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Dense particle packing in a confining volume remains a rich, largely
unexplored problem, despite applications in blood clotting, plas-
monics, industrial packaging and transport, colloidal molecule design,
and information storage. Here, we report densest found clusters of
the Platonic solids in spherical confinement, for up to N= 60 constit-
uent polyhedral particles. We examine the interplay between aniso-
tropic particle shape and isotropic 3D confinement. Densest clusters
exhibit a wide variety of symmetry point groups and form in up to
three layers at higher N. For many N values, icosahedra and do-
decahedra form clusters that resemble sphere clusters. These common
structures are layers of optimal spherical codes in most cases, a sur-
prising fact given the significant faceting of the icosahedron and do-
decahedron. We also investigate cluster density as a function of N for
each particle shape. We find that, in contrast to what happens in bulk,
polyhedra often pack less densely than spheres. We also find espe-
cially dense clusters at so-called magic numbers of constituent parti-
cles. Our results showcase the structural diversity and experimental
utility of families of solutions to the packing in confinement problem.
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Phenomena as diverse as crowding in the cell (1, 2), DNA
packaging in cell nuclei and virus capsids (3, 4), the growth

of cellular aggregates (5), biological pattern formation (6), blood
clotting (7), efficient manufacturing and transport, the planning
and design of cellular networks (8), and efficient food and phar-
maceutical packaging and transport (9) are related to the optimi-
zation problem of packing objects of a specified shape as densely as
possible within a confining geometry, or packing in confinement.
Packing in confinement is also a laboratory technique used to pro-
duce particle aggregates with consistent structure. These aggre-
gates may serve as building blocks (or “colloidal molecules”) in
hierarchical structures (10, 11), information storage units (12), or
drug delivery capsules (13). Experiments concerning cluster for-
mation via spherical droplet confinement (13–20) are of special
interest here. Droplets are typically either oil-in-water or water-in-
oil emulsions, and particle aggregation is induced via the evapo-
ration of the droplet solvent. Clusters may be hollow [in which case
they are termed “colloidosomes” (13)] or filled, depending on the
formation protocol, and may contain a few (15) to a few billion (14)
particles. Clusters of several metallic nanoparticles are especially
intriguing given their ability to support surface plasmon modes over
a range of frequencies (21). The subwavelength scale of these
clusters means that their optical response is highly dependent on
their specific geometry (22). Consequently, control over their
structure enables control over their optical properties, with impli-
cations for cloaking (23), chemical sensing (24), imaging (25),
nonlinear optics (26), and the creation of so-called metafluids (27–
29), among a host of other applications (30). Recent work on
plasmonic nanoclusters of faceted particles including nanocubes
(31), nanoprisms (32), and nanooctahedra (33) introduces an ad-
ditional means by which to tailor optical response.
While some theoretical studies have addressed the confinement

of anisotropic particles in one or two dimensions (34–38), a
majority have focused on the confinement of spherical particles in
one, two, and three dimensions (8, 19, 39–50). There have also been
studies of 2D packings of circles, ellipses, and convex polygons
(9, 51–55). However, to our knowledge, only a handful of studies

have addressed 3D dense packings of anisotropic particles inside
a container. Of these, almost all pertain to packings of ellipsoids
inside rectangular, spherical, or ellipsoidal containers (56–58),
and only one investigates packings of polyhedral particles inside a
container (59). In that case, the authors used a numerical algo-
rithm (generalizable to any number of dimensions) to generate
densest packings of N = ð1− 20Þ cubes inside a sphere.
In contrast, the bulk densest packing of anisotropic bodies has

been thoroughly investigated in 3D Euclidean space (60–65).
This work has revealed insight into the interplay between packing
structure, particle shape, and particle environment. Understand-
ing the parallel interplay between shape and structure in confined
geometries is both of fundamental interest and of relevance to the
host of biological and materials applications already mentioned.
Here, we use Monte Carlo simulations to explore dense packings

of an entire shape family, the Platonic solids, inside a sphere. The
Platonic solids are a family of five regular convex polyhedra: the
tetrahedron, cube, octahedron, dodecahedron, and icosahedron. Of
these, all but the icosahedron are readily synthesized at nanometer
scales, micrometer scales, or both (see, for example, refs. 35 and 66–
76). For each polyhedron we generate and analyze dense clusters
consisting of N = ð4− 60Þ constituent particles. We also generate
dense clusters of hard spheres for the purposes of comparison.
We find, for many N values, that the icosahedra and dodeca-

