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Chronic obstructive pulmonary disease (COPD) affects over 65 million
individuals worldwide, where α-1-antitrypsin deficiency is a major
genetic cause of the disease. The α-1-antitrypsin gene, SERPINA1,
expresses an exceptional number of mRNA isoforms generated en-
tirely by alternative splicing in the 5′-untranslated region (5′-UTR).
Although all SERPINA1 mRNAs encode exactly the same protein, ex-
pression levels of the individual mRNAs vary substantially in different
human tissues. We hypothesize that these transcripts behave un-
equally due to a posttranscriptional regulatory program governed
by their distinct 5′-UTRs and that this regulation ultimately deter-
mines α-1-antitrypsin expression. Using whole-transcript selective
2′-hydroxyl acylation by primer extension (SHAPE) chemical probing,
we show that splicing yields distinct local 5′-UTR secondary structures
in SERPINA1 transcripts. Splicing in the 5′-UTR also changes the in-
clusion of long upstream ORFs (uORFs). We demonstrate that disrupt-
ing the uORFs results in markedly increased translation efficiencies in
luciferase reporter assays. These uORF-dependent changes suggest
that α-1-antitrypsin protein expression levels are controlled at the
posttranscriptional level. A leaky-scanningmodel of translation based
on Kozak translation initiation sequences alone does not adequately
explain our quantitative expression data. However, when we incorpo-
rate the experimentally derived RNA structure data, the model accu-
rately predicts translation efficiencies in reporter assays and improves
α-1-antitrypsin expression prediction in primary human tissues. Our
results reveal that RNA structure governs a complex posttranscriptional
regulatory program of α-1-antitrypsin expression. Crucially, these find-
ings describe a mechanism by which genetic alterations in noncoding
gene regions may result in α-1-antitrypsin deficiency.
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Human α-1-antitrypsin is of particular clinical interest because
deficiencies in this protein are associated with chronic ob-

structive pulmonary disease (COPD), liver disease, and asthma
(1–4). Smoking is the major environmental factor that contrib-
utes to COPD risk, although the inconsistency of COPD rates
among smokers points to additional genetic factors that modu-
late risk (5–7). Multiple genetic variants in the gene encoding
α-1-antitrypsin, SERPINA1, cause the disease α-1-antitrypsin
deficiency (8–10), which can result in COPD, liver failure, and
inflammatory conditions like panniculitus, vasculitis, and glo-
merulonephritis (9, 11, 12). α-1-Antitrypsin is a protease inhibitor
that specifically targets neutrophil elastase, which is present at
chronic low levels in the lungs (1). Deficiency of α-1-antitrypsin
thus results in higher levels of neutrophil elastase, which in turn
degrades elastin (especially in the lungs), resulting in COPD (13).
Thus, the role of SERPINA1 in COPD etiology is well described at
the protein level; however, little is known about SERPINA1 at the
transcript level and whether alteration of potential post-
transcriptional controls can contribute to α-1-antitrypsin de-
ficiency and ultimately COPD. Genome-wide association studies
identified COPD-associated variants that map to the SERPINA1

untranslated regions (UTRs), introns, and promoter region (5, 14).
Furthermore, genetic variants shown to alter SERPINA1 splicing
patterns were identified in the SERPINA1 introns of patients with
COPD (15, 16). The presence of disease-associated variants in
noncoding regions suggests that posttranscriptional regulation of
SERPINA1 mRNA is an important component of disease risk.
Nevertheless, variants in noncoding regions of SERPINA1 comprise
only a small fraction of its disease-associated variants discovered to
date, which may reflect the tendency of variant discovery studies to
focus exclusively on coding exons (10, 17).
Several features of SERPINA1 emphasize the importance of

its transcripts and their regulation. The SERPINA1 gene is ex-
ceptionally complex; 11 different splicing isoforms occur in human
tissues (18). While alternative splicing occurs in 95% of human
multiexon genes (19, 20), the 11 SERPINA1 transcripts are ex-
treme, placing SERPINA1 in the top 0.5% of human genes in
terms of transcriptional complexity (18). A particularly salient
feature of SERPINA1 alternative splicing is that all variants differ
only within their 5′-UTRs (21). Therefore, all SERPINA1 mRNA
isoforms code for the same α-1-antitrypsin protein; however, their
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differing 5′-UTRs likely determine transcript-specific differences
in posttranscriptional processes such as mRNA translation effi-
ciency, subcellular localization, and stability (22, 23). Importantly,
the SERPINA1 transcript isoforms are differentially expressed
across tissue types (24), suggesting that posttranscriptional regula-
tory mechanisms adjust α-1-antitrypsin production based on the
transcripts expressed in each tissue. The presence of up to three
upstream ORFs (uORFs) in the SERPINA1 5′-UTRs (25, 26)
suggests a potentially important yet unstudied mechanism for the
translation efficiency regulation of these transcripts. In addition to
the sequence-based differences between SERPINA1 transcripts,
RNA secondary structure differences in the 5′-UTR could also
determine their regulation (27–29).
We propose here that noncoding features of SERPINA1

transcripts make up a posttranscriptional regulatory program
that ultimately determines α-1-antitrypsin expression. We de-
scribe a complex interplay between alternative splicing and
translation efficiency mediated by uORFs and RNA structure,
which together control tissue-specific expression of α-1-anti-
trypsin in humans. Our quantitative and predictive model reveals
an important and overlooked aspect of α-1-antitrypsin deficiency
and suggests RNA-based targets for therapeutic consideration.

Results
Transcript Complexity in SERPINA1. As a clinically important gene
harboring numerous COPD and α-1-antitrypsin deficiency-
associated variants (30) (Fig. 1A), SERPINA1 is of additional
interest for the exceptional number of transcript isoforms it
produces. Two transcription start sites (TSSs), six splicing donor
(SD), and three acceptor (SA) sites yield a total of 11 transcript
isoforms (21) (Fig. 1A and Fig. S1), which places SERPINA1 in
the top 0.5% of transcriptionally complex human genes (18).
Remarkably, all of the alternative splicing occurs in the
5′-UTR of SERPINA1 mRNA (Fig. 1A). Thus, in healthy
adults, α-1-antitrypsin exists as a single protein isoform that is
produced from 11 different mRNAs. We sought to determine
whether the mRNAs are functionally different and how any dif-
ferences relate to α-1-antitrypsin production or deficiency.
We therefore began this investigation by quantifying the ex-

pression of the various SERPINA1 transcripts in human tissues. Using
data from the Illumina BodyMap 2.0 transcriptome-wide RNA-seq
project, we quantified the relative amount of total SERPINA1 tran-
scripts in 16 human tissues (Fig. 1B) and we show the relative amount
of each SERPINA1 transcript in the form of a heat map (Fig. 1C).
There are clear differences in the total amount of SERPINA1 present
in each tissue. Liver noticeably yields the highest total SERPINA1
read counts (Fig. 1B), reflecting that α-1-antitrypsin is primarily
expressed by hepatocytes and secreted into the bloodstream
(1, 31). While the lungs are thought to acquire α-1-antitrypsin from
the bloodstream (1, 32), we found that lung tissue transcribes non-
trivial amounts of SERPINA1 (Fig. 1B), thus potentially producing its
own α-1-antitrypsin. Although some SERPINA1 transcript isoforms
are more prevalent than others, we detected all of the transcripts,
with some tissues like liver expressing every transcript (Fig. 1C). To
verify these findings with greater specificity, we designed SERPINA1
5′-UTR–specific primers and amplified RNA extracted from liver
and lung epithelial cells (HepG2 and A549 cell lines, respectively). All
11 transcripts were expressed in HepG2 cells, and all save 1 in
A549 cells (Fig. 1C, Bottom). The varied expression of the SERPINA1
transcript isoforms across the tissues suggests that each SERPINA1
transcript has a distinct posttranscriptional function. Given that these
transcripts vary only in their 5′-UTR, we hypothesize that the splicing
complexity in the 5′-UTR of SERPINA1 plays an important role
in its posttranscriptional regulation, especially, as detailed next,
in SERPINA1 mRNA translation.

