded and maintain, in all cases, fixed 3D structures in
the E. coli cytoplasm (SI Controls, Table S3, and Fig. S2), the

Fig. 1. Measurements of the cytoplasmic motions of three evolutionary di-
vergent proteins by in-cell NMR: bacterial TTHA, human HAH1, and human
SOD1barrel. Isotope-labeled proteins were generated directly in the E. coli cy-
toplasm by overexpression. The intact cells were then carefully washed and
transferred to NMR tubes for detection of internal protein motions. Our ob-
servable is the protein’s rotation correlation time, i.e., how freely it tumbles
around, which is a sensitive measure of the interactions experienced in the
crowded E. coli interior. In essence, NMR spectra with narrow cross-peaks show
that the proteins tumble unrestricted, and broadened-out spectra show that
the proteins get stuck. By point mutation, we gradually tune the three pro-
teins between these extremes to map out the physical−chemical code for the
cytoplasmic crosstalk (Table S1 and Fig. S1).
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contribution from local motions (τl) is negligible (36). Likewise,
the uniform distribution of the line-broadening effect seen for all
amino acids of the proteins (SI Controls and Fig. S2) indicates
that the change in chemical exchange (τexch) upon transfer into
the cells is small, as this would preferentially affect moieties on
the protein surfaces. Hence, the line-broadening effect is global,
i.e., the relative change in line width is similar for all cross-peaks.
Consequently, the main modulator of NMR line width (Δ ν1=2)
can here be ascribed to the rotation correlation time (τr), in ac-
cordance with previous in-cell NMR studies (37, 38),

τc ≈ τr =
4πR3

Hη

3kBT
=
VHη

kBT
, [2]

where VH is the hydrodynamic volume and η is the apparent viscosity.
Experimentally, we determined the change in τr (Eqs. 1 and 2) upon
transfer into the cytoplasm from the ratio of the cross-peak heights
(h) in the lysatesupernatant and the samplein cell spectra according to

mobilityin  cell = τlysater

�
τin  cellr = hin  cell

�
hlysate, [3]

using the property that hin cell/hlysate =Δ νlysate1=2 =Δ νin  cell1=2 when protein
concentration is kept constant. For simplicity, we refer tentatively to

mobilityin  cell  as change in intracellular ‘mobility’ (37). A value of
mobilityin  cell  = 1 means that the in-cell mobility is similar to
that in pure water, i.e., τr = 4 ns for TTHA (28) and HAH1 (29)
and 7 ns for SOD1barrel (32), whereas mobilityin  cell = 0 means
that the in-cell cross-peaks have broadened beyond detection
(i.e., τr J 60 ns).

Quantification of Protein Net Charge. Because estimates of residue
charge from model compound values fail to account for shifts in
protonation state of titratable groups (i.e., shifted pKa values),
induced by folding or mutation (39), we opted for analysis by
electrophoretic mobility (40). Following standard protocols, each
protein construct i (Table S1) was run on a native gel along with
the TTHAPWT reference (SI Materials and Methods and Fig. S4).
The measured mobility ratio (R  i

f =R
ref
f ) relates here to the protein

net charge ratio (Zi=Zref) according to (40)

R  i
f

�
Rref
f =

�
ZiE

�
f i
���

ZrefE
�
f ref

�
=
�
Zi�riH

���
Zref�rrefH

�
, [4]

where Z is the protein net charge, E is the applied electrical field,
f is the friction coefficient, and rH is the hydrodynamic radius =
f=6πη, where η is the gel density. To obtain proportionality with
in-cell interaction, rH was converted to solvent-accessible surface

Fig. 2. In-cell HMQC spectra showing that the bacterial TTHAPWTmoves relatively unrestricted in the E. coli cytoplasm, whereas the humanHAH1PWT and SOD1barrel