hedra pack into clusters that resemble sphere clusters, and con-
sequently form layers of optimal spherical codes. For a few low
values of N the packings of octahedra and cubes also resemble
sphere clusters. Clusters of tetrahedra do not. Our results, in
contrast to those for densest packings in infinite space where par-
ticle shape significantly affects packing structure (60, 62–64),
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suggest that the presence of the container suppresses the
packing influence of particle shape at the range of N studied.
Spherical confinement provides a means by which to impose
certain symmetries on anisotropic particles that otherwise might
not pack like spheres. The imposed structures are a set of dense
motifs that are robust against changes in particle shape. This
result has implications for experimental applications in which
the fabrication of highly spherical particles is difficult or un-
desirable, as in the case of several plasmonic applications
mentioned earlier (31, 33, 77).
We also examine cluster structure and density as they vary

across each individual set of densest found packings and find a
wide variety of cluster symmetries as N varies. We note that in a
spherical container, in contrast to the situation in infinite space
described by Ulam’s conjecture, spheres are not the worst packers
of all convex bodies at small N. We additionally find that certain
values of N, so-called magic numbers (78–81), correspond to es-
pecially high cluster densities of a given particle shape. These
magic numbers, however, do not correspond to any particular
cluster symmetry, indicating that especially dense clusters exist
with a variety of symmetries and structures. Many of these struc-
tures are unachievable with densely packed spheres and are sta-
bilized by a variety of contact types. They will be of interest to
experimentalists who use clusters for plasmonics and other col-
loidal molecule applications.

Materials and Methods
Simulation. To generate finite dense packings of N identical polyhedra and
spheres in spherical confinement, we use isobaric Monte Carlo simulations
and specialized particle overlap checks with respect to a spherical container.
We run 50 independent compression simulations at every (shape, N) state
point, calculate the density for each of the resultant clusters via ϕcirc ≡NVp=Vcirc,
and choose the densest for further analysis. Vp is the volume of a single particle
and Vcirc is the volume of the container.

For consistency, all particles are scaled such that they have equal circum-
scribing sphere radii. The particle positions and orientations evolve during the
simulation according to a trial-move update scheme, wherein particles are
chosen randomly and then translated or rotated (in the case of nonspherical
particles) by a random amount. Although this decoupling of particle rotation
and translation is not necessary,we choose it so thatwe can tune the size of each
move type independently as detailed below. In tight confinement, translation
possibilities for a particle may be more limited than rotation possibilities (or vice
versa), so independent tuning enables an efficient and agnostic sampling of
phase space. Moves are rejected if they result in any particle overlaps or the
presence of a portion of any particle outside the spherical container. Due to their
faceting, polyhedra are fully encased in the container if all their vertices are
inside the container. Spheres are fully encased in the container as long as their
radial distance from the container center remains within a small tolerance of
ðRcirc −RÞ, where Rcirc is the container radius and R is the particle radius.

We induce increasing spherical confinement by raising dimensionless pres-
sure exponentially from a minimum value of 0.1 to a maximum value of 500.
Dimensionless pressure is defined here as p* ≡ βpl3, where p is pressure and
l=R is the characteristic length scale in our systems. It is the particle radius for
simulations involving spheres, whereas for simulations involving polyhedra it is
the radius of their circumscribing sphere. The system is allowed to equilibrate
for 1,000 Monte Carlo sweeps between pressure jumps. The total compression
occurs over 107 sweeps. Particle translation and rotation (for nonspherical
particles) are equally likely to occur when a particle move is chosen, while
container resize moves occur with a probability equal to 1=ðN+ 1Þ. During the
run, simulation parameters are tuned such that particle translation, particle ro-
tation, and container resize acceptance rates are ∼0.2. (We found an acceptance
rate of 0.2 to be near optimal in similar Monte Carlo implementations, so we
adopted this as a convention.) Container shrinking moves are always accepted
provided that they do not cause any particle overlaps and that confinement is
maintained, whereas container expansion moves are accepted with a probability

Po→n = exp½−βpðVn −VoÞ+NlogðVn=VoÞ�, [1]

where Vn is the new container volume and Vo is the old container volume
(82). Container resizing consists of rescaling the container radius and is ac-
companied by identical rescaling of all particle positions with respect to the
container center.

Fig. 1 summarizes our simulation method. Fig. 1A displays the shapes
studied, Fig. 1B shows a sample trajectory of cluster formation via our
compression scheme, and Fig. 1C includes snapshots of the cluster at in-
dicated pressures.

Analysis. We use the isoperimetric quotient (IQ) to characterize particle
sphericity, as in previous studies (83). IQ≡ 36πV2=S3, where V is polyhedron
volume and S is surface area. For spheres, IQ= 1, and for all other polyhedra,
0< IQ< 1 (84).