Translation Efficiency Analysis. The 5′-UTR in an mRNA regulates
translation of the coding sequence and ultimately controls the

expression of protein products (22). To test the effect of different
SERPINA1 5′-UTRs on mRNA translation, we measured the
translation efficiencies of six representative SERPINA1 5′-UTRs
with luciferase assays. Strikingly, we found significant differences
in translation efficiency for the six SERPINA1 5′-UTRs (Fig. 2A).
Alternative splicing determines the inclusion (or exclusion) of up
to three uORFs in the final SERPINA1 transcript isoform (26)
(Figs. 1A and 2B, and Fig. S1). Because uORFs can affect trans-
lation efficiency (33, 34), the uORFs in SERPINA1 may modulate
translation of the different transcripts [an idea acknowledged
decades ago (25) but untested until now]. To evaluate the effect of
uORFs on SERPINA1 translation, we mutated the start codon of a
single uORF in each luciferase construct from “AUG” to “AAG”

(Fig. 2B). In this group of mutants, we mutated every possible
SERPINA1 uORF in at least one construct. Although it is possible
that translation initiation at the mutated start codons could still
occur (35), the initiation efficiency of an “AAG” start codon is
very low—between 0 and 3% (36).
Mutating the uORF start codon(s) resulted in large increases

in the translation efficiency of three of the six transcripts (Fig.
2C), suggesting that these uORFs typically inhibit translation.
The three transcripts with inhibitory uORFs are NM_000295.4,
NM_001002236.2, and NM_001127705.1, and their mutated
uORFs were uORFγ, uORFδ, and uORFδ′, respectively (Fig.
2B). Interestingly, uORFγ is too close to the mRNA 5′-terminus
to be translated based on canonical understanding of translation
initiation (37). However, our luciferase assays clearly suggest that
it is functional, as it both significantly represses translation of

Pi*S Pi*Z 

A
TSS1

E3 E4 E5E2E1c.2E1a.1 E1b.1
uORFα uORFβ uORFδ

SD3 SA3SD2a SA2aSA1SD1a

SD3 SA3
TSS2 E3 E4 E5E2

uORFγ

TSS1
E3 E4 E5E2E1c.1E1a.2 E1b.2

uORFα uORFβ uORFγ|δ
start

uORFδ'

SD1b SA1 SD2a SA2b SD3 SA3

log(TPM)

log(total TPM) 

skeletalmuscle

kidney
lung

liver

thyroid

testis

heart

lymphnode

prostate
breast

ovary
brain

adrenal

adipose
colon

leukocyte

A549
HepG2

N
M

_0
00

29
5

N
M

_0
01

00
22

35

N
M

_0
01

12
77

00

N
M

_0
01

12
77

07

N
M

_0
01

12
77

04

N
M

_0
01

12
77

05

N
M

_0
01

12
77

06

N
M

_0
01

12
77

02

N
M

_0
01

12
77

03

N
M

_0
01

00
22

36

N
M

_0
01

12
77

01B C

Fig. 1. The SERPINA1 gene produces 11 splice isoforms, all encoding the same
protein. (A) All exons in SERPINA1. Coding sequence (CDS) exons are shown in
red, and untranslated regions (UTRs) in blue. Each exon, splice donor (SD), and
splice acceptor (SA) is identified by a unique name. The two SERPINA1 TSSs are
labeled TSS1 and TSS2. Disease-associated variants, as cataloged by the Human
Gene Mutation Database, are indicated with black lines, including the common
α-1-antitrypsin deficiency-associated Pi*S and Pi*Z alleles. Upstream ORFs
(uORFs) are indicated by red boxes and named. uORF δ/δ′ spans a splice junction
and is present only in isoforms with exon E1b.2. (B) The total amount of
expressed SERPINA1 differs across 16 human tissue types. Total SERPINA1
transcript amounts were estimated from the Illumina BodyMap 2.0 project and
are shown in log relative transcripts per million (TPM). (C) The SERPINA1 tran-
script isoforms are expressed, with different frequencies, across different tissues.
Transcripts are specified with their NCBI names. The log(TPM) of each SERPINA1
transcript is shown for each tissue and for A549 and HepG2 cells. TPMs are
relative to liver, which expresses the most SERPINA1 and is set to a total of 106.
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transcript NM_000295.4 relative to other single-uORF tran-
scripts (Fig. 2A), and relieves translational inhibition when it is
mutated (Fig. 2C). The use of an alternate upstream TSS in the
luciferase reporter construct likely accounts for the translation of
uORFγ in our assays (38). 5′-RACE indicates variability of start
site usage in the constructs, including transcripts with additional
5′ sequence (Fig. S3).

Modeling Translation Efficiency. The inhibitory uORFγ, uORFδ,
and uORFδ′ uORFs identified above all have different sequences.
However, closer inspection revealed that uORFγ, uORFδ, and
uORFδ′ share highly similar Kozak sequences (Fig. 2A), the well-
characterized sequence element that determines translation initia-
tion efficiency (39, 40). Indeed, uORFγ, uORFδ, and uORFδ′ have
much stronger Kozak sequences compared with the SERPINA1
uORFs determined to be nonfunctional in our luciferase assays (40)
(grayscale in Fig. 2C).
Confident that uORFs and their Kozak sequences play an

important role in regulating translation, we next used uORF
Kozak sequence strengths (40) to model the differences in
translation efficiency between the SERPINA1 transcripts. We
first modeled translation efficiency with a previously derived
“leaky-scanning” model of translation (34), which we expanded
to accommodate multiple nonoverlapping uORFs (Methods and
Eq. 1). The model assumes the scanning mechanism of trans-
lation, whereby ribosomes migrate along the 5′-UTR until en-
countering a start codon, and calculates the probability that
ribosomes “leak through” any uORF to ultimately translate the
primary coding sequence (41). The leaky-scanning model is
based solely on the strength of the Kozak sequence of each ORF.
The leaky-scanning model moderately predicted the translation
efficiencies given by our luciferase assay data (r2 = 0.40; Fig. 2D).
To control for potential inaccuracies in the Kozak sequence
strengths (40), we repeated the leaky-scanning model analysis

using a 95% confidence interval range for each Kozak sequence
strength, but this adjustment only increased the r2 value to
0.46 at most. Other features in the SERPINA1 transcripts beyond
Kozak sequence thus heavily influence their translation.
As an alternative model that may explain our translation ef-