get restricted by intracellular interactions, i.e., the protein motions become significantly retarded. The behavior, however, is readily reversed by point mutation of
surface charges. (A) The well-resolved in-cell spectrum of TTHAPWT indicates rapid motion in the cytoplasm, whereas the broadened-out spectra of HAH1PWT and
SOD1barrel show that the in-cell motions are restricted (samplein cell, intact cells). The cross-peaks of the latter spectra are largely from the background of small
metabolites. (B) Corresponding spectra after cell lysis, showing that all three proteins move freely upon removal of the cytoplasmic restrictions (lysatesupernatant,
decrowded lysates). (C) The in-cell motions respond readily to mutation of surface charge, allowing reversal of the pseudo-wild-type behavior. Reduction of negative
charge causes the TTHAE58K spectrum to broaden out. Conversely, addition of negative charge brings the spectra of HAH1K58E and SOD1R100E to high resolution.
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area (SASA = 4πrH2), yielding a dimensionless measure of the
surface charge density ratio (chargedensity) between construct i
and the TTHAPWT reference,

chargedensity =
�
Zi=SASAi�=�Zref=SASA   ref�=

�
R  i
f =R

  ref
f

��
rrefH =riH

�
,

[5]

where R  i
f =R

ref
f is the observed gel mobility ratio (Eq. 5) and

rrefH =riH is the radius-to-area conversion factor. The latter was
determined by diffusion NMR, yielding rrefH =riH = 1, 0.98, and
0.79 for TTHAPWT, HAH1PWT, and SOD1barrel, respectively
(Fig. S4 and Table S4). Because some proteins in Table S1 tend
to lose net negative charge at pH values below 7, thus halting or
reversing their electrophoretic mobility, the native gels had to be
run according to standard protocols at pH 8.3 (SI Materials and
Methods), where all constructs remain net negative. As a control,
the eletrophoretically determined values of Zi/Zref agree well
with those calculated from model compound pKA values (Fig.
S4). Finally, to account also for the partial histidine protonation
observed under intracellular conditions at pH 6.5 to 6.7 (SI Con-
trols), we added the chargedensity offsets 0.13, 0.25, and 0.32 for
TTHA, HAH1, and SOD1barrel, respectively (SI Materials and
Methods). Although this minor correction falls largely within
the data scatter, it is added for completeness of analysis.

In-Cell Mobility Shows Common Dependence on Net Charge Density.
Analysis of a comprehensive set of mutations, including alter-
ations of both surface charge and hydrophobicity (Table S1),
shows that the bacterial protein TTHA undergoes a progressive
increase of in-cell mobility upon increasing the net-negative
charge (Fig. 4). Despite considerable scatter in the mobilityin  cell  vs.
chargedensity plot (Eqs. 3 and 5), the result is statistically significant
with R = 0.73. A similarly scattered dependence on chargedensity is
found for the surface mutations of the human homolog HAH1
(R = 0.84), but, in this case, the plot is overall offset to lower
mobilityin  cell  values (Table S1 and Fig. 4). The trend is completed by
the surface mutations of SOD1barrel, adding a third—again seemingly
parallel—data set below that of HAH1 (R = 0.61) (Table S1 and Fig.
4). On the whole, the results are consistent with net-negative re-
pulsion being a fundamental factor in modulating in-cell solubility
and protein−protein interactions (20–22). However, the discrete
offsets in the mobilityin  cell  vs. chargedensity plots in Fig. 4 indicate that
there are more factors than surface net charge at play in controlling
the in-cell mobility. Contributions from such additional factors are
also emphasized by the conspicuous data scatter, which is clearly

outside the errors of the individual measurements (Fig. 4). The data
spread for the whole data set as measured by linear-fit deviation per
point, i.e., the residual sum squared (RSS), is RSS = 0.015 (SI
Controls, Fig. S3, and Table S5).

Notes on Variability, Protein Leakage, and Self-Interaction. As a
measure of experimental variability, the data set in Fig. 4 con-
tains—without any exclusions—all measurements performed,
including the subset where the supernatant controls revealed
some extent of leakage. The latter constitute 38 of a total of
203 experiments, and, on average, the indicated leakage was 16%
(Table S1). To single out these experiments, the statistics of the
analysis are given both for the total data set (RSSall) and for
the data set where the leakage set is excluded (RSSsub), where
the unit is in “per point,” i.e., RSS total/number of data points.
As seen below, however, the difference between RSSall and
RSSsub is very small (Table S5). The explanation seems to be that
the detected leakage is generally not present during the de-
termination of mobilityin  cell  in samplein cell, but occurs during the
handling of fatigued cells in the supernatant preparation. In
support of this possibility, (i) the supernatant sample in some
cases show distinct narrow cross-peaks that are missing in
samplein cell, (ii) repeated measurements with varying degrees of
leakage yield still small variations in mobilityin  cell, and (iii) the
samplein cell signal is, in all cases, stable over the acquisition time
and not gradually increasing as would be expected from on-going
leakage (Fig. S1). Second, to examine whether the results show
any dependence on expression level, we plotted mobilityin cell and
deviation from fit vs. intracellular concentration of overexpressed
protein (Fig. S1). The controls reveal no self-interaction between the
overexpressed proteins, i.e., the mobilityin cell appears to stem from
interaction with endogenous cellular components.