To decompose each cluster into layers, we use the DBSCAN clustering
algorithm (85) in the scikit-learn Python module (86). DBSCAN operates on
the set of radial distances from the cluster centroid to all particle centroids.

We compute bond order parameters (87) and use them to build associated
shape descriptors (88) for each cluster and each cluster layer in the following
manner. For a given l, the bond order parameter for a set of N points con-
stituting cluster i is
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where rj
! is the vector pointing from a reference point to point j, and Ym

l is the
spherical harmonic associated with angular momentum number l and magnetic
quantum number m. We use the centroid of cluster i as our reference point.

Point clusters of a given symmetry have well-defined values of Ql for
various l. More generally, a vector of these order parameters at multiple
values of l, fl1, l2 . . . lng, acts as a signature for a particular distribution of
points over the surface of a sphere. This vector constitutes a shape descriptor
(88) characterizing a particular cluster i:

Qi
!

= ÆQi
l1,Q

i
l2 ,. . .Q

i
ln æ, [3]

where Qi
!

lies in n-dimensional space. We use the set of l = (2, 3, . . .12) to
calculate this vector. Because the spherical harmonics are functions of the
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Fig. 1. Overview of our methods. (A) The particle shapes studied: the Platonic
solids and the sphere. (B) The evolution of the densest found 21-octahedron
cluster via NPT compression in a spherical container. p* is the dimensionless
pressure imposed on the system, and ϕcirc is the density of the cluster. (C) Cluster
images at p* = 0.135, p* = 5.246, and p* = 500.
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azimuthal and polar angles only, Qi
!

contains angular, rather than radial,
information about the set of points.

To evaluate how well two different point configurations i and jmatch, we
use the following quantity:

Mdistði, jÞ≡ 1−
��Qi
!

−Qj
!��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��Qi
!��2 + ��Qj

!��2
q , [4]

effectively a normalizedmeasure of the distance between twoQ-vectors (88).
Mdistði, jÞ is 1 when Qi

!
=Qj
!

and 0 when Qi
!

is perpendicular to Qj
!
. We take

Mdistði, jÞ> 0.88 to be the quantitative indicator that sets of points i and j are
similar, based on comparisons to the root-mean-squared distance between a
set i of random points on the surface of the unit sphere and its subsequent
perturbation to set j. See the SI Appendix for more details.

Results
All dense clusters are layered structures with maximally three
shells at higher N. The layering is less distinct in clusters of the
least spherical particles, namely the cubes and tetrahedra. Our
tuned DBSCAN parameters delineate cluster layers in nearly all
cases, but we fail to detect distinct layering for one cluster
of cubes (N = 39) and for 14 clusters of tetrahedra (N =
45,46,49− 60). Although these clusters consist of particles at a
range of radial distances from each cluster center, the radial
distances are not well-separated enough to be grouped into
separate layers by DBSCAN.

Comparison with Sphere Clusters. We first compare our results for
the densest found clusters of the Platonic solids with those of
spheres. To measure similarity, we use Msph

dist, given by Eq. 4 when
i is the set of polyhedron centroids for a given cluster of poly-
hedra and j is the set of particle centroids for the corresponding
sphere cluster. Fig. 2A shows a scatter plot of values of Msph

dist for
every densest found cluster as a function of the IQ of the con-
stituent particle shape. Average values hMsph

disti, computed across
the set of all densest found clusters of each Platonic solid, are
also marked in Fig. 2A with an image of the associated particle.
Plots of Msph

dist as a function of N for all Platonic solids are shown
in the SI Appendix.
Given the similarity criterion Msph

dist > 0.88 (marked by a black
horizontal line in Fig. 2A), we find that the number of clusters
that are similar to sphere clusters is quite high for the icosahe-
dron (the most spherical Platonic solid) and trends downward as
the IQ of the particle shape decreases. Of the 57 densest clusters
found for each particle shape, 44 clusters of icosahedra, 20
clusters of dodecahedra, 2 clusters of octahedra, 2 clusters of
cubes, and no clusters of tetrahedra are structurally similar to
their corresponding cluster of spheres. hMsph

dist i also trends downward
as IQ decreases.