ficiency measurements, we considered the variable TSS usage in-
dicated by 5′-RACE (Fig. S3). A significantly shorter 5′-UTR could
remove uORFγ and potentially uORFα. If we adjust predictors in
the leaky-scanning model (Eq. 1) to ignore these uORFs, we see no
improvement in fit (r2 = 0.42, Table S1). Another factor that could
affect translation efficiency is reinitiation after uORF translation (42).
We therefore fit a “reinitiation leaky-scanning” model (Eq. 2) to the
experimental translation efficiencies, but observed no im-
provement (r2 = 0.33, Table S1). The rules that govern uORF
reinitiation are admittedly poorly understood (43). It is possi-
ble that uORFα, which has a strong Kozak sequence (Fig. 2B
and Dataset S1), nevertheless fails to inhibit coding sequence
(CDS) translation (Fig. 2) due to efficient reinitiation after
uORFα translation. Adjusting uORFα Kozak strength in the
leaky-scanning model to reflect this idea, we observe a moderate
improvement in fit (r2 = 0.60, Table S1). An additional factor that
can modulate translation efficiency is mRNA secondary structure.
Evidence for the effect of secondary structure on translation has
been conflicting (27–29, 34, 40), but such studies have typically re-
lied on theoretical structure prediction, which falls far short of the
accuracy achieved with direct chemical probing experiments
(44, 45). We next sought to predict translation efficiency for the
SERPINA1 transcripts using secondary-structure features derived
from chemical structure probing.

Secondary Structure of SERPINA1 Transcripts. Recent advances in
RNA structural mapping techniques, in particular selective
2′-hydroxyl acylation by primer extension and mutational profiling
(SHAPE-MaP) (46), have enabled accurate, high-throughput, whole-
transcript structural interrogation of RNA (47–49). SHAPE-MaP
interrogates the reactivity of each 2′-hydroxyl in an RNA to-
ward the reagent 1-methyl-7-nitroisatoic anhydride where the
relative reactivity estimates the tendency of each nucleotide to be
structured (i.e., base paired) or unstructured (i.e., unpaired). To
measure structure differences between the SERPINA1 transcripts, we
performed SHAPE-MaP separately on the six SERPINA1 transcript
isoforms whose 5′-UTRs were examined in luciferase assays. The
resulting data are highly correlated between replicates (Fig. S4), with
average correlation coefficients of 0.89 or more. Our experimental
SHAPE-MaP data provide SHAPE reactivity profiles at nucleotide
resolution for each of the six SERPINA1 transcripts. Regions with
lower median SHAPE values (low SHAPE reactivities) consist of
largely unreactive nucleotides (Fig. 3A), whereas regions with higher
median SHAPE values indicate the reverse (Fig. 3B). The median-
centered SHAPE reactivities of each transcript illustrate the relative
reactivity of regions in the transcripts and indicate structured regions
(Fig. 3C). The high-reproducibility of SHAPE-MaP is immediately
apparent in the median-centered SHAPE profiles: the reactivity
patterns in the coding sequences (CDSs) are nearly identical across
the six transcripts, corresponding to the transcripts’ identical CDS
sequences (Fig. 3C and Fig. S5). In addition, shared exons in the 5′-
UTRs also exhibit comparable SHAPE reactivities despite existing in
unique contexts in the different transcripts (Fig. S5).
We next used our SHAPE-MaP data to derive minimum free-

energy structure models for the six SERPINA1 transcripts (44, 50).
SHAPE reactivities were incorporated as pseudo–free-energy terms to
guide RNA structure modeling with RNAfold (51). Importantly, this
approach has been extensively validated and generally yields structure
models with accuracies above 90% (44, 46, 51, 52). Even in the case
where there is not SHAPE data for the entirety of an RNA (as is
common at the ends of transcripts), incorporating available SHAPE
data still greatly improves the accuracy of structure predictions
(53, 54). As an internal control, we initially compared the structure
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models derived for the CDS regions of different transcripts.
Consistent with the high correlation observed between SHAPE-
MaP profiles, the secondary-structure models are highly similar in
the CDS regions, supporting the robustness of the models (Fig.
S6). However, we were most interested in the structures around
the uORFs and the beginning of the CDS, and how this in-
formation could be used to model translation efficiency.

Modeling Translation Efficiency with Structure. We next sought to
gain a quantitative understanding of the contribution of RNA
structure to translation. The interplay of transcript structural
elements with the translational machinery is not well understood,
although studies in bacterial and mammalian systems suggest
that secondary structures near start codons are most likely to
affect mRNA translation (27, 28, 55, 56). We established above
that the uORFs in SERPINA1 affect translation efficiency and
found that a model that incorporates only Kozak sequence
strength did not quantitatively explain a large portion of the
translation efficiency differences (Fig. 2D). We hypothesized
that, in addition to Kozak sequence strength, the model requires
structural data encompassing the Kozak sequence to accurately
capture the probability of the ribosome initiating at a given ORF.
SHAPE-MaP data provided us with a high-confidence structure
of each transcript (Fig. 3D and Fig. S6), including the structures
surrounding each Kozak sequence (Fig. 4 A and B and Fig. S5).
Studies in prokaryotes suggest that translation initiation occurs
in proportion to the exponent of the free energy (ΔG) of
unfolding of the local structure (57), which is the energy required
to “unfold” a region of RNA (and is thus a positive value). We
modified the leaky-scanning model from Eq. 1 to include the ΔG
of unfolding around the Kozak sequence (Methods and Eq. 3).
The SHAPE data-driven “structure leaky-scanning” model dra-
matically improves the predictive power of the model to 94%
(Fig. 4C). The structural terms in the model weigh each Kozak
sequence by its accessibility in addition to its strength. From their

location in uORF secondary structures, it is immediately clear
that not all of the uORF Kozak sequences are equally accessible
(Fig. 4 A and B). For example, the Kozak sequence for uORFδ
resides in a single-stranded loop, while the Kozak sequence for
uORFα is engaged in a based-paired stem structure. It appears
that uORFs δ, δ′, and γ are the only uORFs that have a Kozak
sequence that is both strong and structurally accessible (Figs. 2C
and 4 A and B, and Fig. S7), potentially explaining why only these
uORFs inhibit SERPINA1 translation in our assays. The specific
ΔG of unfolding associated with each uORF Kozak sequence is
important: permuting the ΔG values’ assignments and refitting the
structure leaky-scanning model never produces r2 values reaching
0.94 (value of P < 0.001). Furthermore, refitting the structure
leaky-scanning model using ΔG values predicted without SHAPE
data yields a lower correlation (r2 = 0.79; Dataset S1), supporting
the importance of using accurate SHAPE-based structure models.
Finally, we also varied the size of the unfolding region around the
Kozak sequence used for calculating ΔG of unfolding values.
Supporting the physical relevance of our structure leaky-scanning
model, the optimal predictive power was obtained for an unfold-
ing window size of 30 nt, consistent with the known size of the
eukaryotic ribosomal footprint (58, 59). Either smaller or larger
unfolding regions exhibited significantly worse agreement with the
translation efficiency data (Table S2).
It is important to note that our structure models for the