Surface Hydrophobicity: A Matter of Depth.As second modulator of
in-cell mobility, we examined hydrophobicity. The trend is evi-
dent already at the level of the TTHAPWT, HAH1PWT, and
SOD1barrel structures, where the hydrophobic surface area as
measured simply by exposure of V, L, and I methyl groups sums
up to 8%, 12%, and 17%, respectively (Fig. 4). Moreover, the
plot of mobilityin  cell  vs. this fractional exposure seems to account
for the protein-specific offsets in the mobilityin  cell  vs. chargedensity

data (Fig. 4). To quantify the effect more strictly, we estimated,
for each mutant, the change in hydrophobic exposure from energy
minimizations of the TTHAPWT, HAH1PWT, and SOD1barrel struc-
tures (SI Materials and Methods) according to

hydrophobicitySASA = SASAlocal
hp =SASAglobal, [6]

where SASAlocal
hp is the hydrophobic SASA and SASAglobal is the

total SASA (SI Materials and Methods). The resulting plot of
mobilityin  cell  vs. [chargedensity; hydrophobicitySASA] reveals a plane
that captures the in-cell motion for all three proteins (Fig. 4). In
essence, the offsets in the mobilityin  cell vs. chargedensity plots (Fig. 4)
are orderly displaced in the added hydrophobicitySASA dimension,
with an accompanying reduction of the scalar-fit deviations from
RSSall = 0.015 and RSSsub = 0.014 to RSSall = 0.012 and RSSsub =
0.011 (Table S5). When it comes to the detailed effects of
point mutations, however, the hydrophobicitySASA measure ap-
pears relatively insensitive. Although we at mutant level gener-
ally discern decreased in-cell mobility upon increasing side-chain
hydrophobicity, the resulting change in hydrophobicitySASA can
go either way because of local repacking (Table S1). Analogous
surface adjustment is often seen upon binding of designed li-
gands (41, 42) and is here illustrated computationally by docking
isobutane (valine mimic) to the SOD1barrel: The ligand becomes
almost entirely engrossed in the surface, driven by contacts that
are buried in the crystal structure (Fig. S4). In an attempt to

Fig. 3. The electrostatic potentials of the TTHA, HAH1, and SOD1barrel sur-
faces as calculated by the software PyMol. Despite the bacterial TTHA and
human HAH1 being homologous, their electrostatic surface patterns are very
different. The projections of the structures to the left follow those in Fig. 1.
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quantify this dynamically accessible surface area (DASA), we
assumed crudely that all residues that are not buried in the pro-
tein’s hydrophobic core are free to interact with the cellular
environment upon dynamic rearrangement (Fig. 5). Second, we
assigned a hydrophilicity to each of the residues in the DASA
layer according to their Guy solvation energies (43), ΔF′

i (Table
S1). In essence, ΔF′

i is a statistical term describing the depth
distribution of the different residues in protein crystal structures,
which also correlates with the residue water-to-octanol partition
free energies (43). Normalization to surface area was finally
obtained by dividing the sum of the Guy solvation energies with
the number of residues in the DASA layer (nDASA) construct
according to

hydrophilicityGuy =
1

nDASA

X
nDASA

ΔF′
i . [7]

Interestingly, the plot mobilityin  cell  vs. [chargedensity; hydro-
philicityGuy] yields an alternative plane with RSSall = 0.011 and