Comparison with Optimal Spherical Codes. The dense sphere clus-
ters consist of layers whose configurations map to optimal
spherical codes for a majority of cases. A spherical code, or finite
set of points on the surface of a sphere, can be characterized by
the minimal angle between vectors pointing from the center of
the sphere to any two of the points. Optimal spherical codes are
ones for which this minimal angle, which corresponds to the
smallest distance between any two of the points, is maximized
(89, 90). Given a point radius (i.e., turning these points into
circles), the optimal spherical code at N maps to the arrange-
ment of N circles on a sphere such that they fit on its surface at
minimal sphere radius. Optimal spherical codes are therefore a
way of packing spherical particles such that their configuration
within a cluster layer is spherical but still tightly packed. These
motifs accordingly dominate in the dense sphere clusters, from
which we demand that the particles both pack densely and fit
inside a sphere.
The relationship between densest packings within a container

and optimal spherical codes was previously addressed by Hopkins

et al. (90, 91). They defined the N-specific densest local
packing (DLP) problem, equivalent to finding the densest
packing of spheres within a spherical container given that
one additional sphere must always be at the center of the con-
tainer. Hopkins et al. (90) proved that every solution to the
optimal spherical code problem is also a solution to the DLP
problem for 1≤R≤ τ, where R is the greatest distance from the
container center to the center of any sphere and τ is the
golden ratio. They also found solutions to the DLP problem
for selected values of N up to N = 1,054 and noted that the
majority of their solutions maximized the number of spheres
in the surface layer according to the optimal spherical code at
the relevant container radius (91).
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Fig. 2. Comparison of (A) densest found clusters of the Platonic solids to
densest found clusters of spheres, indicated by Msph

dist, and (B) the outermost
and next inner layers of densest found clusters of the Platonic solids and
spheres to optimal spherical codes, indicated by MSC

dist·M
SC
dist for any layer is

only plotted when Nlayer ≥4. Values of Mdist for all clusters and cluster
layers are plotted as a function of the isoperimetric quotient (IQ) of the
constituent particle shape. Clusters whose value of Mdist lies above 0.88,
indicated by a horizontal line in each figure, are deemed similar to their
corresponding cluster of spheres or optimal spherical code. Average values
hMdisti, computed across the set of all densest found clusters or relevant
cluster layers for each particle shape, are marked with an image of the
associated shape. The more spherical polyhedra (icosahedra and dodeca-
hedra) form clusters that increasingly resemble those of spheres, and a
majority of sphere, icosahedron, and dodecahedron cluster layers match
optimal spherical codes.
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Here, we expand upon those observations and find that opti-
mal spherical codes are prevalent motifs in solutions to a more
general problem, one in which there is no particle fixed at the
center of the container and the packing particles are not just
spheres but faceted particles as well.
To determine the similarity between cluster layers and optimal

spherical codes, we use MSC
dist, given by Eq. 4 when i is the set of

particle centroids in a particular cluster layer and j is the optimal
spherical code at equal Nlayer. We use conjectured optimal
spherical codes found in ref. 92. The criterion for similarity is
again MSC

dist > 0.88.
Fig. 2B shows scatter plots of values of MSC

dist, both for the
outermost layer and the next inner layer of every densest cluster
found, as a function of the IQ of the constituent particle shape.
MSC

dist for any layer is only plotted when Nlayer ≥ 4. At higher N,
there is also a third (innermost) layer, but at the particle numbers
we studied this third layer is just a single central particle and is
not included in the figure. Average values hMSC

disti for each layer,
computed across the set of all relevant layers of each particle
shape, are also marked in Fig. 2B with an image of the associated
particle. Table 1 tabulates this data. Plots of MSC

dist as a function of
N for all particle shapes are given in the SI Appendix.
Optimal spherical code motifs constitute the majority of layers for

sphere, icosahedron, and dodecahedron clusters, and even appear
in layers of the octahedron and cube clusters. Additionally,
hMSC

disti> 0.88 (marked by black horizontal lines in Fig. 2B) for the
outer layers of the sphere, icosahedron, and dodecahedron clusters
and the inner layer of the dodecahedron cluster, indicating that
these layers are, on average, optimal spherical codes. This is far
from the case for the clusters of octahedra, cubes, and tetrahedra.
Given the wealth of studies showing that bulk dense packing is

sensitive to minute differences in particle shape (e.g., refs. 65, 93,
and 94), it is interesting that in spherical confinement icosahedra
and dodecahedra pack like spheres. This is noteworthy because
of a combination of two facts. First, icosahedra and dodecahedra
are dual to each other (i.e., everywhere an icosahedron has a
face, a dodecahedron has a vertex, and vice versa). Second,
polyhedra make contact with the spherical container only at their
vertices. These two facts would lead us to expect that icosahedra
would arrange themselves differently from dodecahedra at the
surface of the container to accommodate the “opposite” location
of their vertices. However, what we observe instead is that the
layered spherical code structures that occur for sphere packing
are robust against changes in particle shape.