SERPINA1 transcripts focus on local structures (Methods). Al-
though long-range interactions in large RNAs can occur, local
structure is thought to dominate the folding of mRNAs (60, 61).
To explore the possibility of longer-range secondary structures, we
recalculated the ΔG of unfolding values, allowing for greater
pairing distances in RNA structure predictions and refit our
structure leaky-scanning model in each case (Table S3). Predictive
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Fig. 3. SHAPE-MaP structure probing data for SERPINA1 transcripts.
(A) SHAPE reactivity of each nucleotide in a region of low median SHAPE
values around the start codon of transcript NM_001002236.2. Each value is
shown with its SE and colored by SHAPE reactivity according to the color
scale. Nucleotides are numbered by their relative position within the tran-
script; the start codon is labeled +1. (B) SHAPE reactivity of each position in a
region of high median SHAPE values in the coding sequence of transcript
NM_001002236.2. (C) The windowed, median-centered SHAPE profiles of six
SERPINA1 transcripts ordered by length. Higher SHAPE values indicate un-
structured (unpaired) regions, while lower SHAPE values indicate structured
(base-paired) regions. uORFs are indicated with gray shaded regions and
named with Greek letters. Vertical bars separate exons. (D) The minimum
free-energy (MFE) secondary structure of transcript NM_001002236.2,
modeled by computational folding with SHAPE reactivity information.
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performance of the model generally decreases as the max pairing
distance increases (Table S3), suggesting that local structure is
most important in determining translation of these transcripts
(Table S3). However, we cannot exclude the possibility of long-
range interactions. While a few recent structure probing methods
can directly detect long-range interactions (62, 63), SHAPE-
directed modeling accuracy decreases for long-range interac-
tions, which could also contribute to the decreased performance as
max pairing distance increases.
Based on this analysis, we propose that the Kozak sequence

determines the likelihood of initiating translation, but the secondary
structure determines whether the Kozak sequence can in fact be
accessed. Thus, the translation efficiency of each SERPINA1 tran-
script is a combination of the initiation strength and structure of its
CDS Kozak sequence, attenuated by the translation efficiency of
any uORFs as governed by the same parameters.

Mutating Secondary Structure to Change Translation Efficiency. While
our luciferase assays suggest that little to no translation occurs at
uORFα (Fig. 2), available ribosomal profiling data (64) show
minimal yet detectable signal at uORFα (Fig. S8). This indicates
that uORFα is capable of translation and is thus capable of being
translationally regulated, including by structural manipulation. To
further assess the role of secondary structure in controlling uORF
function, we designed structure mutants for uORFα (in transcript
NM_001002235.2). We designed three mutants with low free en-
ergies of unfolding to be predominantly single stranded within
30 nt of the uORF Kozak sequence. Mutants contained altered
sequences upstream and downstream of the Kozak sequence,
without altering the Kozak sequence itself. The wild-type structure
of uORFα has an unfolding energy of 22.4 kcal/mol, while the
three mutants have unfolding energies below 4 kcal/mol and are
expected to enhance the activity of uORFα, thus diminishing
translation of the CDS. The translation efficiency of each structure
mutant was measured by luciferase assays relative to wild type. As
expected, the mutants show reduced translation efficiencies (of
the CDS) relative to wild type (Fig. 5A) that are consistent with
predictions from the structure leaky-scanning model (Fig. 5B).
In transcript NM_001002236.2, which contains uORFδ, we

designed four mutants with increased energies of unfolding
within 30 bases of the uORF Kozak sequence and an additional
mutant with greatly decreased ΔG of unfolding. As with uORFα, a
reduction in the ΔG of unfolding causes a reduction in overall
translation efficiency relative to wild type (Fig. 5C and Fig. S9).
Conversely, increasing the ΔG of unfolding around uORFδ increases
translation efficiency in one structure mutant, but as the structure-
mutant energies of unfolding increase above ∼25 kcal/mol, overall
translation efficiency begins to decrease (Fig. S9). These results could
be interpreted to indicate that the ΔG of unfolding is not a significant
factor controlling uORFδ translation initiation. Alternatively, the
overall decrease in translation efficiency as hairpin sizes increase
exactly replicates multiple experiments in which hairpins of increasing
size added to the 5′-UTR progressively reduce translation efficiency
(39, 65–67). Thus, increasing the ΔG of unfolding around a uORF
may increase overall translation efficiency up to a point (56), beyond
which strong secondary structures begin to impede ribosomal scan-
ning altogether (65).
Overall, our data from SERPINA1 wild type, uORF mutant,

and structure mutant luciferase assays strongly support that the ΔG
of unfolding around the Kozak sequence is an important determinant
of translation efficiency. Including the additional structure mutants,
the leaky-scanning model moderately predicts translation efficiencies
(r2 = 0.55), but most of the variation in translation efficiency is
explained by the structure leaky-scanning model (r2 = 0.83). Chang-
ing the ΔG of unfolding around a single Kozak sequence in a given
5′-UTR leads to changes in translation efficiency that are well pre-
dicted by the structure leaky-scanning model, but unanticipated by
the leaky-scanning model (Fig. 5 C and D).

Modeling α-1-Antitrypsin Expression in Tissue. A goal of tran-
scriptomics is to develop models that accurately describe tran-
script dynamics and expression in living tissue. As we have seen
from tissue-specific transcriptome data, SERPINA1 transcription is
not limited to the liver, and different tissues express different com-
binations of the SERPINA1 transcript isoforms (24) (Fig. 1 B and C).
Thus, optimized combinations of SERPINA1 transcripts could regu-
late the amount of α-1-antitrypsin protein produced in each tissue.
Based on available protein quantification data (68), we calculated the
overall SERPINA1 translation efficiency in each tissue as the ratio of
α-1-antitrypsin protein to SERPINA1 transcript totals. If the trans-
lation efficiency of SERPINA1 mRNA were equal in every tissue,
then we expect to observe that α-1-antitrypsin amounts and total
SERPINA1 transcript amounts are correlated. However, we observed
no such correlation (Fig. 6A), indicating that different tissues have
different net α-1-antitrypsin translation rates, potentially due to their
unique combinations of SERPINA1 transcript isoforms. Assuming
that the overall translation efficiency in a tissue is the average of the
translational efficiencies of all its SERPINA1 transcripts weighted by
abundance, we can use the two scanning models described above to
predict SERPINA1 translation efficiency in tissues (Eq. 4). While our
luciferase assays show uORFγ to repress translation in transcript
NM_000295.4 (Fig. 2C), it is likely that this uORF is not functional in
vivo given its close proximity to the transcript 5′ termini and lack of a
canonical translation initiator of short 5′-UTR (TISU) sequence (37).
Indeed, when we assessed our ability to model translation efficiency
treating the uORFγ as functional (Fig. S10) or nonfunctional (Fig. 6
B and C), the nonfunctional assumption yielded better prediction of
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Fig. 5. Structure mutants show translation efficiency (TE) is a function of
ΔG of unfolding around the uORF Kozak sequence. (A) TE relative to wild
type (WT) for three uORFα structure mutants in transcript NM_001002235.2.
Replicate TE values are shown as open squares. The predicted ΔG of
unfolding is shown for each structure mutant. (B) Structure mutant and WT
TEs plotted with the structure leaky-scanning (solid line) and leaky-scanning
(dotted line) models as functions of uORFα ΔG of unfolding. The predicted
structure for each mutant and the WT uORFα is shown. Kozak sequences are
outlined in green. CAA repeats are abbreviated in the mutants. (C) The
structure leaky-scanning and leaky-scanning models as functions of uORFα
ΔG of unfolding (lilac), or uORF δ/δ′ ΔG of unfolding (peach). Experimental
TEs are plotted for SERPINA1 structure mutants (stars), uORF mutants (tri-
angles), and WT constructs (circles) that contained only uORFα or uORFα, β,
and δ/δ′. (D) The structure leaky-scanning and leaky-scanning models as
functions of ORF (CDS) ΔG of unfolding. Experimental TEs are plotted for
SERPINA1 constructs that contained no uORFs.
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tissue-specific translation efficiencies. The leaky-scanning model of
translation (Fig. 2D and Eq. 1) explains 59% of the variation in
translation efficiency between tissues (Fig. 6B), whereas the structure
leaky-scanning model (Fig. 4C and Eq. 3) explains 66% (Fig. 6C).
The addition of RNA structural data to the model of translation thus
improves predictions of translation efficiency in human tissues.