RSSsub = 0.009 (Fig. 6 and Table S5), even though the values of
hydrophilicityGuy and hydrophobicitySASA are themselves poorly
correlated (R = −0.32; Table S1). Consistently, the RSS devia-
tions decrease yet another step to RSSall = RSSsub = 0.009 upon
including both parameters in the fit. Although hydrophobicitySASA

and hydrophilicityGuy have similar weight in improving the over-
all correlation, the latter captures better the effects of point
mutation. In the hydrophilicityGuy plot, the individual mutants
of TTHA and HAH1 spread out and mix across the plane (Fig. 6
and Movie S1). Whether this indicates that the protein surfaces
are indeed plastic by exposing buried material upon in-cell en-
counters, or simply reflects that the Guy potential—by including
also the solvation energies of polar and charged residues—
captures properties complementary to hydrophobicitySASA re-
mains to be found out. Even so, the very convergence of experi-
mental data from three unrelated proteins into a single plane
shows that the quinary in-cell interactions—despite their detailed
complexity—follow common and simplistic rules, governed by the
proteins’ macroscopic surface properties (Fig. 6). Moreover, the

Fig. 4. First step toward quantification of mutational effects on in-cell motion. (A) The observed in-cell motions (mobilityin  cell; Eq. 3) display an overall
scattered increase upon mutational increase of the negative charge density (chargedensity; Eq. 5). Even so, the three proteins show differences by being offset
in the plot. Given the relatively small measurement errors, this finding indicates that other factors than surface charge density are at play in controlling the in-
cell motion. Notably, the experiments with indicated leakage (lightly colored markers) do not stand out in the correlations, suggesting that this leakage
occurs during cell handling after in-cell detection (SI Controls). (B) Plot of in-cell motion vs. exposure of the hydrophobic side chains V, L, and I. The simplistic
estimate of surface hydrophobicity accounts for the fitted line offsets in A at chargedensity = 1. (C) Plot with refined estimate of hydrophobic surface area-
based energy minimization of the mutant structures (hydrophobicitySASA; Eq. 6). The plot includes the entire data set in Table S1 and is extended to three
dimensions, i.e., mobility in  cell

  vs. [chargedensity; hydrophobicitySASA]. Upon accounting for the surface hydrophobicity variation, the data in A convert to a well-
defined plane. Although the fit is overall improved, the parameter hydrophobicitySASA captures poorly the details of individual point mutations because of
considerable local surface rearrangements in the energy minimizations.

Fig. 5. Alternative method for determining the exposure of hydrophobic surface area. To account for the notion that protein surfaces are not perfectly
“fixed” but, to some extent, adjust upon contact with external ligands (41, 42), we assumed that all residues outside the hydrophobic cores (transparent
structural regions) are free to interact with the environment via dynamic rearrangement. The atoms in this dynamic layer define the DASA, which is con-
siderably more extensive than the crystallographic SASA. For quantification and comparison with in-cell mobility data, we finally derived the Guy solvation
energies (43) of each residue in the DASA layers to obtain the macroscopic parameter hydrophilicityGuy (Eq. 7). The final relation between in-cell motion and
hydrophilicityGuy is shown in Fig. 6 and Movie S1.
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data in Fig. 6 indicate that the cellular components responsible for
the in-cell retardation carry repulsive negative charge and attrac-
tive surface hydrophobicity. Species matching these characteristics
are, e.g., other proteins, membranes, and nucleic acid material.

Enhancing the Precision One Step Further: The Protein Dipole
Moment. In some analogy with frustrated spin-glass systems
(44), charged proteins possess electric dipole moments that are
expected to influence their motions under crowded in-cell con-
ditions. Upon mutation of surface charges, these dipole moments
undergo distinct changes with possible impact on mobilityin  cell (Eq.
3). The magnitude of the dipole moment (jjpjj) for each protein
construct in Table S1 was calculated from the charge positions in

the PDB structures of TTHAPWT, HAH1PWT, and SOD1barrel

according to (45)

kpk=
���
XN

i=1
qiðri − rÞ

���, [8]

where qi is the elemental charge at position ri, and r is the pro-
tein center of mass, treating the R/K and E/D side chains as
positive and negative point charges, respectively. The histidines
were omitted from the calculation because their pKA values are
not yet known. Conveniently, because jjpjj is a general vector in
space, it does not need normalization to protein surface area to
scale with in-cell interaction, as required for the protein net