Common Cluster Structures. Similarity to sphere clusters and op-
timal spherical codes produces a class of common structures
formed by different particle types at specific values of N. Values
of N for which more than two particle types share a common
cluster geometry, as well as the respective cluster structure, are
shown in Fig. 3. More common structures could be listed here if
we relax our Msph

dist criterion; the current set represents a sample

based on our cutoff Msph
dist > 0.88. For most of these values of N,

common structures are shared by clusters of spheres, icosahedra,
and dodecahedra. Layers of these similar clusters are optimal
spherical codes, indicated by MSC

dist > 0.88, in all but six cases.
That these common motifs emerge simply from the spherical

confinement of particles as nonspherical as dodecahedra, and in
some cases even octahedra and cubes, is a result with intriguing
experimental implications. Common configurations are resistant
to significant deviations from spherical particle shape, meaning
that they may be ideal target structures for the self-assembly of
imperfectly spherical colloidal particles or faceted metallic nano-
particles. We will explore this idea further in the Conclusions.

Cluster Symmetry and Density. We next examine the relationship
between symmetry and density of the dense packings as a func-
tion of N. Fig. 4 shows both of these cluster properties simulta-
neously: the respective crystal systems of the symmetry point
groups of the outermost cluster layers are shown as vertical bars
of color overlaid on plots of the cluster density ϕcirc as a function
of N. The crystal systems of the outermost layers are also tallied
in Table 2. Point groups were determined by eye for all clusters.
Density profiles are similar in behavior for all particle shapes:

density increases sharply with N at low values of N, as the densest
clusters gain enough particles to be approximately spherical, and
then more gradually grows as N increases. We expect ϕcirc to ap-
proach the bulk densest packing fraction for each particle shape as
N goes to infinity, although at N = 60 the density is still far from its
bulk value in all cases. Cluster symmetry, however, varies widely
across N for all particle shapes.
The set of conjectured optimal spherical codes displays a wide

variety of point groups (95, 96), and it is thus unsurprising that
the layers of the sphere, icosahedron, and dodecahedron clusters
also have a variety of symmetries as N varies, at least when they
match optimal spherical codes. Within the set of sphere, icosa-
hedron, and dodecahedron clusters, a majority of clusters have
nontriclinic point groups, and these point groups are spread
widely across 10 crystal systems.
It is significant, however, that even those cluster layers that do

not map to optimal spherical codes display a variety of symmetries.
These include the icosahedron and dodecahedron layers for which
MSC

dist ≤ 0.88, as well as the majority of octahedron, cube, and tet-
rahedron cluster layers. In many cases, irrespective of the aniso-
tropic particle shape, the requirement of high density and cluster
sphericity imposed by the container selects for symmetric clusters.

Comparison with Bulk Packing Behavior. As an interesting aside,
Ulam conjectured that spheres pack less densely than all other
convex solids in infinite space (97). The n-dimensional analog of
Ulam’s conjecture is violated in Euclidean spaces for n= 2,4,5,6,7,8,
and 24 (98), but in three dimensions it has been shown that spheres
pack less densely than any other infinitesimal centrosymmetric
convex shape deformation (98). It is not known whether in three
dimensions spheres continue to be pesimal packers in confinement.
We find that for a majority of lower N values, spheres pack inside a
spherical container more densely than one or more Platonic solids.
In fact, at N = ð4− 9Þ, the sphere cluster has the highest value of
ϕcirc. Spheres are only the worst packers for N = ð26,29,31− 33,35Þ.
We believe these results can be explained by considering the
volume occupied by the particles in a spherical shell just below
the container surface. A single spherical particle necessarily packs
more densely than a convex faceted particle near the surface of
the container, due to the fact that the faceted particle may touch
the container only at its vertices. This density gain by spherical
particle packing is a surface effect and matters less and less as N
increases. At small values of N, however, it enables spheres to
pack more densely than the various Platonic solids inside a spherical
container, in contrast to what Ulam’s conjecture asserts for
infinite space.