Discussion
The amount of protein produced from a gene is not a simple
function of the abundance of the transcript (69, 70). The com-
plex path between transcript expression and protein expression is
often a missing link in our understanding of cellular phenotype,
indicating a need for integrative models that bridge this divide.
SERPINA1 is exemplary of the effects of posttranscriptional
regulation on protein output. While each of the SERPINA1 tran-
scripts produces the same protein isoform, they do so with different
translation efficiencies. Differences in uORF content and 5′ -UTR
secondary structure combine to differentiate the translational effi-
ciencies of SERPINA1 transcripts. Secondary structure plays a sur-
prisingly important role in accounting for these differences, and in
determining the repressive effect of individual SERPINA1 uORFs.
When considering the role of secondary structure in a system, cor-
rectly defining an RNA secondary structure demands more than a
cursory computational prediction. Structural data accurate enough
for successful biological models require comprehensive chemical or
enzymatic probing of the RNA molecules of interest (46–48). Pre-
viously, no correlation was found between secondary structure and
translation rate in experiments that measured the protein expression
of constructs with varied uORF or CDS Kozak sequences (34, 40). In
these studies, it is likely that the purely computational RNA structure
models were inadequate for predicting structures around Kozak se-
quences. In this study, we used SHAPE-MaP chemical probing to
successfully improve mRNA translation efficiency predictions (44)
(Figs. 2D, 4C, and 5). While this model aptly describes the translation
of SERPINA1 transcripts, additional experiments measuring the
translation efficiencies of simultaneous uORF and structure mutants
are necessary to determine the contribution of secondary structure in
more detail. Additionally, a more generalizable model of translation
efficiency will require modifications to capture additional factors that
regulate translation, including overlapping uORFs, reinitiation after
uORF translation (43), non-AUG uORF translation (71), and 5′ cap
secondary structure (65).
Transcript-specific translation efficiencies may play an important

role in tissue-specific protein expression, especially in the case of
α-1-antitrypsin, which shows a complex and varied expression pat-
tern across human tissues. However, overall α-1-antitrypsin output
in a tissue is not solely a consequence of translation efficiency.
Transcripts travel through a coordinated posttranscriptional pro-

gram, or “regulon” (72), and may diverge from their fellow isoforms
at each step. Tissues could also have different overall rates of
translation (for example, in a fast- versus slow-growing tissue) or
have different rates of protein export.
These additional layers of regulation likely explain why our

model of translation efficiency performs better in tissue culture
cells than in tissues. However, our model still provides insights
into the regulation of α-1-antitrypsin expression in tissues. First,
liver tissue is a considerable outlier in both models of SERPINA1
translation efficiency (Fig. 6 B and C). Interestingly, predicting
much higher translational efficiencies in liver tissue than ob-
served based on measured levels of α-1-antitrypsin is consistent
with the understanding that liver exports most of its α-1-anti-
trypsin into the bloodstream (1, 31, 73). This artifact indicates a
need for tissue-specific cellular import/export dynamics to in-
form models of protein expression. Conversely, the models
predict translation efficiency in lung tissue fairly accurately,
suggesting that translation of SERPINA1 mRNA is a major
source of its α-1-antitrypsin, which contrasts the paradigm that
lung tissue derives its α-1-antitrypsin from the bloodstream (1, 32).
Our detection of SERPINA1 transcripts in cultured lung cells
(A549 cells; Fig. 1C) and recent quantification of SERPINA1
transcripts in lung tissue (24) further support the conclusion that
cells in the lung itself express α-1-antitrypsin. This surprising con-
clusion contradicts current models of the role of α-1-antitrypsin in
disease. The most common genetic variant in SERPINA1 associated
with COPD and α-1-antitrypsin deficiency, the Pi*Z allele, is
thought to cause α-1-antitrypsin to be poorly exported from the
liver, leading to deficient α-1-antitrypsin levels in the lungs and
eventual neutrophilic overload (1, 8, 32). If lung tissue produces its
own α-1-antitrypsin, however, then this disease model is likely in-
complete. Instead, disease-associated variants must also impact
α-1-antitrypsin levels in lung tissue, either by producing un-
viable α-1-antitrypsin or reducing its translation. For example,
genetic variants could reduce α-1-antitrypsin production if they
shift SERPINA1 transcription to isoforms with the lowest
translation efficiencies. A recent study quantified α-1-anti-
trypsin and different SERPINA1 transcripts in the serum of
α-1-antitrypsin deficiency patients and healthy controls to
determine whether patients have different combinations of the
transcripts (24). Unfortunately, the primer design in that study did
not differentiate between the transcripts with the lowest and
highest translational efficiencies, but the data did show a change in
transcript proportions for at least one patient population (24).
Ultimately, COPD in α-1-antitrypsin deficiency is caused by

the diminished levels of α-1-antitrypsin. Current therapies attempt
to deliver donor serum-derived α-1-antitrypsin i.v. to affected indi-
viduals, but this treatment is costly and of unknown efficacy (74).
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Fig. 6. Predictions of SERPINA1 translation efficiency (TE) in 10 human tissues are improved with the structure leaky-scanning model. (A) Total SERPINA1
transcript versus α-1-antitrypsin protein measurements show no correlation (r2 = 0.0, n = 10). Protein measurements are in normalized spectral counts (68);
transcript measurements are in transcripts per million (TPM). (B) Leaky-scanning model predictions of TE versus measured TE in each tissue (r2 = 0.591, n = 10).
Each tissue is labeled and colored in the plot and in the human figure according to its prediction percent error (Eq. 5). (C) Structure leaky-scanning model
predictions of TE versus measured TE in each tissue (r2 = 0.655, n = 10).
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Our work suggests a therapeutic strategy: α-1-antitrypsin levels
could be increased in situ, perhaps with antisense oligonucleotides
(ASOs) that target the Kozak sequences around the uORFs in
SERPINA1 transcripts, as shown recently for other uORF-
containing mRNAs (56). ASOs would likely act as double-
stranded regions that increase the ΔG of unfolding around uORF
Kozak sequences, blocking the uORFs in SERPINA1 transcripts
and increasing in situ α-1-antitrypsin expression. Our findings il-
lustrate the importance of the numerous SERPINA1 transcript
isoforms and their translation in disease and the impact of post-
transcriptional regulation and secondary structure on phenotype
in general.