Fig. 6. The high-dimensional relation between in-cell motion and the proteins’ macroscopic surface properties. Wild-type proteins are denoted by
■ (black solid squares), pseudo-wild-type variants are denoted by• (black solid circles), and mutants are denoted by❍ (colored solid circles), color-coded
as in previous figures. TTHA variants are in blue, HAH1 variants are in red, and SOD1barrel variants are in green. Data are from Table S1. Rotations of plots are shown
in Movies S1 and S2. (A) A 3D plot of the experimentally measured mobilityin  cell  (Eq. 3) vs. the surface net charge density (chargedensity; Eq. 5) and the
surface hydrophilicity (hydrophilicityGuy; Eq. 7). (B) Corresponding plot of mobilityin  cell (Eq. 3) vs. the surface net charge density (chargedensity; Eq. 5) and
the electric dipole moment (jjpjj; Eq. 8). The correlations in A and B call attention to the strikingly systematic response of the quinary in-cell interactions to
point mutation. Also, the correlations appear generic because they capture all protein constructs, including those of different evolutionary origin.
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charge Z (Eq. 5) and the Guy solvation energies ΔF′
i (Eq. 7). The

impact of jjpjj on in-cell motions emerges clearly in a plot of
mobilityin  cell vs. [chargedensity; jjpjj], which defines a plane
(RSSall = 0.010 and RSSsub = 0.009) similar to that of
mobilityin  cell vs. [chargedensity; hydrophilicityGuy] (Fig. 6 and
Movie S2). In other words, the dipolar interactions that influ-
ence in-cell protein motion are on par with hydrophilicityGuy.
Upon final extension of the correlation to four dimensions, i.e.,
mobilityin  cell vs. [chargedensity; hydrophilicityGuy; jjpjj], the scalar fit
deviations decrease just slightly to RSSall = 0.009 and RSSsub =
0.008, indicating that we have reached the limit of the data scatter
(Fig. S3 and Table S5).

Discussion
The Nature of In-Cell Encounters. Although the question of how a
given protein senses and moves in the intracellular compartment
of E. coli may at first seem intricate, our results indicate that this
process conforms to simplistic physical−chemical rules. Mea-
sured by the rotational freedom (Eq. 3), the intracellular motions
(mobilityin  cell) of 127 mutant constructs fall coarsely on a com-
mon plane in the protein property space (Fig. 6). The parameters
of this property space are, moreover, easy to deduce for any
protein with known structure, i.e., the surface net charge density
(chargedensity; Eq. 5), the surface hydrophilicity (hydrophilicityGuy;
Eq. 7), and the charge dipole moment (jjpjj; Eq. 8). Out of
these properties, the net charge density is the most decisive (SI
Controls), consistent with findings in earlier in-cell NMR studies
(38, 46) and the notion that net charge repulsion generically as-
sures dispersion of the cellular components (21, 47, 48). The lack
of correlation between the intracellular concentration of overex-
pressed protein (1.6 ± 0.8 mM; SI Materials and Methods) and
mobilityin  cell (Fig. S1) indicates further that the dynamic changes
are not from self-interactions but stem from quinary interactions
with other cytoplasmic components. Because the in-cell mea-
surements only report on the specific isotope-labeled construct
being overexpressed, however, it is not yet possible to determine
which components of the E. coli cytoplasm cause the in-cell re-
tardation; it could be neighboring soluble proteins, cytoskeleton
structures, proteomembrane surfaces, nucleotide material (49),
or any species presenting repulsive negative charge and at-
tractive surface hydrophobicity. In any case, the overall mor-
phology of the bacteria is similar when overexpressing the
different proteins (SI Controls and Fig. S3), suggesting that the
intracellular environment remains unperturbed. However, it is
apparent, from the NMR spectral features, that the underlying
quinary encounters are short-lived and diffusive, in agreement
with previous observations (5, 37, 38, 50). As the correlations
in Fig. 6 concur with the average properties of the mutated
proteins, we further conclude that the motions are mainly
controlled nonspecifically by diffusive encounters with the
“bulk” cellular background, i.e., the quinary crosstalk (15). By
no means does this exclude that the data in Fig. 6 also involve
in-cell interactions that rely on the site-specific details of the
protein surfaces, but, as yet, these seem to be within the data
scatter.