Table 1. Outermost and next inner cluster layers as optimal
spherical codes

Particle shape Outer: SC (total) hMSC
disti Inner: SC (total) hMSC

disti
Sphere 36 (57) 0.91 14 (30) 0.82
Icosahedron 43 (57) 0.91 14 (30) 0.86
Dodecahedron 42 (57) 0.90 20 (30) 0.90
Octahedron 3 (57) 0.60 6 (32) 0.77
Cube 1 (57) 0.74 0 (35) 0.67
Tetrahedron 0 (57) 0.52 0 (3) 0.76

Numbers corresponding to SC (total) are the number of layers that are
deemed similar to optimal spherical codes (SC) for each particle shape, fol-
lowed in parentheses by the total number of layers for which Nlayer ≥ 4.
hMSC

disti is an average taken over each set of layers counted in the parentheses.
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Magic Numbers. In every density profile the cluster density jumps
at certain values of N and is markedly larger than densities at
N − 1 and N + 1. These values of N are marked by gray circles in
Fig. 4; we term them “magic numbers” in deference to the wealth
of literature exploring magic numbers in other cluster systems.
Typically, magic numbers in these systems correspond to clusters
of minimal energy (78, 79, 81, 99–101).
We deem a cluster at N to be a magic-number cluster if its density

ϕN
circ meets three criteria:

i) ΔϕN
circ ≡ϕN

circ − 1
2 ðϕN−1

circ +ϕN+1
circ Þ> 0.009

ii) ϕN
circ >ϕN−1

circ
iii) ϕN

circ >ϕN+1
circ

Clusters at N = 4 and N = 60, the minimum and maximum
values of N, are not considered, because they are incapable of

satisfying criterion i and criterion ii or iii, respectively. The cutoff
value of 0.009 delimits a varied sample of clusters drawn from
every particle shape that nevertheless represents only a small
fraction ð∼ 0.064Þ of all generated clusters. See the SI Appendix
for more details.
The magic-number clusters for all particle shapes are shown in

Fig. 5, along with the symmetry point groups of their layers. The
structure and symmetry of each magic-number cluster vary widely
both with N and particle shape.
Magic-number clusters of spheres, icosahedra, and dodeca-

hedra consist of either a single layer or a central single particle or
dimer surrounded by an outer layer that maps to an optimal
spherical code in 12 out of 15 cases. Multiple shapes have the
same outer-layer structure at N = 6, 12 and 13, 21, and 38. Note
that the N = 25 sphere and dodecahedron clusters do not actually

4 5 6 7 9

Sph

10 13 15 16

18 19 20 21 22 23 34 42

Icos

Dod

Oct

Cube

Sph

Icos

Dod

Fig. 3. Common cluster structures across multiple particle types. N indicates the number of particles in each cluster, and rows labeled Sph show the positions
of the centroids of the corresponding sphere clusters. Rows labeled Icos, Dod, Oct, and Cube show corresponding clusters of icosahedra, dodecahedra, oc-
tahedra, and cubes, respectively. Clusters of Platonic solids are similar to these sphere clusters, and included in this table, if Msph

dist > 0.88. At N= 5 the sphere,
dodecahedron, and cube clusters are a square pyramid, whereas the icosahedron and octahedron clusters are the N= 5 optimal spherical code, a triangular
bipyramid.
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share the same structure; the sphere cluster is a central particle
surrounded by the N =24 optimal spherical code, whereas the
dodecahedron cluster is a central dimer surrounded by the N =23
optimal spherical code. Of the three magic-number clusters that
are not layers of optimal spherical codes (N =27 dodecahedra,

N =38 spheres, and N =38 dodecahedra), the case of N =38
spheres and dodecahedra is particularly interesting. These clusters
are both slight distortions of a particular common structure, a
central six-particle octahedron surrounded by an outer layer whose
centroids make up the union of a truncated octahedron and a
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tetragonal
orthorhombic
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Fig. 4. ϕcirc with respect to particle number for all densest clusters found. Colored bars indicate the crystal system of each outer cluster layer. Identically
colored bars for clusters of different shapes denote the same crystal system. Gray data points are those deemed to be magic-number clusters.
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cube. (See Fig. 5 for an illustration. The N =38 icosahedron
cluster is also observed to share this structure, although it is not a
magic-number cluster and its value of Msph

dist is only ∼ 0.77.) Al-
though its outer layer is not an optimal spherical code, the N =38
motif occupies a unique place in the pantheon of sphere cluster
literature. It is an especially spherical arrangement of maximally
close-packed spheres and is thus optimal under a range of cir-
cumstances beyond just dense packing inside a spherical container.
The undistended version of this cluster is a segment of the fcc
sphere packing, the densest packing possible for spheres in the
bulk limit. Called the fcc truncated octahedron, this cluster is ad-
ditionally known to be the global energy minimum of the 38-atom
Lennard-Jones cluster (100, 102–104).
The magic-number clusters of the octahedra, cubes, and tet-