Materials and Methods
SERPINA1 Annotation. The known SERPINA1 transcript annotations were
taken from RefSeq, version hg38. In each transcript, uORFs are defined by a
start and stop codon in the same frame within the 5′-UTR. Distinct uORFs are
named here with the Greek letters α, β, γ, δ, and δ′.

Heat Map of Tissue-Specific Isoform Expression. Paired-end RNA-seq reads
from 16 different tissues were downloaded from the Illumina BodyMap
2.0 project [Gene Expression Omnibus (GEO) accession number GSE30611].
Abundance estimates of the 11 known SERPINA1 transcripts were quantified
with Sailfish, version Beta 0.7.6 (75), using the full human transcriptome
(RefSeq, version hg38) as the reference. Estimates of total SERPINA1 ex-
pression in each tissue were calculated as the sum of transcripts per million
(TPM) estimates of each transcript. For better visualization in Fig. 1 B and C,
total expression in liver was adjusted by constant to 106, and all other tis-
sues’ TPM measurements were adjusted by the same constant. All TPM
measurements are provided in Dataset S1.

Cell Line-Specific Transcript Expression. A549 and HepG2 cells were provided
by the Tissue Culture Facility at University of North Carolina at Chapel Hill.
RNA was isolated using TRIzol. Using Phase-Lock Heavy (Eppendorf) to
remove the organic phase, the aqueous phase was then purified using a
PureLink RNA mini kit (Life Technologies) and subjected to TurboDNase to
digest DNA. The total RNA from each cell line was then reverse transcribed
with SuperScript III (Life Technologies and New England Biolabs Hot Start Q5;
NEB) and amplified with 35 cycles in a reverse transcription–PCR (RT-PCR).
Because SERPINA1 transcript NM_000295.4 has a unique TSS, reverse tran-
scription reactions with reverse primer GCCCCACGAGACAGAAGACGG were
split into two different PCRs using forward primers TGGGCAGGAACTGGGCACTG
and ACAATGACTCCTTTCGGTAAGTGCAGTGG to amplify NM_000295.4 and all
other transcripts, respectively. Following purification with a PureLink PCR
cleanup kit (Life Technologies), samples were assessed on an agarose gel.
Double-stranded DNA was prepared using a Nextera DNA Library Prep Kit
(Illumina). Following concentration determination via Qubit and library analysis
with a Bioanalyzer, libraries were sequenced on a miSeq (Illumina). Transcript
isoform abundances in A549 and HepG2 cells were estimated with Sailfish,
version Beta 0.7.6 (69), mapping the sequenced reads to a reference that in-
cludes all known transcripts in RefGene hg38 excepting NM_000295.4, due to its
separate primer set. Relative abundance of NM_000295.4 in A549 and
HepG2 cells was estimated using a dilution series amplified separately in 35 cycles
of RT-PCR with two primer sets: ACTTAGCCCCTGTTTGCTCC (forward) and
TGTCGATTCACTGTCCCAGG (reverse) for NM_000295.4 and ACCCTCA-
GAGTCCTGAGCTG (forward) and CTCTGTCTCTTCTGGCAGGC (reverse) for all
other SERPINA1 transcripts. Both primer sets were designed to amplify ∼150 bp
of sequence. Products from the dilution series of NM_000295.4 and other SER-
PINA1 transcripts from A549 and HepG2 cells were run on a 2% SEAkem GTG
(Lonza) agarose gel and stained with 1× GelStar (Lonza) and were quantified
with a gel imager. The quantifications of each dilution series were fit to logistic
curves, and inflection points were determined for the NM_000295.4 and other
transcript curves. The ratio between the two inflection points was used as the
ratio of NM_000295.4 transcript to all other SERPINA1 transcripts. TPM mea-
surements for each transcript in A549 and HepG2 were adjusted based on their
respective NM_000295.4:other ratios. SERPINA1 transcript abundance estimates
in the cell lines are provided in Dataset S1.

Luciferase Assays. To assess the translation efficiency of SERPINA1 transcripts,
we built six luciferase constructs containing 5′-UTRs from six selected SER-
PINA1 transcripts: NM_001002235.2, NM_000295.4, NM_001127700.1,
NM_001127704.1, NM_001127705.1, and NM_00100236.2. The 5′-UTRs were
cloned via double digestion with NcoI and SacII into a modified pGL3 that

minimizes the amount of plasmid 5′-UTR in the product. For each of the
SERPINA1 and control constructs, 0.5 μg of plasmid was transfected into
HeLa cells. Cells were harvested with Cell Culture Lysis Reagent (Promega;
E153A) 24 h posttransfection. Luciferase activity of the samples was measured by
Luciferase Assay Substrate (Promega; E151C) and Luciferase Assay Buffer
(Promega; E152B) with a luminometer (Molecular Devices). Luciferase activity
measurements were taken in duplicate and averaged for each sample. The lu-
ciferase activity measurement for each sample was normalized to total sample
protein concentration, as determined by Bradford assay (n = 4), and reported in
Dataset S1. Luciferase measurements were further normalized to the abundance
of luciferase RNA in each sample to obtain (luciferase activity)/(luciferase RNA),
as described previously (76). To quantify luciferase RNA abundance, after mea-
suring luciferase activity, total RNA was extracted with TRIzol. Samples were
depleted of DNA with Ambion Turbo DNA-free (AM1907) and reverse tran-
scribed with High Capacity cDNA Reverse Transcription Kit (Applied Biosystems;
4368814). Luciferase and GAPDH cDNAs were quantified by real-time PCR (qRT-
PCR) on a Bio-Rad CFX96 Real-Time System. Luciferase and GAPDH primers used
were 5′-ACAAAGGCTATCAGGTGGCT-3′ (forward), 5′-CGTGCTCCAAAACAA-
CAACG-3′ (reverse), and 5′-CTGTTGCTGTAGCCAAATTCGT-3′ (forward),
5′-ACCCACTCCTCCACCTTTGAC-3′ (reverse), respectively. Luciferase RNA
abundance was determined by the ΔΔCT method (n = 4). All (luciferase
activity)/(luciferase RNA) measurements are reported relative to an empty
vector control to correct for systematic variations between experiments.

uORF Mutants. To disrupt uORFs in the original six SERPINA1 plasmid con-
structs, we designed primers to substitute the start codon of selected uORFs from
AUG to AAG using the NEB Q5 site-directed mutagenesis kit. uORFδ and uORFδ′
were mutated in NM_001002236.2 and NM_001127705.1 luciferase plasmids
using primers uORFT435A1F: CCAGGTACAAAGACTCCTTTC/uORFT435AR: CTCA-
GAAACCACAGCGTC. uORFβ was mutated in NM_001127704.1 luciferase plasmid
using primers uORFT285AF: ACTCAGTAAAAGGTAGATCTTGCTAC/uORFT285AR:
CACCCCAAAATGCCTGATG. uORFα was mutated in NM_001002235.2 and
NM_001127700.1 luciferase plasmids using primers uORFT32AF: GCCCAGGG-
CAAGCACTGCCTC/uORFT32AR: ACAGTGCCCAGTTCCTGCC. uORFγ was mutated
in NM_000295.4 luciferase plasmid using primers uORFT4AF: CCGCGGACAAA-
GACTCCTTTC/uORFT4AR: CCTCGGCCTCTGCATAAA. Mutant constructs were
verified by sequencing (Dataset S2). Luciferase assays were performed on the
mutant constructs as above, and results are reported in Fig. 2, Fig. S2, and
Dataset S1.