Implications for Functional Optimization and Protein Design. In view
of the rapid divergence of surface composition in protein evo-
lution (51), it is interesting that the human HAH1PWT and
SOD1barrel, which are seen to tumble freely in mammalian cells
(31, 52), tend to get stuck in the E. coli cytoplasm (Fig. 2). The
bacterial protein TTHAPWT, on the other hand, yields high-
resolution HMQC spectra in E. coli from the very start (Fig.
2). Whether these differences in cytoplasmic mobility indeed
stem from evolutionary divergence, i.e., mammalian proteins are
not fit for E. coli, or simply reflect the natural span of in-
tracellular mobilities is not yet clear. Even so, it is evident from
the ease with which our model proteins can be moved across the

mobility span (Fig. 6) that the quinary crosstalk is readily open to
optimization. One conceivable gain of such optimization is in
molecular search (12). At one extreme, very long-lived encounter
complexes will increase the chance of two functional partners
finding their right orientations by Brownian surface diffusion (3),
but also slow down the shift to alternative partners when the
match is wrong. Encounter complexes that are very swift will
conversely allow probing of more putative partners, but with the
risk that correct fits are missed by premature dissociation. Re-
gardless of what the answer may be, the quinary interactions
stand out as a significant part of the intracellular crosstalk and
provide also the ever-present background for in vivo function
(10). It is further evident from the results in Figs. 2–5 and pre-
vious studies (9, 46) that the quinary interactions, despite their
complexity, at some level follow simplistic macroscopic rules. As
such, the correlations in Fig. 6 not only add physical−chemical
detail to the effects of intracellular crowding (4, 12, 27, 53) but
also provide a tool for rational protein surface design. Applica-
tions can include optimization of target proteins for in-cell NMR
detection (54), surface optimization of protein therapeutics (55),
and mutational examination of the yet poorly understood re-
lation between protein motion, spatial localization, and function
(7, 56, 57). The message stands clear and simple to test: Can any
protein be tuned to desired rotational motion in E. coli. by
mutational tweaking of surface net charge density (Eq. 5), sur-
face hydrophilicity (Eqs. 6 and 7), and the electric dipole mo-
ment (Eq. 8)?

Materials and Methods
Protein Engineering. Mutagenesis, expression, and purification of HAH1,
TTHA, SOD1barrel, and their variants were as in refs. 5 and 32, where the
encoding genes were subcloned into the vector pET3a (GenScript) (SI Ma-
terials and Methods).

Overexpression and In-Cell NMR Sample Preparation. The proteins (Table S1
and Fig. S1) were produced and measured in E. coli cells. Before induction,
BL21(DE3)pLysS cells (Thermo Fisher Scientific) were grown overnight at
37 °C in 200 mL of LB. The cells were then harvested and resuspended in
M9 medium with labeled 15NH4Cl as sole nitrogen source, and over-
expression was induced for 4 h (SI Materials and Methods and Fig. S1).
The culture was then nondisruptively centrifuged at 800 × g for 8 min to
obtain a pellet of intact, viable cells. One gram of this cell pellet was
dissolved in 1 mL of M9 buffer, transferred to an NMR tube, and sub-
jected to in-cell spectral analysis (SI Materials and Methods). All experi-
ments were performed at 37 °C unless otherwise stated.

NMR Spectroscopy. NMR experiments were performed on a Bruker Avance
500- or 700-MHz spectrometer equipped with a triple-resonance cryogeni-
cally cooled probe head. In-cell and in vitro spectra were obtained by 1D and
2D 1H-[15N]-band-selective optimized flip-angle short-transient hetero-
nuclear multiple quantum coherence (1H-[15N]-SOFAST HMQC) pulse schemes
(58, 59) with 32 scans, 64 increments for the 2D experiment and 1,024 scans for
1D experiment. The relaxation delay was set to 0.2 s, and the acquisition time
was to 40 ms. Hydrodynamic radii were determined by pulsed field gradient
(PFG) NMR diffusion experiments, where the z-gradient strength was calibrated
by the known diffusion coefficient of α-cyclodextrin and HDO in 99.6% D2O
(60) (SI Materials and Methods).

Mobility Determination on Native Gel. To quantify net charge density, 2 μL to
5 μL of lysate samples of the various protein variants (Table S1) were loaded
on precasted gels (Bio-Rad), with TTHAPWT as references (Rref

f ) and HAH1PWT

as reference control. For the SOD1barrel variants, we used, additionally,
SOD1barrel for benchmarking/verification of Rref

f normalization. Running time
was 90 min to 210 min, at 125 V and 4 °C, and the running buffer was 25 mM
Tris plus 192 mM Glycine at pH 8.3 (SI Materials and Methods).
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