rahedra do not resemble optimal spherical codes, but rather are
unique configurations whose structures allow each set of parti-
cles to be reasonably spherical and tightly packed. All magic-
number clusters are displayed in Fig. 5; only a portion will be
discussed here. The N = 9 octahedron cluster is a central particle
surrounded by eight others, each face-sharing with it, in a regular
cubic configuration. The N = 21 octahedron cluster is a central
particle surrounded by a cage of 20 others, face-sharing with
each other, in a regular dodecahedral configuration. The N = 13
cube cluster is an irregular icosahedral configuration surround-
ing a central particle in six sets of face-to-face aligned dimers.
(A regular icosahedral configuration is an optimal spherical
code, but the particular arrangement of these dimers distorts the
configuration such thatMSC

dist does not register the similarity.) The
N = 48 cube cluster consists of the N = 13 cluster, with one dimer
replaced by a single particle, surrounded by an outer layer of 36
particles with cubic symmetry (six particles per cubic “side”).
One notable surprise occurs for tetrahedra and suggests a

connection between dense packings in a sphere and locally
preferred motifs (105) during the self-assembly of an unconfined
bulk system. A bulk fluid of tetrahedra self-assembles into a
dodecagonal quasicrystal under suitable conditions (106), form-
ing a structure that is markedly different from the bulk densest
known packing of tetrahedra [a crystalline arrangement with four
tetrahedra per unit cell, arranged in two face-sharing dimers
(63)]. It was shown that en route to the quasicrystal, 20-tetra-
hedron icosahedral clusters in the fluid rearrange to form a 22-
tetrahedron structure (106). This 22-tetrahedron cluster consists
of two pentagonal dipyramids at the cluster poles and a set of six
face-to-face aligned dimers ringing the cluster equator. It is
precisely the structure we find to be a magic-number cluster.
Indeed, our set of densest found tetrahedron clusters forms a
telling sequence of structures: as N increases, the densest cluster

passes from the N = 5 pentagonal dipyramid, through the N = 20
icosahedron, and maximizes cluster density at N = 22. Cluster
density then dips, and significantly drops at N = 27 when the
densest found cluster contains a particle at its center. That the
N = 22 tetrahedron cluster is both a prominent motif in the self-
assembled quasicrystal and the densest structure inside a sphere
for N = ð4− 60Þ suggests that the self-assembly of tetrahedra may
favor the formation of local structures that pack densely inside
a sphere.
Magic-number structures are unique, but all exhibit a trade-off

between face-to-face alignment among particles, which enables
tight packing but not necessarily cluster sphericity, and other
types of contact between particles, which may promote cluster
sphericity but not tight packing. No single rule seems to de-
termine what makes a particular cluster “magic” for any particle
shape: locally maximal density does not select for a particular
type of symmetry or structure across particle types or even within
the same particle type. These magic-number clusters do, how-
ever, provide a set of especially dense structures that possess
symmetries not achievable via the spherical confinement of
spheres, icosahedra, or dodecahedra at identical values of N, a
fact whose implications will be discussed in the following section.

Conclusions
We generated finite dense packings of the Platonic solids, for
N = ð4− 60Þ constituent particles, using Monte Carlo sampling
within spherical confinement. We found that generated packings
were layered structures, possessing maximally three layers at high
N and displaying a variety of point groups. Packings of the more
spherical icosahedra and dodecahedra were structurally similar
to sphere packings generated by the same method for many
values of N, whereas packings of octahedra and cubes were
similar to sphere packings only in two instances each, and
packings of tetrahedra never matched sphere packings. Common
packing structures were layers of optimal spherical codes in a ma-
jority of cases. The widespread similarity of finite dense pack-
ings of icosahedra and dodecahedra inside a spherical container
to those of spheres indicates the suppression of the packing
effects of particle shape by the container. Rather than particle
shape and orientation, it is the particles’ ability to pack tightly
into spherical shells by mimicking the behavior of spherical
particles and forming optimal spherical codes that enables
dense packing. This is a result in contrast to dense packing in
infinite 3D Euclidean space, for which particle shape strongly
influences packing structure (60, 62, 65).
We also generated cluster density profiles across N for each

particle shape and noted that spheres were not the worst packers

Table 2. Crystal systems of all outer cluster layers

Crystal system Sphere Icosahedron Dodecahedron Octahedron Cube Tetrahedron

Cubic 6 6 5 3 5 0
Hexagonal 2 5 1 2 0 1
Trigonal 4 6 9 3 3 1
Tetragonal 3 2 4 1 2 1
Orthorhombic 8 3 7 6 10 2
Monoclinic 8 7 4 7 14 10