uORF Structure Mutants. The structure mutants of uORFα in transcript
NM_001002235.2 and of uORFδ in transcript NM_001002236.2 were com-
putationally designed by altering sequences adjacent to the uORF Kozak
sequences and predicting the resulting change in secondary structure. To
design structure mutants, codons in the given uORF were either permuted or
mutated with CodonShuffle (77) to preserve dinucleotide frequency and
codon usage. To design mutants with increased uORF ΔG of unfolding, se-
quence upstream of the uORF was changed to complement the new uORF
sequence. To design mutants with decreased uORF ΔG of unfolding, se-
quence upstream of the Kozak sequence was substituted with CAA repeats,
which adopt a single-stranded structure (65). Kozak sequences (6 nt up-
stream and 2 nt downstream of the AUG) were left unchanged. The ΔG of
unfolding was then predicted for all ORFs in the transcript, selecting mu-
tants that exhibited the desired change in uORF ΔG of unfolding without
affecting the predicted ΔG of other open read frames. Three mutants were
selected for NM_001002235.2 and five for NM_001002236.2. The structure
mutant 5′-UTRs were cloned via double digestion into modified pGL3 plas-
mids and verified by sequencing (Dataset S2) as described above. Luciferase
assays were performed as before, except without normalization to luciferase
RNA levels. Previous luciferase assay data (wild type and uORF mutant
constructs) show a very strong linear correlation (r = 0.95) between luciferase
activities alone and luciferase activities normalized by luciferase RNA, indicating
that luciferase activity alone is sufficient to estimate translation efficiency for
these constructs. Luciferase assays on wild-type NM_001002236.2 were per-
formed in parallel for comparison. Structure mutant luciferase activities adjusted
to the scale of RNA-normalized luciferase values according to the following:
adjusted luciferase activity = (luciferase activity)*0.20650 + 0.20141. Structure
mutant luciferase assay results are reported in Fig. 5, Fig. S9, and Dataset S1.

5′-RACE. To characterize the 5′ ends of luciferase construct transcripts, HeLa
cells transfected with NM_001002235.2-luciferase were treated with the
RLM-RACE kit (Ambion). Briefly, total RNA was isolated and incubated with
calf intestinal phosphatase, and intact 5′-methylguanosine caps were re-
moved by treatment with tobacco acid phosphatase. The 5′ ends of tran-
scripts were ligated to a linker sequence and primed with random hexamers
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in reverse transcription. cDNA was then amplified via nested PCR with for-
ward primer CTGCATACGACGATTCTGTGATTTG and reverse primer CCCA-
TATCGTTTCATAGCTTCTGC, complementary to the linker sequence and
luciferase coding sequence, respectively. PCR products were shotgun cloned
into pCR-Blunt vectors (Invitrogen) and Sanger sequenced using forward
primer M13F to determine 5′-end sequence.

Ribosome Profiling Data. Ribosomal profiling datasets with sufficient cover-
age over the entire SERPINA1 locus were identified by RPFdb [Eichhorn et al.
(64), U2OS cells] (78). Single-end ribosomal profiling sequencing reads were
downloaded from SRA (identifiers SRX680698 and SRX680702), trimmed on
the 3′ end to 26 nt as described in ref. 78, and mapped to the human ge-
nome build hg38 by Bowtie2, allowing for multimapped reads. Read cov-
erage mapping to the SERPINA1 transcripts is visualized in Fig. S8.

SHAPE-MaP Sequencing and Analysis. 5′-UTRs and coding sequences of six
selected SERPINA1 transcripts were cloned into pBLUNTII using overlap ex-
tension PCR and verified by sequencing (Dataset S2). The selected transcripts are
the same set analyzed by luciferase assays. Plasmids were named as follows:
NM_000295: pAL0108; NM_001002235: pAL0096; NM_001127700: pAL0110 and
pAL0111; NM_001002236: pAL0098; NM_001127704: pAL0100; NM_001127705:
pAL0103 and pAL0105. Templates for transcription were amplified from ∼100 ng
of plasmid using Phusion high-fidelity polymerase (NEB) and primers
TAATACGACTCACTATAGGGTGGGCAGGAACTGGGCACT (forward) and
TTATTTTTGGGTGGGATTCACCAC (reverse) except for NM_000295:pAL0108, which
required TAATACGACTCACTATAGGGACAATGACTCCTTTCGGTAAGTGC as a for-
ward primer. The T7 promoter was added by the forward primers. PCR products
were transcribed using a HiScribe T7 High Yield RNA Synthesis Kit (NEB), and the
RNAwas purified using an AmbionMEGAClear Transcription Clean-up kit (Thermo
Fisher) or an RNEasy mini kit (Qiagen). Transcripts were verified using denaturing
agarose gel electrophoresis with 2% SEAkem gold agarose and the Amresco
Formaldehyde-Free RNA Gel Kit. The 0.5–2 pmol of RNA was used for each re-
action in SHAPE-MaP library preparation, as described previously (46) with some
modifications. Briefly, RNAwas diluted in water, denatured at 95 °C for 1 min, and
snap cooled on ice. After the addition of folding buffer (100 mM KCl, ∼10 mM
MgCl2, 100 mM Hepes, pH 8.0, final concentration), the RNA was folded at 37 °C
for 10–15 min. Then 45 μL of folded RNA was either mixed with 5 μL of DMSO
(untreated control) or 5 μL of 100 mM 1-methyl-7-nitroisatoic anhydride (1M7) in
DMSO (treated sample). After 5 min, reactions were desalted using G25 or
G50 columns. A denatured control was performed in parallel in which the RNA
was diluted into 50 mM Hepes, pH 8.0, 4 mM EDTA, and 50% formamide, then
heated to 95 °C and treated with 5 μL of 100 mM 1M7 in DMSO. After 1 min,
reactions were desalted using G25 or G50 columns. The RNA was reverse tran-
scribed using SuperScript II (Life Technologies) and random nonamers followed by
cleanup with a G25 or G50 column. The second strand was synthesized using the
NEBNext mRNA Second Strand Synthesis Module (NEB). The double-stranded DNA
was then prepared using a Nextera or Nextera XT DNA Library Prep Kit (Illumina).
Following DNA library concentration determination via Qubit and analysis by
Bioanalyzer, libraries were run on a miSeq (Illumina) and resulting data were an-
alyzed using the ShapeMapper pipeline (46), version 1.2, which calculates the
SHAPE reactivity of each nucleotide i as follows:

R=
mutrS −mutrU

mutrD
,

where mutrS is the mutation rate in the sample treated with the SHAPE
reagent, mutrU is the mutation rate in the untreated control, and mutrD is
the mutation rate in the denatured control.

SHAPE-MaP sequencing data and processed SHAPE reactivity profiles are
available in the National Center for Biotechnology Information (NCBI) GEO
accession numberGSE81525. SHAPE data are also available in SNRNASM format
at https://docs.google.com/spreadsheets/d/1_RpB9Jto1-UEmK-ocd9pGMOYrte-
t1ALuaA7XTyqI8ZA/edit?usp=drive_web. SHAPE-MaP experiments were per-
formed twice for each transcript, and the average of the two replicate profiles
was used for subsequent analyses requiring SHAPE data. For visualization, the
median SHAPE profiles in Fig. 3C were generated for each transcript by cal-
culating the median SHAPE value in windows of 20 bases (step size = 1) and
subtracting the global median.

Secondary-Structure Analysis. Each transcript with SHAPE-MaP data was
foldedwith RNAfold, version 2.2.4, incorporating their respective SHAPE data
with the –shape option and a max distance of 50 (–maxBPspan = 50) to focus
on local structures. SHAPE reactivities were incorporated into structure
modeling as pseudo free energies according to ref. 44 using a slope of
1.8 and an intercept of −0.6. The 3′-UTRs were excluded from structure

modeling since these regions were not covered by our SHAPE-MaP experi-
ments. Structure models were also generated for the six luciferase con-
structs, which consist of a specific SERPINA1 5′-UTR followed by 700 bases of
luciferase coding sequence. For these luciferase construct models, SHAPE
data from the endogenous transcripts were used to restrain the 5′-UTRs;
SHAPE data for the luciferase coding sequence are unavailable. ΔG of
unfolding measurements were calculated around Kozak sequences in the
structure models by removing base pairs that occur within ±15 bases around
the “A” in the start codon. The free energy of the “relaxed” structure was
subtracted by the free energy of the original structure to arrive at the ΔG of
unfolding around the Kozak sequence. (The ΔG of unfolding = −ΔG of fold-
ing.) The ΔG of unfolding was calculated around the coding sequence and
uORF Kozak sequences in the luciferase constructs when fitting to experi-
mental translation efficiencies, and in the wild-type transcripts when fitting to
tissue translation efficiencies (Dataset S1). SHAPE-MaP was not performed on
uORF mutant SERPINA1 transcripts, but, because point mutations rarely cause
perceptible changes in secondary structure (79, 80), it is assumed that the
structures of the wild-type transcripts closely approximate the structures of the
uORF mutants. ΔG of unfolding values around SERPINA1 structure mutant
uORFs were calculated in the same manner as above, with the exception that
the underlying structure models were generated using naive prediction due to
the absence of SHAPE-MaP data for structure mutants.

Models. The performance of a number of different translation efficiency
models is described in Dataset S1. Predictor(s) were fit with simple linear
regression to the (luciferase activity)/(luciferase RNA) measurements of the
six SERPINA1 constructs and six uORF mutant constructs. Adjusted r2 values
and predictor P values were determined by the lm function in R, version
3.2.3. The models we feature in the results are the leaky-scanning and the
structure leaky-scanning models (Eqs. 1 and 3). Eq. 1, the leaky-scanning
model, is our expansion of a previously published model (34) to allow mul-
tiple nonoverlapping uORFs. Eq. 2 is a rederivation of Eq. 1 that allows for
translation reinitiation after uORF translation, dependent on a logistic
model that assumes the ribosome has a 50% probability of reinitiating
35 bases downstream from the end of a uORF (42). Eq. 3, the structure leaky-
scanning model, is our variation of Eq. 1 that incorporates the ΔG of
unfolding around Kozak sequences, as assumed to be exponentially related
to ribosomal initiation (57). TE is “translation efficiency”; k, k′, and i are
constants; and Pn is the strength of the given Kozak sequence as determined
previously (40). Kozak strengths are converted to probabilities by dividing by
the maximum Kozak strength, 150. Because uORF order matters in Eq. 2, Pn′
refers to the Kozak sequence strength of the uORF that is nth closest to the
CDS. dn refers to the distance between the end of the nth uORF and the
beginning of the next ORF. ΔGn in Eq. 3 corresponds to the ΔG of
unfolding ±15 bases around the given Kozak sequence (calculation de-
scribed above). The subscripts of Pn and ΔGn indicate either the coding se-
quence or the nth uORF, numbered 5′–3′ in each transcript. Pn and ΔGn

values for a transcript without an nth uORF are simply zero. Pn and ΔGn

values are provided for every transcript’s CDS and uORF(s) in Dataset S1.
Constants k′ and i were optimized in the structure leaky-scanning model fit
to SERPINA1 wild type and uORF mutant (luciferase activity)/(luciferase RNA)
values, and the constant k is the original published value (34):

k = 0.86
k′ = 0.39
i = 0.037

TE∼ kPcdsð1−kP1Þð1− kP2Þð1− kP3Þ, [1]

TE∼ kPcds

�
1− kP′

1

�
1−

1
1+ e−d1+35

�

3

�
1− kP′

2

�
1−

1
1+ e−d2+35

��
1− kP′

3

�
1−

1
1+ e−d3+35

����
,

[2]

TE∼ k′Pcdse−iΔGcds
�
1− k′P1e−iΔG1

��
1− k′P2e−iΔG2

��
1−k′P3e−iΔG3

�
. [3]

When including data from structure mutants, constants were optimized in the
structure leaky-scanningmodel fit to the adjusted luciferase activitiesmeasured
for wild type, uORF mutant, and structure mutant constructs, where the ad-
justed luciferase activity = (luciferase activity)*0.20650 + 0.20141. Constants for
these models are as follows: k = 0.86, k′ = 1.0, i = 0.044. Structure mutants
affected by strong hairpin inhibition were excluded from model fitting.

Models in Tissues. Total tissue SERPINA1 concentrations (in transcripts per
million) were fit to their α-1-antitrypsin protein concentrations (in parts per
million) (Fig. 5A) with simple linear regression with the lm function in R,
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version 2.3.2. The SERPINA1 transcript concentrations are described above
(Fig. 1B and Dataset S1), and the α-1-antitrypsin protein measurements are
derived from mass spectrometry data on the human proteome (68) (Dataset
S1). SERPINA1 translation efficiency in each tissue was measured by dividing
α-1-antitrypsin protein concentration by the total SERPINA1 concentration.
To predict tissue translation efficiencies with a given model, the model’s
translation efficiency estimates of all 11 SERPINA1 transcripts were used to
predict the average translation efficiency of each tissue as in Eq. 4. TEj is the
model-predicted translation efficiency of tissue j, TPMi,j is the transcript
abundance in transcripts per million of SERPINA1 transcript i in tissue j, and
m(i) is the function for the translation efficiency of transcript i with pa-
rameters from fitting the model to the luciferase data:

TEj =
P11

i=1mðiÞ× TPMi,jP11
i=1TPMi,j

. [4]

The model-predicted values for tissue translation efficiency were then fit to
the measured tissue translational efficiencies with simple linear regression.
Models fit best to the log of the measured tissue translational efficiencies.
R-squared values and model P values are reported in Dataset S1. The structure

leaky-scanning model requires SHAPE-based secondary structure information
(ΔG of unfolding values), which is not available for transcripts NM_001127701.1,
NM_001127702.1, NM_001127703.1, NM_001127705.1, NM_001127706.1, and
NM_001127707.1. In their case, free energies of unfolding were assigned based on
the most similar transcript with available secondary-structure data. The ΔG of
unfolding measurements used in tissue predictions were derived from the SER-
PINA1 transcript secondary-structuremodels (described above). Percent error of the
leaky-scanning and structure leaky-scanning models (Fig. 5 B and C) in each tissue
was calculated according to Eq. 5, where TE is translation efficiency:

Errorð%Þ= jmodelPredictedTE−measuredTEj
measuredTE

. [5]
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