Icosahedral 3 3 3 2 1 1
Decagonal 2 1 2 0 0 1
Octagonal 3 3 1 1 0 0
Pentagonal 2 1 2 0 0 0

Total 41 37 38 25 35 17

For each particle shape, data show the total number of outer layers whose symmetry point group belongs to
each crystal system. A blank row separates crystal systems that are crystallographic from those that are not.
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with respect to the volume of the container at most values of N,
and were in fact the best packers at especially low values of N.
This result is not consistent with the conjectured behavior of
dense packings of spheres and convex solids in infinite space
(97); we hypothesize that it is due to the fact that spheres pack
more densely than faceted convex particles near the surface of a
spherical container. This surface packing effect becomes less
influential on density as system size increases. Our density pro-
files additionally indicated clusters of especially dense design
that we termed magic-number clusters. These clusters vary in
symmetry and structure.
Common structures shared by clusters of spheres, icosahedra,

dodecahedra, and in a few cases octahedra and even cubes are a
class of dense motifs that are resistant to changes in particle
shape, a result of interest to those in the colloidal and plasmonics
communities for whom the fabrication of highly spherical parti-
cles is difficult to achieve or experimentally undesirable. In the
plasmonics community, for example, recent efforts have focused
on the manufacture of highly spherical metallic nanoparticles

for the production of plasmonic nanoclusters with consistent and
reproducible structure (77). However, faceted geometries are
thermodynamically preferred over spherical geometries during the
metallic nanoparticle growth process (77, 107), which complicates
the production of spherical metallic nanoparticles. We showed
here that a host of sphere cluster geometries, including among
many others the optically interesting four-particle tetrahedron
(27) and 13-particle centered icosahedron (108), are in fact robust
against changes in particle shape. They can be formed by signifi-
cantly nonspherical particles if the clusters are created via spherical
confinement. Moreover, faceted particles within these common
motifs assume a variety of contacts with their neighbors, including
edge-to-edge, face-to-face, and edge-to-face. Recent work on the
optical properties of different metallic nanoparticle junction types
(31, 33) indicates that our clusters, although they share common
geometries, may exhibit diverse and interesting optical behavior if
formed from metallic nanoparticles.
Our dense magic-number clusters provide examples of struc-

tures with experimentally useful geometries that are difficult to
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Fig. 5. All magic-number clusters for the spheres and polyhedra studied. Headers above each row of images show the particle number N of each cluster.
Cluster snapshots and centroid skeletons are shown. Included with each set of cluster images are the symmetry point groups of its layers. When multiple
symmetries are shown, the topmost symmetry belongs to the inner cluster layer.
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achieve otherwise. Many magic-number clusters, especially of the
less spherical shapes, have configurations that are not achievable
by densely packing spheres, and could be accessible via con-
finement within an emulsion droplet or other spherical con-
tainer. For instance, our densest cluster of 21 octahedra, a
dodecahedral cage of 20 particles surrounding a central one,
possesses a structure that closely packed spheres, either within a
spherical container or in bulk, do not adopt. Moreover, recent
work shows that this dodecahedral geometry may have impli-
cations for self-assembled metamaterials (109).
Other classes of packing in confinement problems are com-

pelling future subjects of investigation. For example, confining
geometries beyond spheres are frequently leveraged in the labo-
ratory, including cylinders and cylindrical wells (33, 110–112),
rectilinear channels (33, 110, 113, 114), and the space near planar
walls (35, 115, 116). Another set of packing in confinement prob-
lems, for which the packing object is a flexible or semiflexible
polymer rather than a particle, is related to the containment of
genomic material in cells and virus capsids. This confinement is
conjectured to influence gene expression and regulation (3, 4),
ordering of the genome into spool-like, toroidal, or liquid-crystalline
structures (4, 117, 118), and ejection of the genome from virus
capsids into other cells (117, 118). Countless studies, inspired by

the ubiquity of biopolymer packing in confinement, have in-
vestigated polymer behavior inside spheres and rod-like con-
tainers (119, 120), in boxes (121), in slit-like channels and tubes
(122, 123), in quasi-2D confinement (124), and even on curved
2D surfaces (125). Recently, ellipsoid packing and assembly
in spherical and ellipsoidal confinement (56, 58, 126) has been used
to mimic the effects of cell nucleus confinement on the behavior of
ellipsoid-like nucleosomes and higher-order chromosome territories
(3, 127, 128). The richness of our results for polyhedra in spherical
confinement suggests that further investigation into the interplay
between particle shape and container shape in these new packing in
confinement problems will be interesting and informative.
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